
 2002 Microchip Technology Inc. DS51296A

MPLAB® C17

C COMPILER

LIBRARIES

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.

• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.

The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.

• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.
Information contained in this publication regarding device

applications and the like is intended through suggestion only

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

No representation or warranty is given and no liability is

assumed by Microchip Technology Incorporated with respect

to the accuracy or use of such information, or infringement of

patents or other intellectual property rights arising from such

use or otherwise. Use of Microchip’s products as critical com-

ponents in life support systems is not authorized except with

express written approval by Microchip. No licenses are con-

veyed, implicitly or otherwise, under any intellectual property

rights.
DS51296A - page ii
Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ,

MPLAB, PIC, PICmicro, PICSTART and PRO MATE are

registered trademarks of Microchip Technology Incorporated

in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL

and The Embedded Control Solutions Company are

registered trademarks of Microchip Technology Incorporated

in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense,

FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,

ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,

MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select

Mode and Total Endurance are trademarks of Microchip

Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark

of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2002, Microchip Technology Incorporated. Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.
 2002 Microchip Technology Inc.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

MPLAB® C17 C COMPILER

LIBRARIES
Table of Contents
Preface .. 1

Chapter 1. Library/Precompiled Object Overview
1.1 Introduction ... 7
1.2 Highlights .. 7
1.3 MPLAB® C17 Libraries ... 7
1.4 MPLAB C17 Precompiled Object Files ... 9

Chapter 2. Hardware Peripheral Library
2.1 Introduction ... 11
2.2 Highlights .. 11
2.3 A/D Converter Functions .. 12
2.4 Input Capture Functions ... 16
2.5 I²C® Functions ... 20
2.6 Interrupt Functions .. 30
2.7 Port B Functions ... 32
2.8 Microwire® Functions .. 36
2.9 Pulse Width Modulation Functions ... 41
2.10 Reset Functions .. 44
2.11 SPI™ Functions .. 48
2.12 Timer Functions .. 54
2.13 USART Functions ... 59

Chapter 3. Software Peripheral Library
3.1 Introduction ... 67
3.2 Highlights .. 67
3.3 External LCD Functions .. 67
3.4 Software I²C Functions ... 74
3.5 Software SPI Functions .. 81
3.6 Software UART Functions .. 84

Chapter 4. General Software Library
4.1 Introduction ... 87
4.2 Highlights .. 87
4.3 Character Classification Functions ... 87
4.4 Number and Text Conversion Functions 91
4.5 Delay Functions .. 96
4.6 Memory and String Manipulation Functions 98
 2002 Microchip Technology Inc. DS51296A-page iii

MPLAB® C17 C Compiler Libraries
Chapter 5. Math Library
5.1 Introduction ...103
5.2 Highlights ..103
5.3 32-Bit Integer and 32-Bit Floating Point Math Libraries103
5.4 Decimal/Floating Point and Floating Point/Decimal Conversions 106

Glossary ... 109

Index ... 125

Worldwide Sales and Service ... 132
DS51296A-page iv  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

LIBRARIES
Preface
INTRODUCTION

The purpose of this document is to provide detailed information on the libraries and

precompiled object files that may be used with Microchip’s MPLAB® C17 C Compiler.

HIGHLIGHTS

Items discussed in this chapter are:

• About this Guide

• Warranty Registration

• Recommended Reading

• Troubleshooting

• Microchip On-Line Support

• Customer Change Notification Service

• Customer Support

ABOUT THIS GUIDE

Document Layout

This document describes MPLAB C17 libraries and precompiled object files. For a

detailed discussion about using MPLAB C17 or MPLAB® IDE, refer to Recommended

Reading later in this chapter.

The document layout is as follows:

• Chapter 1: Library/Precompiled Object Overview – describes the libraries and

precompiled object files available.

• Chapter 2: Hardware Peripheral Library – describes each hardware peripheral

library function.

• Chapter 3: Software Peripheral Library – describes each software peripheral

library function.

• Chapter 4: General Software Library – describes each general software library

function.

• Chapter 5: Math Library – discusses the math library functions.

• Glossary – A glossary of terms used in this guide.

• Index – Cross-reference listing of terms, features and sections of this document.

• Worldwide Sales and Service – gives the address, telephone and fax number

for Microchip Technology Inc. sales and service locations throughout the world.
 2002 Microchip Technology Inc. apRNOVT^-page 1

MPLAB® C17 C Compiler Libraries
Conventions Used in this Guide

This manual uses the following documentation conventions:

Documentation Updates

All documentation becomes dated, and this user’s guide is no exception. Since MPLAB

IDE, MPLAB C17 and other Microchip tools are constantly evolving to meet customer

needs, some actual dialogs and/or tool descriptions may differ from those in this

document. Please refer to our web site to obtain the latest documentation available.

Documentation Numbering Conventions

Documents are numbered with a “DS” number. The number is located on the bottom of

each page, in front of the page number. The numbering convention for the DS Number

is: DSXXXXXA,

where:

WARRANTY REGISTRATION

Please complete the enclosed Warranty Registration Card and mail it promptly.

Sending in your Warranty Registration Card entitles you to receive new product

updates. Interim software releases are available at the Microchip web site.

Table: Documentation Conventions

Description Represents Examples

Code (Courier font):

Plain characters Sample code

Filenames and paths

#define START
c:\autoexec.bat

Angle brackets: < > Variables <label>, <exp>

Square brackets [] Optional arguments MPASMWIN [main.asm]

Curly brackets and pipe

character: { | }

Choice of mutually exclusive

arguments; An OR selection

errorlevel {0|1}

Lower case characters

in quotes

Type of data “filename”

Ellipses... Used to imply (but not show)

additional text that is not relevant to

the example

list
[“list_option...,
“list_option”]

0xnnn A hexadecimal number where n is a

hexadecimal digit

0xFFFF, 0x007A

Italic characters A variable argument; it can be either a

type of data (in lower case characters)

or a specific example (in uppercase

characters).

char isascii (char,
ch);

Interface (Arial font):

Underlined, italic text

with right arrow

A menu selection from the menu bar File > Save

Bold characters A window or dialog button to click OK, Cancel

Characters in angle

brackets < >

A key on the keyboard <Tab>, <Ctrl-C>

Documents (Arial font):

Italic characters Referenced books MPLAB IDE User’s Guide

XXXXX = The document number.

A = The revision level of the document.
apRNOVT^-page 2  2002 Microchip Technology Inc.

Preface
RECOMMENDED READING

This document describes the MPLAB C17 C Compliler libraries and precompiled object

files. For more information on the MPLAB C17 C compliler, the operation of MPLAB IDE

and the use of other tools, the following are recommended reading.

README.C17

For the latest information on using MPLAB C17 C Compiler, read the README.C17 file

(ASCII text) included with the software. This README file contains update information

that may not be included in this document.

README.XXX

For the latest information on other Microchip tools (MPLAB IDE, MPLINK™ linker, etc.),

read the associated README files (ASCII text file) included with the MPLAB IDE

software.

MPLAB C17 C Compiler User’s Guide (DS51290)

Comprehensive guide that describes the installation, operation and features of

Microchip’s MPLAB C17 C compiler for PIC17CXXX devices.

MPLAB IDE User’s Guide (DS51025)

Comprehensive guide that describes installation and features of Microchip’s MPLAB

Integrated Development Environment (IDE), as well as the editor and simulator functions

in the MPLAB IDE environment.

MPASM™ User’s Guide with MPLINK™ and MPLIB™ (DS33014)

This user’s guide describes how to use the Microchip PICmicro® MCU MPASM

assembler, the MPLINK object linker and the MPLIB object librarian.

Technical Library CD-ROM (DS00161)

This CD-ROM contains comprehensive application notes, data sheets and technical

briefs for all Microchip products. To obtain this CD-ROM, contact the nearest Microchip

Sales and Service location (see back page).

Microchip Web Site

Our web site (www.microchip.com) contains a wealth of documentation. Individual data

sheets, application notes, tutorials and user’s guides are all available for easy

download. All documentation is in Adobe™ Acrobat (pdf) format.

Microsoft® Windows® Manuals

This manual assumes that users are familiar with the Microsoft® Windows® operating

system. Many excellent references exist for this software program, and should be

consulted for general operation of Windows.
 2002 Microchip Technology Inc. apRNOVT^-page 3

MPLAB® C17 C Compiler Libraries
TROUBLESHOOTING

See the README files for information on common problems not addressed in this user’s

guide.

MICROCHIP ON-LINE SUPPORT

Microchip provides on-line support on the Microchip web site at:

http://www.microchip.com

A file transfer site is also available by using an FTP service connecting to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may

download files for the latest development tools, data sheets, application notes,

user' guides, articles and sample programs. A variety of Microchip specific business

information is also available, including listings of Microchip sales offices and

distributors. Other information available on the web site includes:

• Latest Microchip press releases

• Technical support section with FAQs

• Design tips

• Device errata

• Job postings

• Microchip consultant program member listing

• Links to other useful web sites related to Microchip products

• Conferences for products, development systems, technical information and more

• Listing of seminars and events

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip started the customer notification service to help customers stay current on

Microchip products with the least amount of effort. Once you subscribe, you will receive

email notification whenever we change, update, revise or have errata related to your

specified product family or development tool of interest.

Go to the Microchip web site (www.microchip.com) and click on Customer Change

Notification. Follow the instructions to register.

The Development Systems product group categories are:

• Compilers

• Emulators

• In-Circuit Debuggers

• MPLAB IDE

• Programmers

Here is a description of these categories:

Compilers - The latest information on Microchip C compilers and other language tools.

These include the MPLAB C17, MPLAB C18 and MPLAB C30 C Compilers; MPASM

and MPLAB ASM30 assemblers; MPLINK and MPLAB LINK30 linkers; and MPLIB and

MPLAB LIB30 librarians.

Emulators - The latest information on Microchip in-circuit emulators. This includes the

MPLAB ICE 2000.

In-Circuit Debuggers - The latest information on Microchip in-circuit debuggers.

These include the MPLAB ICD and MPLAB ICD 2.
apRNOVT^-page 4  2002 Microchip Technology Inc.

Preface
MPLAB - The latest information on Microchip MPLAB IDE, the Windows Integrated

Development Environment for development systems tools. This list is focused on the

MPLAB IDE, MPLAB SIM simulator, MPLAB IDE Project Manager and general editing

and debugging features.

Programmers - The latest information on Microchip device programmers. These

include the PRO MATE® II device programmer and PICSTART® Plus development

programmer.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributors

• Local Sales Office

• Field Application Engineers (FAEs)

• Corporate Applications Engineers (CAEs)

• Systems Information and Upgrade Hot Line

Customers should call their distributor or field application engineer (FAE) for support.

Local sales offices are also available to help customers. See the last page of this

document for a listing of sales offices and locations.

Corporate applications engineers (CAEs) may be contacted at (480) 792-7627.

Systems Information and Upgrade Line

The Systems Information and Upgrade Information Line provides system users with a

listing of the latest versions of all of Microchip’s development systems software

products. Plus, this line provides information on how customers can receive the most

current upgrade kits. The Information Line Numbers are:

1-800-755-2345 for U.S. and most of Canada.

1-480-792-7302 for the rest of the world.
 2002 Microchip Technology Inc. apRNOVT^-page 5

MPLAB® C17 C Compiler Libraries
NOTES:
apRNOVT^-page 6  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

LIBRARIES
Chapter 1. Library/Precompiled Object Overview
1.1 INTRODUCTION

This chapter gives an overview of the MPLAB C17 libraries and precompiled object

files that can be included in an application.

1.2 HIGHLIGHTS

This chapter is organized as follows:

• MPLAB C17 Libraries

- Hardware, Software and Standard Libraries

- Math Library

• MPLAB C17 Precompiled Object Files

- Start Up Code

- Initialization Code

- Interrupt Handler Code

- Special Function Register Definitions

1.3 MPLAB C17 LIBRARIES

A library is a collection of functions grouped for reference and ease of linking. See the

MPASM™ User's Guide with MPLINK™ and MPLIB™ (DS33014) for more

information about creating and maintaining libraries.

When building an application, usually one file from 1.3.1 “Hardware, Software and

Standard Libraries” will be needed to successfully link. Be sure to chose the library that

corresponds to your selected device and memory model. For more information on

memory models, see the MPLAB C17 C Compiler User’s Guide (DS51290).

For functions contained in MPLAB C17 libraries, all parameters sent to these functions

are classified as static and therefore are passed in global RAM. The first variable is

always passed in the PROD register if declared as static, i.e., 8 bits in PRODL and 16 bits

in PRODH:PRODL.

The MPLAB C17 libraries are included in the c:\mcc\lib directory, where c:\mcc is

the compiler install directory. These can be linked directly into an application with

MPLINK object linker.

These files were precompiled in the c:\mcc\src directory at Microchip. If you chose

not to install the compiler and related files in the c:\mcc directory (ex: c:\c17\src,

d:\mcc\src, etc.), a warning message will be generated by MPLINK linker stating

that source code from the libraries will not show in the .lst file and can not be stepped

through when using MPLAB IDE. This results from MPLINK linker looking for the library

source files in the absolute path of c:\mcc\src.
 2002 Microchip Technology Inc. apRNOVS^-page 7

MPLAB® C17 C Compiler Libraries
To include the library code in the .lst file and to be able to single step through library

functions, use the batch file (.bat) in the src directory to rebuild the files. Then copy

the newly compiled files into the lib directory.

1.3.1 Hardware, Software and Standard Libraries

These are the main MPLAB C17 library files that contain the functions described in the

following three chapters.

• Hardware functions are described in Chapter 2.

• Software functions are described in Chapter 3.

• General functions are described in Chapter 4.

When you wish to use any of the functions described in these chapters, include the

appropriate above library as part of your project.

The source code for these libraries may be found in c:\mcc\src\pmc, where c:\mcc

is the compiler install directory.

1.3.2 Math Library

This library file contains the available math functions described in detail in Chapter 5.

When you wish to use any of the functions described in this chapter, include the math

library as part of your project.

The source code for this library can be found in c:\mcc\src\math, where c:\mcc is

the compiler install directory.

Device
Memory Model

Small Medium Compact Large

PIC17C42A pmc42as.lib pmc42am.lib pmc42ac.lib pmc42al.lib

PIC17C43 pmc43s.lib pmc43m.lib pmc43c.lib pmc43l.lib

PIC17C44 pmc44s.lib pmc44m.lib pmc44c.lib pmc44l.lib

PIC17C752 pmc752s.lib pmc752m.lib pmc752c.lib pmc752l.lib

PIC17C756A pmc756as.lib pmc756am.lib pmc756ac.lib pmc756al.lib

PIC17C756 pmc756s.lib pmc756m.lib pmc756c.lib pmc756l.lib

PIC17C762 pmc762s.lib pmc762m.lib pmc762c.lib pmc762l.lib

PIC17C766 pmc766s.lib pmc766m.lib pmc766c.lib pmc766l.lib

Device All Memory Models

PIC17CXXX cmath17.lib
apRNOVS^-page 8  2002 Microchip Technology Inc.

Library/Precompiled Object Overview
1.4 MPLAB C17 PRECOMPILED OBJECT FILES

Precompiled object files are useful inclusions when building applications. These files

have already been compiled and tested, so may be used as “plug-ins” to serve a

specific function in your code development.

When building an application, usually one file from each of the following subsections

will be needed to successfully link. Be sure to chose the file that corresponds to your

selected device and memory model. For more information on memory models, see the

MPLAB C17 C Compiler User’s Guide (DS51290).

These files are included in the c:\mcc\lib directory, where c:\mcc is the compiler

install directory. They can be linked directly into an application with MPLINK linker.

1.4.1 Start Up Code

These files contain the start up code for the compiler. This code initializes the C

software stack, calls the routines in idata17.o to initialize data (c0l17.o only), and

jumps to the start of the application function, main().

If the application uses more than one page (8k) of program memory, then c0l17.o

should be used.

The source code may be found in c:\mcc\src\startup, where c:\mcc is the

compiler install directory.

1.4.2 Initialization Code

This assembly code copies initialized data from ROM to RAM upon system start up.

This code is required if variables are set to a value when they are first defined.

Here is an example of data that will need to be initialized on system startup:

int my_data = 0x1234;
unsigned char my_char = "a";

To avoid the overhead of this initialization code, set variable values at run time:

 int my_data;
 unsigned char my_char;
void main (void)
 :
 my_data = 0x1234;
 my_char = "a";
 :

The source code may be found in c:\mcc\src\startup, where c:\mcc is the

compiler install directory.

Device
Memory Model

Small Compact/Medium/Large

PIC17CXXX c0s17.o c0l17.o

Device All Memory Models

PIC17CXXX idata17.o
 2002 Microchip Technology Inc. apRNOVS^-page 9

MPLAB® C17 C Compiler Libraries
1.4.3 Interrupt Handler Code

These precompiled object files contain useful interrupt code. These may be customized

for specific applications.

The source code for these precompiled objects can be found in

c:\mcc\src\startup, where c:\mcc is the compiler install directory.

1.4.4 Special Function Register Definitions

These files contain the PICmicro MCU special function register definitions for each

processor supported.

The source code can be found in c:\mcc\src\proc, where c:\mcc is the compiler

install directory.

Device
Memory Model

Small Compact/Medium/Large

PIC17C42A int42as.o int42al.o

PIC17C43 int43s.o int43l.o

PIC17C44 int44s.o int44l.o

PIC17C752 int752s.o int752l.o

PIC17C756A int756as.o int756al.o

PIC17C756 int756s.o int756l.o

PIC17C762 int762s.o int762l.o

PIC17C766 int766s.o int766l.o

Device All Memory Models

PIC17C42A p17c42a.o

PIC17C43 p17c43.o

PIC17C44 p17c44.o

PIC17C752 p17c752.o

PIC17C756A p17c756a.o

PIC17C756 p17c756.o

PIC17C762 p17c762.o

PIC17C766 p17c766.o
apRNOVS^-page 10  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

LIBRARIES
Chapter 2. Hardware Peripheral Library
2.1 INTRODUCTION

This chapter documents hardware peripheral library functions. The source code for all

of these functions is included with MPLAB C17 in the c:\mcc\src\pmc directory,

where c:\mcc is the compiler install directory.

See the MPASM™ User's Guide with MPLINK™ and MPLIB™ (DS33014) for more

information about building libraries.

2.2 HIGHLIGHTS

This chapter is organized as follows:

• A/D Converter Functions

• Input Capture Functions

• I2C® Functions

• Interrupt Functions

• Port B Functions

• Microwire® Functions

• Pulse Width Modulation (PWM) Functions

• Reset Functions

• SPI™ Functions

• Timer Functions

• USART Functions
 2002 Microchip Technology Inc. apRNOVS^-page 11

MPLAB® C17 C Compiler Libraries
2.3 A/D CONVERTER FUNCTIONS

This section contains a list of individual functions and an example of use of the

functions in this section. Functions may be implemented as macros.

2.3.1 Function Descriptions

BusyADC

Device: PIC17C756

Function: Returns the value of the GO bit in the ADCON0 register.

Include: adc16.h

Prototype: char BusyADC (void);

Arguments: None

Remarks: This function returns the value of the GO bit in the ADCON0

register. If the value is equal to 1, then the A/D is busy

converting. If the value is equal to 0, then the A/D is done

converting.

Return Value: This function returns a char with value either 0 (done) or 1(busy).

File Name: adcbusy.c

Code Example: while (BusyACD());

CloseADC

Device: PIC17C756

Function: This function disables the A/D convertor.

Include: adc16.h

Prototype: void CloseADC (void);

Arguments: None

Remarks: This function first disables the A/D convertor by clearing the ADON

bit in the ADCON0 register. It then disables the A/D interrupt by

clearing the ADIE bit in the PIE2 register.

Return Value: None

File Name: adcclose.c

Code Example: CloseADC();

ConvertADC

Device: PIC17C756

Function: Starts an A/D conversion by setting the GO bit in the ADCON0

register.

Include: adc16.h

Prototype: void ConvertADC (void);

Arguments: None

Remarks: This function sets the GO bit in the ADCON0 register.

Return Value: None

File Name: adcconv.c

Code Example: ConvertADC();
apRNOVS^-page 12  2002 Microchip Technology Inc.

Hardware Peripheral Library
OpenADC

Device: PIC17C756

Function: Configures the A/D convertor.

Include: adc16.h

Prototype: void OpenADC (static unsigned char config, static
unsigned char channel);

Arguments: config

The value of config can be a combination of the following values

(defined in adc16.h):

A/D Interrupts

ADC_INT_ON Interrupts ON

ADC_INT_OFF Interrupts OFF

A/D clock source

ADC_FOSC_8 FOSC/8

ADC_FOSC_32 FOSC/32

ADC_FOSC_64 FOSC/64

ADC_FOSC_RC Internal RC Oscillator

A/D result justification

ADC_RIGHT_JUST

ADC_LEFT_JUST

A/D voltage reference source

ADC_VREF_EXT Vref from I/O pins

ADC_VREF_INT Vref from AVdd pin

A/D analog/digital I/O configuration

ADC_ALL_ANALOGAll channels analog

ADC_ALL_DIGITAL All channels digital

ADC_11ANA_1DIG 11 analog, 1 digital

ADC_10ANA_2DIG 10 analog, 2 digital

ADC_9ANA_3DIG 9 analog, 3 digital

ADC_8ANA_4DIG 8 analog, 4 digital

ADC_6ANA_6DIG 6 analog, 6 digital

ADC_4ANA_8DIG 4 analog, 8 digital

channel

The value of channel can be one of the following values

(defined in adc16.h):

ADC_CH0 Channel 0

ADC_CH1 Channel 1

ADC_CH2 Channel 2

ADC_CH3 Channel 3

ADC_CH4 Channel 4

ADC_CH5 Channel 5

ADC_CH6 Channel 6

ADC_CH7 Channel 7

ADC_CH8 Channel 8

ADC_CH9 Channel 9

ADC_CH10 Channel 10

ADC_CH11 Channel 11
 2002 Microchip Technology Inc. apRNOVS^-page 13

MPLAB® C17 C Compiler Libraries
Remarks: This function resets the A/D related Special Function Registers to

the POR state and then configures the clock, interrupts,

justification, voltage reference source, number of analog/ digital

I/Os and current channel.

Return Value: None

File Name: adcopen.c

Code Example: OpenADC(ADC_INT_OFF&ADC_FOSC_32&
 ADC_RIGHT_JUST&ADC_VREF_INT&
 ADC_ALL_ANALOG,ADC_CH0);

ReadADC

Device: PIC17C756

Function: Reads the result of an A/D conversion.

Include: adc16.h

Prototype: int ReadADC (void);

Arguments: None

Remarks: This function reads the 16-bit result of an A/D conversion.

Return Value: This function returns the 16-bit signed result of the A/D

conversion. If the ADFM bit in ADCON1 is set, then the result is

always right justified leaving the MSbs cleared. If the ADFM bit is

cleared, then the result is left justified where the LSbs are

cleared.

File Name: adcread.c

Code Example: int result;
result = ReadADC();

SetChanADC

Device: PIC17C756

Function: Selects a specific A/D channel.

Include: adc16.h

Prototype: void SetChanADC (static unsigned char channel);

Arguments: channel

The value of channel can be one of the following values

(defined in adc16.h):

ADC_CH0 Channel 0

ADC_CH1 Channel 1

ADC_CH2 Channel 2

ADC_CH3 Channel 3

ADC_CH4 Channel 4

ADC_CH5 Channel 5

ADC_CH6 Channel 6

ADC_CH7 Channel 7

ADC_CH8 Channel 8

ADC_CH9 Channel 9

ADC_CH10 Channel 10

ADC_CH11 Channel 11

OpenADC (Continued)
apRNOVS^-page 14  2002 Microchip Technology Inc.

Hardware Peripheral Library
2.3.2 Example of Use

#include <p17c756.h>
#include <adc16.h>
#include <stdlib.h>
#include <delays.h>
#include <usart16.h>
 void main(void)
 {
 int result;
 char str[7];
 // configure A/D convertor
 OpenADC(ADC_INT_OFF&ADC_FOSC_32&
 ADC_RIGHT_JUST&ADC_VREF_INT&
 ADC_ALL_ANALOG,ADC_CH0);
 // configure USART
 OpenUSART1(USART_TX_INT_OFF&
 USART_RX_INT_OFF&
 USART_ASYNCH_MODE&
 USART_EIGHT_BIT&USART_CONT_RX, 25);
 Delay10TCYx(5); // Delay for 50TCY
 ConvertADC(); // Start Conversion
 result = ReadADC(); // read result
 itoa(result,str); // convert to string
 putsUSART1(str); // Write string to USART
 CloseADC(); // Close Modules
 CloseUSART1();
 return;

 }

Remarks: This function first clears the channel select bits in the ADCON0

register, which selects channel 0. It then ORs the value channel

with ADCON0 register.

Return Value: None

File Name: adcset.c

Code Example: SetChanADC(ADC_CH0);

SetChanADC (Continued)
 2002 Microchip Technology Inc. apRNOVS^-page 15

MPLAB® C17 C Compiler Libraries
2.4 INPUT CAPTURE FUNCTIONS

This section contains a list of individual functions and an example of use of the

functions in this section. Functions may be implemented as macros.

2.4.1 Function Descriptions

CloseCapture1
CloseCapture2
CloseCapture3
CloseCapture4

Device: CloseCapture1 - PIC17C4X, PIC17C756

CloseCapture2 - PIC17C4X, PIC17C756

CloseCapture3 - PIC17C756

CloseCapture4 - PIC17C756

Function: This function disables the specified input capture.

Include: captur16.h

Prototype: void CloseCapture1 (void);
void CloseCapture2 (void);
void CloseCapture3 (void);
void CloseCapture4 (void);

Arguments: None

Remarks: This function simply disables the interrupt of the specified input

capture.

Return Value: None

File Name: cp1close.c
cp2close.c
cp3close.c
cp4close.c

Code Example: CloseCapture1();

OpenCapture1
OpenCapture2
OpenCapture3
OpenCapture4

Device: OpenCapture1 - PIC17C4X, PIC17C756

OpenCapture2 - PIC17C4X, PIC17C756

OpenCapture3 - PIC17C756

OpenCapture4 - PIC17C756

Function: This function configures the specified input capture.

Include: captur16.h

Prototype: void OpenCapture1 (static unsigned char config);
void OpenCapture2 (static unsigned char config);
void OpenCapture3 (static unsigned char config);
void OpenCapture4 (static unsigned char config);
apRNOVS^-page 16  2002 Microchip Technology Inc.

Hardware Peripheral Library
Arguments: config

The value of config can be a combination of the following values

(defined in captur16.h):

All OpenCapture functions

CAPTURE_INT_ONInterrupts ON

CAPTURE_INT_OFFInterrupts OFF

OpenCapture1

C1_EVERY_FALL_EDGE

C1_EVERY_RISE_EDGE

C1_EVERY_4_RISE_EDGE

C1_EVERY_16_RISE_EDGE

CAPTURE1_PERIOD

CAPTURE1_CAPTURE

OpenCapture2

C2_EVERY_FALL_EDGE

C2_EVERY_RISE_EDGE

C2_EVERY_4_RISE_EDGE

C2_EVERY_16_RISE_EDGE

OpenCapture3

C3_EVERY_FALL_EDGE

C3_EVERY_RISE_EDGE

C3_EVERY_4_RISE_EDGE

C3_EVERY_16_RISE_EDGE

OpenCapture4

C4_EVERY_FALL_EDGE

C4_EVERY_RISE_EDGE

C4_EVERY_4_RISE_EDGE

C4_EVERY_16_RISE_EDGE

Remarks: This function first resets the capture module to the POR state and

then configures the specified input capture for edge detection,

i.e., every falling edge, every rising edge, every fourth rising edge

or every sixteenth rising edge.

Capture1 has the ability to become a period register for Timer3.

The capture functions use a structure to indicate overflow status

of each of the capture modules. This structure is called CapStatus

and has the following bit fields:
struct capstatus
{
 unsigned Cap1OVF:1;
 unsigned Cap2OVF:1;
 unsigned Cap3OVF:1;
 unsigned Cap4OVF:1;
 unsigned :4;
}
CapStatus;

In addition to opening the capture, Timer3 must also be opened

with an OpenTimer3 (...) statement before any of the captures will

operate.

OpenCapture1
OpenCapture2
OpenCapture3
OpenCapture4 (Continued)
 2002 Microchip Technology Inc. apRNOVS^-page 17

MPLAB® C17 C Compiler Libraries
Return Value: None

File Name: cp1open.c
cp2open.c
cp3open.c
cpopen4.c

Code Example: OpenCapture1(C1_EVERY_4_RISE_EDGE&CAPTURE 1_CAPTURE);

ReadCapture1
ReadCapture2
ReadCapture3
ReadCapture4

Device: ReadCapture1 - PIC17C4X, PIC17C756

ReadCapture2 - PIC17C4X, PIC17C756

ReadCapture3 - PIC17C756

ReadCapture4 - PIC17C756

Function: Reads the result of a capture event from the specified input

capture.

Include: captur16.h

Prototype: unsigned int ReadCapture1 (void);
unsigned int ReadCapture2 (void);
unsigned int ReadCapture3 (void);
unsigned int ReadCapture4 (void);

Arguments: None

Remarks: This function reads the value of the respective input capture

SFRs.

Capture1: CA1L,CA1H

Capture2: CA2L,CA2H

Capture3: CA3L,CA3H

Capture4: CA4L,CA4H

Return Value: This function returns the result of the capture event. The value is a

16-bit unsigned integer.

File Name: cap1read.c
cap2read.c
cap3read.c
cap4read.c

Code Example: unsigned int result;
result = ReadCapture1();

OpenCapture1
OpenCapture2
OpenCapture3
OpenCapture4 (Continued)
apRNOVS^-page 18  2002 Microchip Technology Inc.

Hardware Peripheral Library
2.4.2 Example of Use

#include <p17c756.h>
#include <captur16.h>
#include <timers16.h>
#include <usart16.h>
void main(void)
{
 unsigned int result;
 char str[7];
 // Configure Capture1
 OpenCapture1(C1_EVERY_4_RISE_EDGE&CAPTURE1_CAPTURE);
 // Configure Timer3
 OpenTimer3(TIMER_INT_OFF&T3_SOURCE_INT);
 // Configure USART
 OpenUSART1(USART_TX_INT_OFF&USART_RX_INT_OFF&
 USART_ASYNCH_MODE&USART_EIGHT_BIT&
 USART_CONT_RX, 25);
 while(!PIR1bits.CA1IF); // Wait for event
 result = ReadCapture1(); // read result
 uitoa(result,str); // convert to string
 if(!CapStatus.Cap1OVF)
 {
 putsUSART1(str); // write string
 CloseCapture1(); // to USART
 }
 CloseTimer3();
 CloseUSART1();
 return;
}

 2002 Microchip Technology Inc. apRNOVS^-page 19

MPLAB® C17 C Compiler Libraries
2.5 I²C® FUNCTIONS

This section contains a list of individual functions and an example of use of the

functions in this section. Functions may be implemented as macros.

2.5.1 Function Descriptions

AckI2C

Device: PIC17C756

Function: Generates I2C bus Acknowledge condition.

Include: i2c16.h

Prototype: void AckI2C (void);

Arguments: None

Remarks: This function generates an I2C bus Acknowledge condition.

Return Value: None

File Name: acki2c.c

Code Example: AckI2C();

CloseI2C

Device: PIC17C756

Function: Disables the SSP module.

Include: i2c16.h

Prototype: void CloseI2C (void);

Arguments: None

Remarks: Pin I/O returns under control of Port register settings.

Return Value: None

File Name: closei2c.c

Code Example: CloseI2C();

DataRdyI2C

Device: PIC17C756

Function: Provides status back to user if the SSPBUF register

contains data.

Include: i2c16.h

Prototype: unsigned char DataRdyI2C (void);

Arguments: None

Remarks: Determines if there is a byte to be read from the SSPBUF

register.

Return Value: This function returns 1 if there is data in the SSPBUF register else

returns 0 which indicates no data in SSPBUF register.

File Name: dtrdyi2c.c

Code Example: if (!DataRdyI2C());
apRNOVS^-page 20  2002 Microchip Technology Inc.

Hardware Peripheral Library
getcI2C

Function: This function operates identically to ReadI2C.

File Name: #define in i2c16.h

getsI2C

Device: PIC17C756

Function: This function is used to read a predetermined data string length

from the I2C bus.

Include: i2c16.h

Prototype: unsigned char getsI2C (static unsigned char far *rdptr, static

unsigned char length);

Arguments: rdptr

Character type pointer to PICmicro RAM for storage of data

read from I2C device.

length

Number of bytes to read from I2C device.

Remarks: Master I2C mode: This routine reads a predefined data string

length from the I2C bus. Each byte is retrieved via a call to the

getcI2C function. The actual called function body is termed

ReadI2C. ReadI2C and getcI2C refer to the same function via a

#define statement in the i2c16.h file.

Slave I2C mode: This routine reads a predefined data string

length from the I2C bus. Each byte is retrieved by reading the

SSPBUF register. There is a time-out period which can be

adjusted so as to prevent the slave from waiting forever for data

reception.

Return Value: Master I2C mode: This function returns 0 if all bytes have been

sent.

Slave I2C mode: This function returns -1 if the slave device

timed-out waiting for a data byte else it returns 0 if the master

I2C device sent a Not Ack condition.

File Name: getsi2c.c

Code Example: unsigned char string[15];
unsigned char far *ptrstring;
ptrstring = string;
getsI2C(ptrstring, 15);
 2002 Microchip Technology Inc. apRNOVS^-page 21

MPLAB® C17 C Compiler Libraries

IdleI2C

Device: PIC17C756

Function: Generates wait condition until I2C bus is idle.

Include: i2c16.h

Prototype: void IdleI2C (void);

Arguments: None

Remarks: This function checks the R/W bit of the SSPSTAT register and

the SEN, RSEN, PEN, RCEN and ACKEN bits of the SSPCON2

register. When the state of any of these bits is a logic 1 the

function loops on itself. When all of these bits are clear the

function terminates and returns to the calling function. The

IdleI2C function is required since the hardware I2C peripheral

does not allow for spooling of bus sequences. The I2C

peripheral must be in an idle state before an I2C operation can

be initiated or a write collision will be generated.

Return Value: None

File Name: idlei2c.c

Code Example: IdleI2C();

NotAckI2C

Device: PIC17C756

Function: Generates I2C bus Not Acknowledge condition.

Include: i2c16.h

Prototype: void NotAckI2C (void);

Arguments: None

Remarks: This function generates an I2C bus Not Acknowledge condition.

Return Value: None

File Name: noacki2c.c

Code Example: NotAckI2C();

OpenI2C

Device: PIC17C756

Function: Configures the SSP module.

Include: i2c16.h

Prototype: void OpenI2C (static unsigned char sync_mode, static unsigned

char slew);

Arguments: sync_mode

The value of function parameter sync_mode can be one of the

following values defined in i2c16.h:

SLAVE_7 I2C Slave mode, 7-bit address

SLAVE_10 I2C Slave mode, 10-bit address

MASTER I2C Master mode
apRNOVS^-page 22  2002 Microchip Technology Inc.

Hardware Peripheral Library
slew

The value of function parameter slew can be one of the following

values defined in i2c16.h:

SLEW_OFF Slew rate disabled for 100kHz mode

SLEW_ON Slew rate enabled for 400kHz mode

Remarks: OpenI2C resets the SSP module to the POR state and then

configures the module for master/slave mode and slew rate

enable/disable.

Return Value: None

File Name: openi2c.c

Code Examples: OpenI2C(MASTER, SLEW_ON);

putcI2C

Function: This function operates identically to WriteI2C.

File Name: #define in i2c16.h

putsI2C

Device: PIC17C756

Function: This function is used to write out a data string to the I2C bus.

Include: i2c16.h

Prototype: unsigned char putsI2C (static unsigned char far *wrptr);

Arguments: wrptr

Character type pointer to data objects in PICmicro RAM. The

data objects are written to the I2C device.

Remarks: Master I2C mode: This routine writes a data string to the I2C

bus until a null character is reached. Each byte is written via a

call to the putcI2C function. The actual called function body is

termed WriteI2C. WriteI2C and putcI2C refer to the same

function via a #define statement in the i2c16.h file.

Slave I2C mode: This routine writes a string out to the I2C bus

until a null character is reached. Each byte is placed directly in

the SSPBUF register and the putcI2C routine is not called.

Return Value: Master I2C Mode: This function returns -1 if the slave I2C

device responded with a Not Ack which terminated the data

transfer. The function returns 0 if the null character was reached

in the data string.

Slave I2C mode: This function returns -1 if the master I2C

device responded with a Not Ack which terminated the data

transfer. The function returns 0 if the null character was reached

in the data string

File Name: putsi2c.c

Code Example: unsigned char string[] = “data to send”;
unsigned char far *ptrstring;
ptrstring = string;
putsI2C(ptrstring);

OpenI2C (Continued)
 2002 Microchip Technology Inc. apRNOVS^-page 23

MPLAB® C17 C Compiler Libraries
ReadI2C

Device: PIC17C756

Function: This function is used to read a single byte (one character) from

the I2C bus.

Include: i2c16.h

Prototype: unsigned char ReadI2C (void);

Arguments: None

Remarks: This function reads in a single byte from the I2C bus. This

function performs the same function as getcI2C.

Return Value: The return value is the data byte read from the I2C bus.

File Name: readi2c.c

Code Example: unsigned char value;
value = ReadI2C();

RestartI2C

Device: PIC17C756

Function: Generates I2C bus restart condition.

Include: i2c16.h

Prototype: void RestartI2C (void);

Arguments: None

Remarks: This function generates an I2C bus restart condition.

Return Value: None

File Name: rstrti2c.c

Code Example: RestartI2C();

StartI2C

Device: PIC17C756

Function: Generates I2C bus start condition.

Include: i2c16.h

Prototype: void StartI2C (void);

Arguments: None

Remarks: This function generates a I2C bus start condition.

Return Value: None

File Name: starti2c.c

Code Example: StartI2C();
apRNOVS^-page 24  2002 Microchip Technology Inc.

Hardware Peripheral Library
StopI2C

Device: PIC17C756

Function: Generates I2C bus stop condition.

Include: i2c16.h

Prototype: void StopI2C (void);

Arguments: None

Remarks: This function generates an I2C bus stop condition.

Return Value: None

File Name: stopi2c.c

Code Example: StopI2C();

WriteI2C

Device: PIC17C756

Function: This function is used to write out a single data byte (one

character) to the I2C bus device.

Include: i2c16.h

Prototype: unsigned char WriteI2C (static unsigned char
data_out);

Arguments: data_out

A single data byte to be written to the I2C bus device.

Remarks: This function writes out a single data byte to the I2C bus device.

This function performs the same function as putcI2C.

Return Value: This function returns -1 if there was a write collision else it

returns a 0.

File Name: writei2c.c

Code Example: WriteI2C(‘a’);

Note: The routines to follow are specialized and specific to EE I2C memory

devices such as, but not limited to, the Microchip 24LC01B. Each of the

routines depicted below utilize the previous basic 'C' routines in a

composite standalone function.
 2002 Microchip Technology Inc. apRNOVS^-page 25

MPLAB® C17 C Compiler Libraries
EEAckPolling

Device: PIC17C756

Function: This function is used to generate the acknowledge polling

sequence for Microchip EE I2C memory devices.

Include: i2c16.h

Prototype: unsigned char EEAckPolling (static unsigned char
control);

Arguments: control

EEPROM control / bus device select address byte.

Remarks: This function is used to generate the acknowledge polling

sequence for Microchip EE I2C memory devices. This routine

can be used for I2C EE memory device which utilize

acknowledge polling.

Return Value: The return value is -1 if there bus collision error else return 0.

File Name: i2ceeap.c

Code Example: temp = EEAckPolling(0xA0);

EEByteWrite

Device: PIC17C756

Function: This function is used to write a single byte to the I2C bus.

Include: i2c16.h

Prototype: unsigned char EEByteWrite (static unsigned char
control, static unsigned char address, static
unsigned char data);

Arguments: control

EEPROM control / bus device select address byte.

address

EEPROM internal address location.

data

Data to write to EEPROM address specified in function

parameter address.

Remarks: This function writes a single data byte to the I2C bus. This

routine can be used for any Microchip I2C EE memory device

which requires only 1 byte of address information.

Return Value: The return value is -1 if there was a bus collision error,

-2 if there was a not ack error else returns 0 if there were no

errors.

File Name: i2ceebw.c

Code Example: temp = EEByteWrite(0xA0, 0x30, 0xA5);
apRNOVS^-page 26  2002 Microchip Technology Inc.

Hardware Peripheral Library
EECurrentAddRead

Device: PIC17C756

Function: This function is used to read a single byte from the I2C bus.

Include: i2c16.h

Prototype: unsigned char EECurrentAddRead
(static unsigned char control);

Arguments: control

EEPROM control / bus device select address byte.

Remarks: This function reads in a single byte from the I2C bus. The

address location of the data to read is that of the current pointer

within the I2C EE device. The memory device contains an

address counter that maintains the address of the last word

accessed, incremented by one.

Return Value: The return value is -1 if there was a bus collision error, -2 if

there was a not ack error else returns the contents of the

SSPBUF register.

File Name: i2ceecar.c

Code Example: temp = EECurrentAddRead(0xA1);

EEPageWrite

Device: PIC17C756

Function: This function is used to write a string of data to the I2C EE

device.

Include: i2c16.h

Prototype: unsigned char EEPageWrite (static unsigned char
control, static unsigned char address, static
unsigned char far *wrptr);

Arguments: control

EEPROM control / bus device select address byte.

address

EEPROM internal address location.

wrptr

Pointer to character type data objects in PICmicro RAM. The

data objects pointed to by wrptr will be written to the I2C bus.

Remarks: This function writes a null terminated string of data objects to

the I2C EE memory device.

Return Value: The return value is -1 if there was a bus collision error,

 -2 if there was a not ack error else returns 0 if there were no

errors.

File Name: i2ceepw.c

Code Example: temp = EEPageWrite(0xA0, 0x70, wrptr);
 2002 Microchip Technology Inc. apRNOVS^-page 27

MPLAB® C17 C Compiler Libraries
EERandomRead

Device: PIC17C756

Function: This function is used to read a single byte from the I2C bus.

Include: i2c16.h

Prototype: unsigned char EERandomRead (static unsigned char
control, static unsigned char address);

Arguments: control

EEPROM control / bus device select address byte.

address

EEPROM internal address location.

Remarks: This function reads in a single byte from the I2C bus. The

routine can be used for Microchip I2C EE memory devices

which only require 1 byte of address information.

Return Value: The return value is -1 if there was a bus collision error, -2 if there

was a not ack error else returns the contents of the SSPBUF

register.

File Name: i2ceerr.c

Code Example: temp = EERandomRead(0xA0,0x30);

EESequentialRead

Device: PIC17C756

Function: This function is used to read in a string of data from the I2C bus.

Include: i2c16.h

Prototype: unsigned char EESequentialRead (static unsigned char
control, static unsigned char address, static
unsigned char far *rdptr, static unsigned char
length);

Arguments: control

EEPROM control / bus device select address byte.

address

EEPROM internal address location.

rdptr

Character type pointer to PICmicro RAM area for placement of

data read from EEPROM device.

length

Number of bytes to read from EEPROM device.

Remarks: This function reads in a predefined string length of data from the

I2C bus. The routine can be used for Microchip I2C EE memory

devices which only require 1 byte of address information. The

length of the data string to read in is passed as a function

parameter.

Return Value: The return value is -1 if there was a bus collision error,

 -2 if there was a not ack error else returns 0 if there were no

errors.

File Name: i2ceesr.c

Code Example: temp = EESequentialRead(0xA0, 0x70, rdptr, 15);
apRNOVS^-page 28  2002 Microchip Technology Inc.

Hardware Peripheral Library
2.5.2 Example of Use

The following are simple code examples illustrating the SSP module configured for I2C

master communication. The routines illustrate I2C communications with a Microchip

24LC01B I2C EE Memory Device. In all the examples provided no error checking

utilizing the function return value is implemented.

The basic I2C routines for the hardware I2C module of the PIC17C756 such as

StartI2C, StopI2C, AckI2C, NotAckI2C, RestartI2C, putcI2C, getcI2C, putsI2C,

getsI2C, etc., are utilized within the specialized EE I2C routines such as

EESequentialRead or EEPageWrite.

#include "p17cxx.h"
#include "i2c16.h"
// FUNCTION Prototype
void main(void);
// POINTERS and ARRAYS
unsigned char arraywr[] = {1,2,3,4,5,6,7,8,0};
//24LC01B page write
// unsigned char arraywr[] = {1,2,3,4,5,6,7,8,9,10,
// 11,12,13,14,15,16,0};
//24LC04B page write
unsigned char far *wrptr = arraywr;
unsigned char arrayrd[80];
unsigned char far *rdptr = arrayrd;
unsigned char temp;

//***
#pragma code _main=0x100
void main(void)
{
 OpenI2C(MASTER, SLEW_ON); //initialize I2C module
 SSPADD = 9; //400Khz Baud clock(9) @16 MHz
 //100khz Baud clock(39) @16 MHz
 temp = 0;
 while(1)
 {
 temp = EEByteWrite(0xA0, 0x30, 0xA5);
 temp = EEAckPolling(0xA0);
 temp = EECurrentAddRead(0xA1);
 temp = EEPageWrite(0xA0, 0x70, wrptr);
 temp = EEAckPolling(0xA0);
 temp = EESequentialRead(0xA0, 0x70, rdptr, 15);
 temp = EERandomRead(0xA0,0x30);
 }
}

 2002 Microchip Technology Inc. apRNOVS^-page 29

MPLAB® C17 C Compiler Libraries
2.6 INTERRUPT FUNCTIONS

This section contains a list of individual functions and an example of use of the

functions in this section. Functions may be implemented as macros.

2.6.1 Function Descriptions

CloseRA0INT

Device: PIC17C4X, PIC17C756

Function: Disables the RA0/INT pin interrupt.

Include: int16.h

Prototype: void CloseRA0INT (void);

Arguments: None

Remarks: This function disables the RA0/INT pin interrupt by clearing the

INTE bit in the INTSTA register.

Return Value: None

File Name: ra0close.c

Code Example: CloseRA0INT();

Disable

Device: PIC17C4X, PIC17C756

Function: Disables global interrupts.

Include: int16.h

Prototype: void Disable (void);

Arguments: None

Remarks: This function disables global interrupts by setting the GLINTD bit

of the CPUSTA register.

Return Value: None

File Name: disable.c

Code Example: Disable();

Enable

Device: PIC17C4X, PIC17C756

Function: Enables global interrupts.

Include: int16.h

Prototype: void Enable (void);

Arguments: None

Remarks: This function enables global interrupts by clearing the GLINTD

bit of the CPUSTA register.

Return Value: None

File Name: enable.c

Code Example: enable();;
apRNOVS^-page 30  2002 Microchip Technology Inc.

Hardware Peripheral Library
2.6.2 Example of Use

 #include<p17C756.h>
 #include<int16.h>

void INT_ISR(void)
{
 PORTB++; // increment data register
}

void main(void)
{
 Install_INT(INT_ISR); // install INT pin interrupt vector

 PORTB = 0x00; // clear PORTB data register
 DDRB = 0x00; // config PORTB as outputs

 // enable external interrupt and detect rising edge
 OpenRA0INT(INT_ON & INT_RISE_EDGE);

 Enable(); // enable global interrupts

 while(PORTB != 0xFF); // wait for interrupt and check
 // for max value of PORTB register
 Disable(); // disable global interrupts
 CloseRA0INT(); // turn off INT pin interrupt
}

OpenRA0INT

Device: PIC17C4X, PIC17C756

Function: Configures the external interrupt pin RA0/INT.

Include: int16.h

Prototype: void OpenRA0INT (static unsigned char config);

Arguments: config

The value of config can be a combination of the following values

(defined in int16.h):

INT_ON Interrupt ON

INT_OFF Interrupt OFF

INT_RISE_EDGE Interrupt on rising edge

INT_FALL_EDGE Interrupt on falling edge

Remarks: This function configures the RA0/INT pin for external interrupt

for interrupt on/off and edge select.

Return Value: None

File Name: ra0open.c

Code Example: OpenRA0INT(INT_ON);
 2002 Microchip Technology Inc. apRNOVS^-page 31

MPLAB® C17 C Compiler Libraries
2.7 PORT B FUNCTIONS

This section contains a list of individual functions and an example of use of the

functions in this section. Functions may be implemented as macros.

2.7.1 Function Descriptions

ClosePORTB

Device: PIC17C4X, PIC17C756

Function: Disables the interrupts and internal pull-up resistors for PORTB.

Include: portb16.h

Prototype: void ClosePORTB (void);

Arguments: None

Remarks: This function disables the PORTB interrupt on change by clearing

the RBIE bit in the PIE register. It also disables the internal pull-up

resistors by setting the NOT_RBPU bit in the PORTA register.

Return Value: None

File Name: pbclose.c

Code Example: ClosePORTB();

DisablePullups

Device: PIC17C4X, PIC17C756

Function: Disables the internal pull-up resistors on PORTB.

Include: portb16.h

Prototype: void DisablePullups (void);

Arguments: None

Remarks: This function disables the internal pull-up resistors on PORTB. by

setting the NOT_RBPU bit in the PORTA register.

Return Value: None

File Name: pulldis.c

Code Example: DisablePullups();

EnablePullups

Device: PIC17C4X, PIC17C756

Function: Enables the internal pull-up resistors on PORTB.

Include: portb16.h

Prototype: void EnablePullups (void);

Arguments: None

Remarks: This function enables the internal pull-up resistors on PORTB by

clearing the NOT_RBPU bit in the PORTA register.

Return Value: None

File Name: pullen.c

Code Example: EnablePullups();
apRNOVS^-page 32  2002 Microchip Technology Inc.

Hardware Peripheral Library
OpenPORTB

Device: PIC17C4X, PIC17C756

Function: Configures the interrupts and internal pull-up resistors on

PORTB.

Include: portb16.h

Prototype: void OpenPORTB (static unsigned char config);

Arguments: config

The value of config can be a combination of the following values

(defined in portb16.h):

PORTB_CHANGE_INT_ON Interrupt ON

PORTB_CHANGE_INT_OFFI nterrupt OFF

PORTB_PULLUPS_ON pull-up resistors enabled

PORTB_PULLUPS_OFF pull-up resistors disabled

Remarks: This function configures the interrupts and internal pull-up

resistors on PORTB.

Return Value: None

File Name: pbopen.c

Code Example: OpenPORTB(PORTB_CHANGE_INT_ON);
 2002 Microchip Technology Inc. apRNOVS^-page 33

MPLAB® C17 C Compiler Libraries
2.7.2 Example of Use

 #include<p17C756.h>
 #include<int16.h>
 #include<portb16.h>

unsigned char Key;

void PIV_ISR(void)
{
 if(PIR1bits.RBIF) // ensure PORTB interrupt
 // got us here
 {
 Key = ~(PORTB & 0xF0); // keep track of scan row

 DDRB = 0x0F; // switch I/O drive to
 // scan column
 PORTB = 0x00;

 Key += ~(PORTB & 0x0F); // add in scan column
 PIR1bits.RBIF = 0; // reset interrupt flag
 }
}

void main(void)
{
 unsigned char PressedKey;

 Install_PIV(PIV_ISR); // install peripheral
 // interrupt vector

 DDRB = 0xF0; // set lower nibble to output
 // upper nibble to input to scan row
 Key = 0x00; // reset key scan register

 PORTB = PORTB; // read PORTB to clear mismatch
 PIR1bits.RBIF = 0; // clear RBIF to ensure no interrupt

 // enable PORTB interrupt on change
 OpenPORTB(PORTB_CHANGE_INT_ON);

 EnablePullups(); // enable internal pullups

 Enable(); // enable global interrupts

 while(1)
 {
 while(Key==0x00);

 switch(Key)
 {
 case 0x11: PressedKey = ’1’;
 break;
 case 0x12: PressedKey = ’2’;
 break;
 case 0x14: PressedKey = ’3’;
 break;
 case 0x18: PressedKey = ’4’;
 break;
apRNOVS^-page 34  2002 Microchip Technology Inc.

Hardware Peripheral Library
 case 0x21: PressedKey = ’5’;
 break;
 case 0x22: PressedKey = ’6’;
 break;
 case 0x24: PressedKey = ’7’;
 break;
 case 0x28: PressedKey = ’8’;
 break;

 case 0x41: PressedKey = ’9’;
 break;
 case 0x42: PressedKey = ’0’;
 break;
 case 0x44: PressedKey = ’*’;
 break;
 case 0x48: PressedKey = ’#’;
 break;

 case 0x81: PressedKey = ’A’;
 break;
 case 0x82: PressedKey = ’B’;
 break;
 case 0x84: PressedKey = ’C’;
 break;
 case 0x88: PressedKey = ’D’;
 break;

 default: PressedKey = ’ ’;
 break;
 }

 Key = 0x00;
 }
}

 2002 Microchip Technology Inc. apRNOVS^-page 35

MPLAB® C17 C Compiler Libraries
2.8 MICROWIRE® FUNCTIONS

This section contains a list of individual functions and an example of use of the

functions in this section. Functions may be implemented as macros.

2.8.1 Function Descriptions

CloseMwire

Device: PIC17C756

Function: Disables the SSP module.

Include: mwire16.h

Prototype: void CloseMwire (void);

Arguments: None

Remarks: Pin I/O returns under control DDRx and PORTx register settings.

Return Value: None

File Name: closmwir.c

Code Example: CloseMwire();

DataRdyMwire

Device: PIC17C756

Function: Provides status back to user if the Microwire device has

completed the internal write cycle.

Include: mwire16.h

Prototype: unsigned char DataRdyMwire (void);

Arguments: None

Remarks: Determines if Microwire device is ready.

Return Value: This function returns 1 if the Microwire device is ready else

returns 0 which indicates that the internal write cycle is not

complete or there could be a bus error.

File Name: drdymwir.c

Code Example: while (!DataRdyMwire());

getcMwire

Function: This function operates identically to ReadMwire.

File Name: #define in mwire16.h
apRNOVS^-page 36  2002 Microchip Technology Inc.

Hardware Peripheral Library

getsMwire

Device: PIC17C756

Function: This routine reads a string from the Microwire device.

Include: mwire16.h

Prototype: void getsMwire (static unsigned char far *rdptr,
static unsigned char length);

Arguments: rdptr

Pointer to PICmicro RAM area for placement of writing data

read from Microwire device.

length

Number of bytes to read from Microwire device.

Remarks: This function is used to read a predetermined length of data

from a Microwire device. User must first issue start bit, opcode

and address before reading a data string.

Return Value: None

File Name: getsmwir.c

Code Example: unsigned char arrayrd[20];
unsigned char far *rdptr = arrayrd;
getsMwire(rdptr, 10);

OpenMwire

Device: PIC17C756

Function: Configures the SSP module.

Include: mwire16.h

Prototype: void OpenMwire (static unsigned char sync_mode);

Arguments: sync_mode

The value of the function parameter sync_mode can be one of

the following values defined in mwire16.h:

FOSC_4 clock = FOSC/4

FOSC_16 clock = FOSC/16

FOSC_64 clock = FOSC/64

FOSC_TMR2 clock = TMR2 output/2

Remarks: OpenMwire resets the SSP module to the POR state and then

configures the module for Microwire communications.

Return Value: None

File Name: openmwir.c

Code Examples: OpenMwire(FOSC_16);

putcMwire

Function: This function operates identically to WriteMwire.

File Name: #define in mwire16.h
 2002 Microchip Technology Inc. apRNOVS^-page 37

MPLAB® C17 C Compiler Libraries
ReadMwire

Device: PIC17C756

Function: This function is used to read a single byte (one character) from

a Microwire device.

Include: mwire16.h

Prototype: unsigned char ReadMwire (static unsigned char
high_byte, static unsigned char low_byte);

Arguments: high_byte

First byte of 16-bit instruction word.

low_byte

Second byte of 16-bit instruction word.

Remarks: This function reads in a single byte from a Microwire device.

The start bit, opcode and address compose the high and low

bytes passed into this function. This function operates

identically to getcMwire.

Return Value: The return value is the data byte read from the Microwire

device.

File Name: readmwir.c

Code Example: ReadMwire(0x03, 0x00);

WriteMwire

Device: PIC17C756

Function: This function is used to write out a single data byte (one

character).

Include: mwire16.h

Prototype: unsigned char WriteMwire (static unsigned char
data_out);

Arguments: data_out

Single byte of data to write to Microwire device.

Remarks: This function writes out single data byte to a Microwire device

utilizing the SSP module.This function operates identically to

putcMwire.

Return Value: This function returns -1 if there was a write collision, else it

returns a 0.

File Name: writmwir.c

Code Example: WriteMwire(0xFF);
apRNOVS^-page 38  2002 Microchip Technology Inc.

Hardware Peripheral Library
2.8.2 Example of Use

The following are simple code examples illustrating the SSP module communicating

with a Microchip 93LC66 Microwire EE Memory Device. In all the examples provided

no error checking utilizing the value returned from a function is implemented.

#include "p17c756.h"
#include "mwire16.h"

// 93LC66 x 8
// FUNCTION Prototype
void main(void);
void ew_enable(void);
void erase_all(void);
void busy_poll(void);
void write_all(unsigned char data);
void byte_read(unsigned char address);
void read_mult(unsigned char address, unsigned char
far *rdptr, unsigned char length);
void write_byte(unsigned char address, unsigned char data);
unsigned char arrayrd[20];
unsigned char far *rdptr = arrayrd;
unsigned char var;

// DEFINE 93LC66 MACROS
#define READ 0x0C
#define WRITE 0x0A
#define ERASE 0x0E
#define EWEN 10x09
#define EWEN 20x80
#define ERAL 10x09
#define ERAL 20x00
#define WRAL 10x08
#define WRAL 20x80
#define EWDS 10x08
#define EWDS 20x00
#define W_CS PORTAbits.RA2
#pragma code _main=0x100
void main(void)
{
 W_CS = 0; //ensure CS is negated
 OpenMwire(FOSC_16); //enable SSP perpiheral
 ew_enable(); //send erase/write enable
 write_byte(0x13, 0x34); //write byte (address,data)
 busy_poll();
 Nop();
 byte_read(0x13); //read single byte (address)
 read_mult(0x10, rdptr, 10); //read multiple bytes
 erase_all(); //erase entire array
 CloseMwire(); //disable SSP peripheral
}

void busy_poll(void)
{
 W_CS = 1;
 do
 {
 var = DataRdyMwire(); //test for busy/ready
 }while(var != 0);
 W_CS = 0;
}
void write_byte(unsigned char address, unsigned char data)
 2002 Microchip Technology Inc. apRNOVS^-page 39

MPLAB® C17 C Compiler Libraries
{
 W_CS = 1;
 putcMwire(WRITE); //write command
 putcMwire(address); //address
 putcMwire(data); //write single byte
 W_CS = 0;
}

void byte_read(unsigned char address)
{
 W_CS = 1;
 getcMwire(READ,address); //read one byte
 W_CS = 0;
}

void read_mult(unsigned char address, unsigned char
far *rdptr, unsigned char length)
{
 W_CS = 1;
 putcMwire(READ); //read command
 putcMwire(address); //address (A7 - A0)
 getsMwire(rdptr, length); //read multiple bytes
 W_CS = 0;
}

void ew_enable(void)
{
 W_CS = 1; //assert chip select
 putcMwire(EWEN1); //enable write command byte 1
 putcMwire(EWEN2); //enable write command byte 2
 W_CS = 0; //negate chip select
}

void erase_all(void)
{
 W_CS = 1;
 putcMwire(ERAL1); //erase all command byte 1
 putcMwire(ERAL2); //erase all command byte 2
 W_CS = 0;
}

apRNOVS^-page 40  2002 Microchip Technology Inc.

Hardware Peripheral Library
2.9 PULSE WIDTH MODULATION FUNCTIONS

This section contains a list of individual functions and an example of use of the

functions in this section. Functions may be implemented as macros.

2.9.1 Function Descriptions

ClosePWM1
ClosePWM2
ClosePWM3

Device: ClosePWM1 - PIC17C4X, PIC17C756

ClosePWM2 - PIC17C4X, PIC17C756

ClosePWM3 - PIC17C756

Function: This function disables the specified PWM channel.

Include: pwm16.h

Prototype: void ClosePWM1 (void);
void ClosePWM2 (void);
void ClosePWM3 (void);

Arguments: None

Remarks: This function simply disables the specified PWM channel by

clearing the PWMxON bit in the respective TCON2 or TCON3

registers.

Return Value: None

File Name: pw1close.c
pw2close.c
pw3close.c

Code Example: ClosePWM2();

OpenPWM1
OpenPWM2
OpenPWM3

Device: OpenPWM1 - PIC17C4X, PIC17C756

OpenPWM2 - PIC17C4X, PIC17C756

OpenPWM3 - PIC17C756

Function: Configures the specified PWM channel.

Include: pwm16.h

Prototype: void OpenPWM1 (static char period);
void OpenPWM2 (static unsigned char
config, static char period);
void OpenPWM3 (static unsigned char
config, static char period);

Arguments: config

The value of config can be one of the following values

(defined in captur16.h):

OpenPWM2

OpenPWM3

T1_SOURCETimer1 is clock source

T2_SOURCETimer2 is clock source
 2002 Microchip Technology Inc. apRNOVS^-page 41

MPLAB® C17 C Compiler Libraries
period

The value of period can be any value from 0x00 to 0xff. This value

determines the PWM frequency by using the following formula:

Period1 = [(PR1)+1] x 4 x TOSC

Period2 = [(PR1)+1] x 4 x TOSC

= [(PR2)+1] x 4 x TOSC

Period3 = [(PR1)+1] x 4 x TOSC

= [(PR2)+1] x 4 x TOSC

Remarks: This function configures the specified PWM channel for period

and for time base. PWM1 uses only Timer1. PWM2 and PWM3

can use either Timer1 or Timer2. Timer1 and Timer2 must be set

up as individual 8-bit timers for PWM mode to work correctly.

In addition to opening the PWM, Timer1 or Timer2 must also be

opened with an OpenTimer1(...) or OpenTimer2(...) statement

before any of the PWMs will operate.

Return Value: None

File Name: pw1open.c
pw2open.c
pw3open.c

Code Example: OpenPWM2(T1_SOURCE,0xff);

SetDCPWM1
SetDCPWM2
SetDCPWM3

Device: SetDCPWM1 - PIC17C4X, PIC17C756

SetDCPWM2 - PIC17C4X, PIC17C756

SetDCPWM3 - PIC17C756

Function: Writes a new dutycycle value to the specified PWM channel duty

cycle registers.

Include: pwm16.h

Prototype: void SetDCPWM1 (static unsigned int dutycycle);
void SetDCPWM2 (static unsigned int dutycycle);
void SetDCPWM3 (static unsigned int dutycycle);

Arguments: dutycycle

The value of dutycycle can be any 10-bit number. Only the lower

10-bits of dutycycle are written into the dutycycle registers. The

dutycycle, or more specifically the high time of the PWM

waveform, can be calculated from the following formula:

PWM x Dutycycle = (DCx<9:0>) x TOSC

where DCx<9:0> is the 10-bit value from the PWxDCH:PWxDCL

registers.

OpenPWM1
OpenPWM2
OpenPWM3 (Continued)
apRNOVS^-page 42  2002 Microchip Technology Inc.

Hardware Peripheral Library
2.9.2 Example of Use

#include <p17c756.h>
#include <pwm16.h>
#include <timers16.h>
void main(void)
{
 int i;
 //set duty cycle
 SetDCPWM2(0);
 //open PW2
 OpenPWM2(T1_SOURCE,0xff);
 //open timer
 OpenTimer1(TIMER_INT_OFF&T1_SOURCE_INT&T1_T2_8BIT);
 for(i=0;i<1024;i++)
 {
 while(!PIR1bits.TMR1IF);
 PIR1bits.TMR1IF = 0;
 SetDCPWM2(i); //slowly increment duty cycle
 }

 ClosePWM2(); //close modules
 CloseTimer1();
 return;

}

Remarks: This function writes the new value for dutycycle to the specified

PWM channel dutycycle registers.

PWM1: PW1DCL,PW1DCH

PWM2: PW2DCL,PW2DCH

PWM3: PW3DCL,PW3DCH

The maximum resolution of the PWM waveform can be

calculated from the period using the following formula:

Resolution (bits) = log(FOSC/FPWM) / log(2)

Return Value: None

File Name: pw1set.c
pw2set.c
pw3set.c

Code Example: SetDCPWM2(0);

SetDCPWM1
SetDCPWM2
SetDCPWM3 (Continued)
 2002 Microchip Technology Inc. apRNOVS^-page 43

MPLAB® C17 C Compiler Libraries
2.10 RESET FUNCTIONS

This section contains a list of individual functions and an example of use of the

functions in this section. Functions may be implemented as macros.

2.10.1 Function Descriptions

isBOR

Device: PIC17C756

Function: Detects a reset condition due to the Brown-out Reset circuit.

Include: reset16.h

Prototype: char isBOR (void);

Arguments: None

Remarks: This function detects if the microcontroller was reset due to the

Brown-out Reset circuit. This condition is indicated by the

following status bits:

POR = 1

BOR = 0

TO = don't care

PD = don't care

Include the statement #define BOR_ENABLED in the header file

reset16.h. After the definitions have been made, compile the

reset16.h file. Refer to Chapter 2 of this manual for information

on compilers. Refer to the MPASM™ User's Guide with

MPLINK™ and MPLIB™ (DS33014) for information on linking.

Return Value: This function returns 1 if the reset was due to the Brown-out

Reset circuit, otherwise 0 is returned.

File Name: reset16.c

Code Example: if(isBOR());
 then ...

isMCLR

Device: PIC17C756

Function: Detects if a MCLR reset during normal operation occurred.

Include: reset16.h

Prototype: char isMCLR (void);

Arguments: None

Remarks: This function detects if the microcontroller was reset via the

MCLR pin while in normal operation. This situation is indicated

by the following status bits:

POR = 1

BOR = 1 if Brown-out is enabled

TO = 1 if WDT is enabled

PD = 1

Return Value: This function returns 1 if the reset was due to MCLR during

normal operation, otherwise 0 is returned.

File Name: reset16.c

Code Example: if(isMCLR());
 then ...
apRNOVS^-page 44  2002 Microchip Technology Inc.

Hardware Peripheral Library

isPOR

Device: PIC17C4X, PIC17C756

Function: Detects a Power-on Reset condition.

Include: reset16.h

Prototype: char isPOR (void);

Arguments: None

Remarks: This function detects if the microcontroller just left a Power-on

Reset. This condition is indicated by the following status bits:

PIC17C4X
TO = 1
PD = 1

This condition also for MCLR reset during normal operation and

CLRWDT instruction executed.

PIC17C756
POR = 0
BOR = 0
TO = 1
PD = 1

Return Value: This function returns 1 if the device just left a Power-on Reset,

otherwise 0 is returned.

File Name: reset16.c

Code Example: if(isPOR());
 then ...

isWDTTO

Device: PIC17C4X, PIC17C756

Function: Detects a reset condition due to the WDT during normal

operation.

Include: reset16.h

Prototype: char isWDTTO (void);

Arguments: None

Remarks: This function detects if the microcontroller was reset due to the

WDT during normal operation. This condition is indicated by the

following status bits:

PIC17C4X

TO = 0

PD = 1

PIC17C756

POR = 1

BOR = 1

TO = 0

PD = 1

Include the statement #define WDT_ENABLED in the header file

reset16.h. After the definitions have been made, compile the

reset16.c file. Refer to Chapter 2 of this manual for information

on compilers. Refer to the MPASM™ User's Guide with

MPLINK™ and MPLIB™ (DS33014) for information on linking.
 2002 Microchip Technology Inc. apRNOVS^-page 45

MPLAB® C17 C Compiler Libraries
Return Value: This function returns 1 if the reset was due to the WDT during

normal operation, otherwise 0 is returned.

File Name: reset16.c

Code Example: while(!isWDTTO());

isWDTWU

Device: PIC17C4X, PIC17C756

Function: Detects when the WDT wakes up the device from SLEEP.

Include: reset16.h

Prototype: char isWDTWU (void);

Arguments: None

Remarks: This function detects if the microcontroller was brought out of

SLEEP by the WDT. This condition is indicated by the following

status bits:

PIC17C4X

TO = 0

PD = 0

PIC17C756

POR = 1

BOR = 1

TO = 0

PD = 0

Include the statement #define WDT_ENABLED in the header file

reset16.h. After the definitions have been made, compile the

reset16.c file. Refer to Chapter 2 of this manual for information

on compilers. Refer to the MPASM™ User's Guide with

MPLINK™ and MPLIB™ (DS33014) for information on linking.

Return Value: This function returns 1 if device was brought out of SLEEP by the

WDT, otherwise 0 is returned.

File Name: reset16.c

Code Example: if(isWDTWU());
 then ...

isWU

Device: PIC17C4X, PIC17C756

Function: Detects if the microcontroller was just waken up from SLEEP via

the MCLR pin or interrupt.

Include: reset16.h

Prototype: char isWU (void);

Arguments: None

isWDTTO (Continued)
apRNOVS^-page 46  2002 Microchip Technology Inc.

Hardware Peripheral Library
2.10.2 Example of Use

There are no interdependencies between reset functions. See individual function code

examples.

Remarks: This function detects if the microcontroller was brought out of

SLEEP by the MCLR pin or an interrupt. This condition is

indicated by the following status bits:

PIC17C4X

TO = 1

PD = 0

PIC17C756

POR = 1

BOR = 1

TO = 1

PD = 0

Return Value: This function returns 1 if the device was brought out of SLEEP by

the MCLR pin or an interrupt, otherwise 0 is returned.

File Name: reset16.c

Code Example: if(isWU());
 then ...

StatusReset

Device: PIC17C756

Function: Sets the POR and BOR bits in the CPUSTA register.

Include: reset16.h

Prototype: void StatusReset (void);

Arguments: None

Remarks: This function sets the POR and BOR bits in the CPUSTA register.

These bits must be set in software after a Power-on Reset has

occurred.

Return Value: None

File Name: reset16.c

Code Example: if(StatusReset());
 then ...

isWU (Continued)
 2002 Microchip Technology Inc. apRNOVS^-page 47

MPLAB® C17 C Compiler Libraries
2.11 SPI™ FUNCTIONS

This section contains a list of individual functions and an example of use of the

functions in this section. Functions may be implemented as macros.

2.11.1 Function Descriptions

CloseSPI

Device: PIC17C756

Function: Disables the SSP module.

Include: spi16.h

Prototype: void CloseSPI (void);

Arguments: None

Remarks: This function disables the SSP module. Pin I/O returns under

the control of the DDRx and PORTx registers.

Return Value: None

File Name: closespi.c

Code Example: CloseSPI();

DataRdySPI

Device: PIC17C756

Function: Determines if the SSPBUF contains data.

Include: spi16.h

Prototype: unsigned char DataRdySPI (void);

Arguments: None

Remarks: This function determines if there is a byte to be read from the

SSPBUF register.

Return Value: This function returns 1 if there is data in the SSPBUF register

else returns a 0.

File Name: dtrdyspi.c

Code Example: while (!DataRdySPI());

getcSPI

Function: This function operates identically to ReadSPI.

File Name: #define in spi16.h

getsSPI

Device: PIC17C756

Function: Reads in data string from the SPI bus.

Include: spi16.h

Prototype: void getsSPI (static unsigned char far *rdptr, static unsigned

char length);
apRNOVS^-page 48  2002 Microchip Technology Inc.

Hardware Peripheral Library
Arguments: rdptr

Character type pointer to PICmicro RAM area for placement of

data read from SPI device.

length

Number of bytes to read from SPI device.

Remarks: This function reads in a predetermined data string length from

the SPI bus. The length of the data string to read in is passed

as a function parameter. Each byte is retrieved via a call to the

getcSPI function. The actual called function body is termed

ReadSPI. ReadSPI and getcSPI refer to the same function via

a #define statement in the spi16.h file.

Return Value: None

File Name: getsspi.c

Code Example: unsigned char far *wrptr;
getsSPI(wrptr, 10);

OpenSPI

Device: PIC17C756

Function: Initializes the SSP module.

Include: spi16.h

Prototype: void OpenSPI (static unsigned char sync_mode, static
unsigned char bus_mode, static unsigned char
smp_phase);

Arguments: The value of sync_mode, bus_mode and smp_phase

parameters can be one of the following values defined in

spi16.h:

sync_mode

FOSC_4SPI Master mode, clock = FOSC/4

FOSC_16SPI Master mode, clock = FOSC/16

FOSC_64SPI Master mode, clock = FOSC/64

FOSC_TMR2SPI Master mode, clock = TMR2 output/2

SLV_SSONSPI Slave mode, /SS pin control enabled

SLV_SSOFFSPI Slave mode, /SS pin control disabled

bus_mode

MODE_00 Setting for SPI bus Mode 0,0

MODE_01 Setting for SPI bus Mode 0,1

MODE_10 Setting for SPI bus Mode 1,0

MODE_11 Setting for SPI bus Mode 1,1

smp_phase

SMPEND Input data sample at end of data out

SMPMID Input data sample at middle of data out

Remarks: This function setups the SSP module for use with a SPI bus

device.

Return Value: None

File Name: openspi.c

Code Example: OpenSPI(FOSC_16, MODE_00, SMPEND);

getsSPI (Continued)
 2002 Microchip Technology Inc. apRNOVS^-page 49

MPLAB® C17 C Compiler Libraries

putcSPI

Function: This function operates identically to WriteSPI.

File Name: #define in spi16.h

putsSPI

Device: PIC17C756

Function: Writes data string out to the SPI bus.

Include: spi16.h

Prototype: void putsSPI (static unsigned char far *wrptr);

Arguments: wrptr

Pointer to character type data objects in PICmicro RAM. Those

objects pointed to by wrptr will be written to the SPI bus.

Remarks: This function writes out a data string to the SPI bus device. The

routine is terminated by reading a null character in the data

string.

Return Value: None

File Name: putsspi.c

Code Example: unsigned char far *wrptr = “Hello!”;
putsSPI(wrptr);

ReadSPI

Device: PIC17C756

Function: Reads a single byte (one character) from the SSPBUF register.

Include: spi16.h

Prototype: unsigned char ReadSPI (void);

Arguments: None

Remarks: This function initiates a SPI bus cycle for the acquisition of a

byte of data. This function operates identically to getcSPI.

Return Value: This function returns a byte of data read during a SPI read

cycle.

File Name: readspi.c

Code Example: char x;
x = ReadSPI();

WriteSPI

Device: PIC17C756

Function: Writes a single byte of data (one character) out to the SPI bus.

Include: spi16.h

Prototype: unsigned char WriteSPI (static unsigned char
data_out);

Arguments: data_out

Single byte to write to SPI device on bus.
apRNOVS^-page 50  2002 Microchip Technology Inc.

Hardware Peripheral Library
2.11.2 Example of Use

The following are simple code examples illustrating the SSP module communicating

with a Microchip 24C080 SPI EE Memory Device. In all the examples provided no error

checking utilizing the value returned from a function is implemented.

#include <p17c756.h>
#include <spi16.h>
// FUNCTION Prototype
void main(void);
void set_wren(void);
void busy_polling(void);
unsigned char status_read(void);
void status_write(unsigned char data);
void byte_write(unsigned char addhigh, unsigned char
 addlow, unsigned char data);
void page_write(unsigned char addhigh, unsigned char
 addlow, unsigned char far *wrptr);
void array_read(unsigned char addhigh, unsigned char
 addlow, unsigned char far *rdptr,
 unsigned char count);
unsigned char byte_read(unsigned char addhigh,
 unsigned char addlow);
unsigned char arraywr[] = {1,2,3,4,5,6,7,8,9,10,11,
 12,13,14,15,16,0};
//24C040/080/160 page write size
unsigned char far *wrptr = arraywr;
unsigned char arrayrd[32];
unsigned char far *rdptr = arrayrd;
unsigned char var;
#define SPI_CS PORTAbits.RA2
//**
#pragma code _main=0x100
void main(void)
{
 SPI_CS = 1; // ensure SPI memory device
 // Chip Select is reset
 OpenSPI(FOSC_16, MODE_00, SMPEND);
 set_wren();
 status_write(0);

 busy_polling();
 set_wren();
 byte_write(0x00, 0x61, 'E');

 busy_polling();
 var = byte_read(0x00, 0x61);

Remarks: This function writes a single data byte out and then checks for

a write collision. This function operates identically to putcSPI.

Return Value: This function returns -1 if a write collision occurred else a 0 if

no write collision.

File Name: writespi.c

Code Example: WriteSPI(‘a’);

WriteSPI (Continued)
 2002 Microchip Technology Inc. apRNOVS^-page 51

MPLAB® C17 C Compiler Libraries
 set_wren();
 page_write(0x00, 0x30, wrptr);
 busy_polling();

 array_read(0x00, 0x30, rdptr, 16);
 var = status_read();

 CloseSPI();
 while(1);
}

void set_wren(void)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(WREN); //send write enable command
 SPI_CS = 1; //negate chip select
}

void page_write (unsigned char addhigh, unsigned char
 addlow, unsigned char far *wrptr)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(WRITE); //send write command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 putsSPI(wrptr); //send data byte
 SPI_CS = 1; //negate chip select
}

void array_read (unsigned char addhigh, unsigned char
 addlow, unsigned char far *rdptr,
 unsigned char count)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(READ); //send read command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 getsSPI(rdptr, count); //read multiple bytes
 SPI_CS = 1;
}

void byte_write (unsigned char addhigh, unsigned char
 addlow, unsigned char data)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(WRITE); //send write command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 var = putcSPI(data); //send data byte
 SPI_CS = 1; //negate chip select
}

unsigned char byte_read (unsigned char addhigh,
 unsigned char addlow)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(READ); //send read command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 var = getcSPI(); //read single byte
apRNOVS^-page 52  2002 Microchip Technology Inc.

Hardware Peripheral Library
 SPI_CS = 1;
 return (var);
}

unsigned char status_read (void)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(RDSR); //send read status command
 var = getcSPI(); //read data byte
 SPI_CS = 1; //negate chip select
 return (var);
}

void status_write (unsigned char data)
{
 SPI_CS = 0;
 var = putcSPI(WRSR); //write status command
 var = putcSPI(data); //status byte to write
 SPI_CS = 1; //negate chip select
}

void busy_polling (void)
{
 do
 {
 SPI_CS = 0; //assert chip select
 var = putcSPI(RDSR); //send read status command
 var = fetcSPI(); //read data byte
 SPI_CS = 1; //negate chip select
 } while (var & 0x01); //stay in loop until notbusy
}

 2002 Microchip Technology Inc. apRNOVS^-page 53

MPLAB® C17 C Compiler Libraries
2.12 TIMER FUNCTIONS

This section contains a list of individual functions and an example of use of the

functions in this section. Functions may be implemented as macros.

2.12.1 Function Descriptions

CloseTimer0
CloseTimer1
CloseTimer2
CloseTimer3

Device: PIC17C4X, PIC17C756

Function: This function disables the specified timer.

Include: timers16.h

Prototype: void CloseTimer0 (void);
void CloseTimer1 (void);
void CloseTimer2 (void);
void CloseTimer3 (void);

Arguments: None

Remarks: This function simply disables the interrupt and the specified

timer.

Return Value: None

File Name: t0close.c
t1close.c
t2close.c
t3close.c

Code Example: CloseTimer0();

OpenTimer0
OpenTimer1
OpenTimer2
OpenTimer3

Device: PIC17C4X, PIC17C756

Function: Configures the specified timer.

Include: timers16.h

Prototype: void OpenTimer0 (static unsigned char config);
void OpenTimer1 (static unsigned char config);
void OpenTimer2 (static unsigned char config);
void OpenTimer3 (static unsigned char config);

Arguments: config

The value of config can be a combination of the following values

(defined in timers16.h):

All OpenTimer functions

TIMER_INT_ON Interrupts ON

TIMER_INT_OFF Interrupts OFF
apRNOVS^-page 54  2002 Microchip Technology Inc.

Hardware Peripheral Library
OpenTimer0

T0_EDGE_FALL External clock on falling edge

T0_EDGE_RISE External clock on rising edge

T0_SOURCE_EXT External clock source (I/O pin)

T0_SOURCE_INT Internal clock source (TOSC)

T0_PS_1_1 Prescale -> 1:1

T0_PS_1_2 1:2

T0_PS_1_4 1:4

T0_PS_1_8 1:8

T0_PS_1_16 1:16

T0_PS_1_32 1:32

T0_PS_1_64 1:64

T0_PS_1_128 1:128

T0_PS_1_256 1:256

OpenTimer1

T1_SOURCE_EXT External clock source (I/O pin)

T1_SOURCE_INT Internal clock source (TOSC)

T1_T2_8BIT Timer1 and Timer2 individual 8-bit timers

T1_T2_16BIT Timer1 and Timer2 one 16-bit timer

OpenTimer2

T2_SOURCE_EXT External clock source (I/O pin)

T2_SOURCE_INT Internal clock source (TOSC)

OpenTimer3

T3_SOURCE_EXT External clock source (I/O pin)

T3_SOURCE_INT Internal clock source (TOSC)

Remarks: This function configures the specified timer for interrupts,

internal/external clock source, prescaler, etc.

 Timer0 -> 16-bit

 Timer1 -> 8-bit

 Timer2 -> 8-bit

 Timer3 -> 16-bit

Timer0 has a programmable prescaler from 1:1 to 1:256.

Timer1 and Timer2 can be concatenated to be a 16-bit timer.

Return Value: None

File Name: t0open.c
t1open.c
t2open.c
t3open.c

Code Example: OpenTimer0(TIMER_INT_OFF&T0_SOURCE_NT&T0_PS_1_32);

OpenTimer0
OpenTimer1
OpenTimer2
OpenTimer3 (Continued)
 2002 Microchip Technology Inc. apRNOVS^-page 55

MPLAB® C17 C Compiler Libraries
ReadTimer0
ReadTimer1
ReadTimer2
ReadTimer3
ReadTimer1_16

Device: PIC17C4X, PIC17C756

Function: Reads the contents of the specified timer register(s).

Include: timers16.h

Prototype: unsigned int ReadTimer0 (void);
unsigned char ReadTimer1 (void);
unsigned char ReadTimer2 (void);
unsigned int ReadTimer3 (void);
unsigned int ReadTimer1_16 (void);

Arguments: None

Remarks: This function reads the value of the respective timer

register(s).

Timer0: TMR0L,TMR0H
Timer1: TMR1
Timer2: TMR2
Timer3: TMR3L,TMR3H
Timer1_16: TMR2:TMR1

Return Value: These functions returns the value of the timer register(s) which

may be 8-bits or 16-bits.

Timer0: int (16-bits)

Timer1: char (8-bits)

Timer2: char (8-bits)

Timer3: int (16-bits)

Timer1_16: int (16-bits)

File Name: t0read.c
t1read.c
t2read.c
t3read.c
t12read.c

Code Example: unsigned int result;
result = ReadTimer0();
apRNOVS^-page 56  2002 Microchip Technology Inc.

Hardware Peripheral Library
WriteTimer0
WriteTimer1
WriteTimer2
WriteTimer3
WriteTimer1_16

Device: PIC17C4X, PIC17C756

Function: Reads the contents of the specified timer register(s).

Include: timers16.h

Prototype: void WriteTimer0 (static unsigned int timer);
void WriteTimer1 (static unsigned char timer);
void WriteTimer2 (static unsigned char timer);
void WriteTimer3 (static unsigned int timer);
void WriteTimer1_16 (static unsigned int timer);

Arguments: timer

This function writes the value timer to the respective timer

register(s).

Timer0: TMR0L,TMR0H
Timer1: TMR1
Timer2: TMR2
Timer3: TMR3L,TMR3H
Timer1_16: TMR2:TMR1

Remarks: These functions write a value to the timer register(s) which

may be 8-bits or 16-bits.

Timer0: int (16-bits)

Timer1: char (8-bits)

Timer2: char (8-bits)

Timer3: int (16-bits)

Timer1_16: int (16-bits)

Return Value: None

File Name: t0write.c
t1write.c
t2write.c
t3write.c
t12write.c

Code Example: WriteTimer0(0);
 2002 Microchip Technology Inc. apRNOVS^-page 57

MPLAB® C17 C Compiler Libraries
2.12.2 Example of Use

#include <p17c756.h>
#include <timers16.h>
#include <usart16.h>
void main (void)
{
 int result;
 char str[7];
 // configure timer0
 OpenTimer0(TIMER_INT_OFF&T0_SOURCE_NT&T0_PS_1_32);
 // configure USART
 OpenUSART1(USART_TX_INT_OFF&USART_RX_INT_OFF&
 USART_ASYNCH_MODE&USART_EIGHT_BIT&
 USART_CONT_RX, 25);
 while(1)
 {
 while(!PORTBbits.RB3); //wait for RB3 high
 result = ReadTimer0(); //read timer
 if(result>0xc000)
 break;
 WriteTimer0(0); //write new value

 uitoa(result,str); //convert to string

 putsUSART1(str); //print string
 }
 CloseTimer0(); //close modules
 CloseUSART1();
 return;
}

apRNOVS^-page 58  2002 Microchip Technology Inc.

Hardware Peripheral Library
2.13 USART FUNCTIONS

This section contains a list of individual functions and an example of use of the

functions in this section. Functions may be implemented as macros.

2.13.1 Function Descriptions

BusyUSART1
BusyUSART2

Device: BusyUSART1: PIC17C4X, PIC17C756

BusyUSART2: PIC17C756

Function: Returns the status of the TRMT flag bit in the TXSTA? register.

Include: usart16.h

Prototype: char BusyUSART1 (void);
char BusyUSART2 (void);

Arguments: None

Remarks: This function returns the status of the TRMT flag bit in the TXSTA?

register.

Return Value: If the USART transmitter is busy, a value of 1 is returned. If the

USART receiver is idle, then a value of 0 is returned.

File Name: u1busy.c
u2busy.c

Code Example: while (BusyUSART1());

CloseUSART1
CloseUSART2

Device: CloseUSART1: PIC17C4X, PIC17C756

CloseUSART2: PIC17C756

Function: Disables the specified USART.

Include: usart16.h

Prototype: void CloseUSART1 (void);
void CloseUSART2 (void);

Arguments: None

Remarks: This function disables the specified USARTs interrupts,

transmitter and receiver.

Return Value: None

File Name: u1close.c
u2close.c

Code Example: CloseUSART1();
 2002 Microchip Technology Inc. apRNOVS^-page 59

MPLAB® C17 C Compiler Libraries
DataRdyUSART1
DataRdyUSART2

Device: DataRdyUSART1: PIC17C4X, PIC17C756

DataRdyUSART2: PIC17C756

Function: Returns the status of the RCIF flag bit in the PIR register.

Include: usart16.h

Prototype: char DataRdyUSART1 (void);
char DataRdyUSART2 (void);

Arguments: None

Remarks: This function returns the status of the RCIF flag bit in the PIR

register.

Return Value: If data is available, a value of 1 is returned. If data is not

available, then a value of 0 is returned.

File Name: u1drdy.c
u2drdy.c

Code Example: while (!DataRdyUSART1());

getcUSART1
getcUSART2

Function: This function operates identically to ReadUSARTx.

File Name: #define in usart16.h

getsUSART1
getsUSART2

Device: getsUSART1 :PIC17C4X, PIC17C756

getsUSART2: PIC17C756

Function: Reads a string of characters until the specified number of

characters have been read.

Include: usart16.h

Prototype: void getsUSART1 (static char *buffer, static
unsigned char len);
void getsUSART2 (static char *buffer, static
unsigned char len);

Arguments: buffer

The value of buffer is a pointer to the string where incoming

characters are to be stored. The length of this string should be

at least len + 1.

len

The value of len is limited to the available amount of RAM

locations remaining in any one bank - 1. There must be one

extra location to store the null character.
apRNOVS^-page 60  2002 Microchip Technology Inc.

Hardware Peripheral Library
Remarks: This function waits for and reads len number of characters out

of the specified USART. There is no timeout when waiting for

characters to arrive. After len characters have been written to

the string, a null character is appended to the end of the string.

Return Value: None

File Name: u1gets.c
u2gets.c

Code Example: char x[10];
getsUSART2(x,5);

OpenUSART1
OpenUSART2

Device: OpenUSART1: PIC17C4X, PIC17C756

OpenUSART2: PIC17C756

Function: Configures the specified USART module.

Include: usart16.h

Prototype: void OpenUSART1 (static unsigned char config, static
char spbrg);
void OpenUSART2 (static unsigned char config, static
char spbrg);

Arguments: config

The value of config can be a combination of the following

values (defined in usart16.h):

USART_TX_INT_ON Transmit interrupt ON

USART_TX_INT_OFF Transmit interrupt OFF

USART_RX_INT_ON Receive interrupt ON

USART_RX_INT_OFF Receive interrupt OFF

USART_ASYNCH_MODE Asynchronous Mode

USART_SYNCH_MODE Synchronous Mode

USART_EIGHT_BIT 8-bit transmit/receive

USART_NINE_BIT 8-bit transmit/receive

USART_SYNC_SLAVE Synchronous slave mode

USART_SYNC_MASTER Synchronous master mode

USART_SINGLE_RX Single reception

USART_CONT_RX Continuous reception

spbrg

The value of spbrg determines the baud rate of the USART.

The formulas for baud rate are:

asynchronous mode: FOSC/(64 (spbrg + 1))

synchronous mode: FOSC/(4 (spbrg + 1))

getsUSART1
getsUSART2 (Continued)
 2002 Microchip Technology Inc. apRNOVS^-page 61

MPLAB® C17 C Compiler Libraries

Remarks: This function configures the USART module for interrupts,

baud rate, sync or async operation, 8- or 9-bit mode, master or

slave mode and single or continuous reception.

Return Value: None

File Name: u1open.c
u2open.c

Code Example: OpenUSART1(USART_TX_INT_OFF&USART_RX_INT_OFF&USART_
ASYNCH_MODE&USART_EIGHT_BIT&USART_CONT_RX, 25);

putcUSART1
putcUSART2

Function: This function operates identically to WriteUSARTx.

File Name: #define in usart16.h

putrsUSART1
putrsUSART2

Device: putrsUSART1: PIC17C4X, PIC17C756

putrsUSART2: PIC17C756

Function: Writes a string of characters in ROM to the USART including

the null character.

Include: usart16.h

Prototype: void putrsUSART1 (static const rom char *data);
void putrsUSART2 (static const rom char *data);

Arguments: data

The value of data is a pointer to a string in contiguous RAM

locations within the same bank.

Remarks: This function writes a string of data in program memory to the

USART, including the null character.

Return Value: None

File Name: u1putrs.c
u2putrs.c

Code Example: rom char mybuff [20];
putrsUSART1(mybuff);

OpenUSART1
OpenUSART2 (Continued)
apRNOVS^-page 62  2002 Microchip Technology Inc.

Hardware Peripheral Library
putsUSART1
putsUSART2

Device: putsUSART1: PIC17C4X, PIC17C756

putsUSART2: PIC17C756

Function: Writes a string of characters to the USART including the null

character.

Include: usart16.h

Prototype: void putsUSART1 (static char *data);
void putsUSART2 (static char *data);

Arguments: data

The value of data is a pointer to a string in contiguous RAM

locations within the same bank.

Remarks: This function writes a string of data to the USART including the

null character.

Return Value: None

File Name: u1puts.c
u2puts.c

Code Example: char mybuff [20];
putsUSART1(mybuff);

ReadUSART1
ReadUSART2

Device: ReadUSART1: PIC17C4X, PIC17C756

ReadUSART2: PIC17C756

Function: Reads a byte (one character) out of the USART receive buffer,

including the 9th bit if enabled.

Include: usart16.h

Prototype: char ReadUSART1 (void);
char ReadUSART2 (void);

Arguments: None
 2002 Microchip Technology Inc. apRNOVS^-page 63

MPLAB® C17 C Compiler Libraries
Remarks: This function reads a byte out of the USART receive buffer.

The 9th bit is recorded as well as the status bits. The status bits

and the 9th data bits are saved in a union named

USART_Status with the following declaration:
union USART
{
 unsigned char val;
 struct
 {
 unsigned RX1_NINE:1;
 unsigned TX1_NINE:1;
 unsigned FRAME_ERROR1:1;
 unsigned OVERRUN_ERROR1:1;
 unsigned RX2_NINE:1;
 unsigned TX2_NINE:1;
 unsigned FRAME_ERROR2:1;
 unsigned OVERRUN_ERROR2:1;
 };
};
The 9th bit is recorded only if 9-bit mode is enabled. The status

bits are always recorded. This function operates identically to

getcUSARTx.

Return Value: This function returns the next character in the USART receive

buffer.

File Name: u1read.c
u2read.c

Code Example: char x;
x = ReadUSART2();

WriteUSART1
WriteUSART2

Device: WriteUSART1: PIC17C4X, PIC17C756

WriteUSART2: PIC17C756

Function: Writes a byte (one character) to the USART transmit buffer,

including the 9th bit if enabled.

Include: usart16.h

Prototype: void WriteUSART1 (static char data);
void WriteUSART2 (static char data);

Arguments: data

The value of data can be any number from 0x00 to 0xff.

ReadUSART1
ReadUSART2 (Continued)
apRNOVS^-page 64  2002 Microchip Technology Inc.

Hardware Peripheral Library
2.13.2 Example of Use

#include <p17c756.h>
#include <usart16.h>
void main(void)
{
 // configure USART
 OpenUSART1(USART_TX_INT_OFF&USART_RX_INT_OFF&
 USART_ASYNCH_MODE&USART_EIGHT_BIT&
 USART_CONT_RX, 25);
 while(1)
 {
 while(!PORTAbits.RA0)//wait for RA0 high
 WriteUSART1(PORTD);//write value of PORTD
 if(PORTD == 0x80)
 break;
 }
 CloseUSART1();
 return;
}

Remarks: This function writes a byte to the USART transmit buffer. The

9th bit is written as well. The 9th data bits are saved in a union

named USART_Status with the following declaration:
union USART
{
 unsigned char val;
 struct
 {
 unsigned RX1_NINE:1;
 unsigned TX1_NINE:1;
 unsigned FRAME_ERROR1:1;
 unsigned OVERRUN_ERROR1:1;
 unsigned RX2_NINE:1;
 unsigned TX2_NINE:1;
 unsigned FRAME_ERROR2:1;
 unsigned OVERRUN_ERROR2:1;
 };
};
The 9th bit is used only if 9-bit mode is enabled.

This function operates identically to putcUSARTx.

Return Value: None

File Name: u1write.c
u2write.c

Code Example: char x;
WriteUSART2(x);

WriteUSART1
WriteUSART2 (Continued)
 2002 Microchip Technology Inc. apRNOVS^-page 65

MPLAB® C17 C Compiler Libraries
NOTES:
apRNOVS^-page 66  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

LIBRARIES
Chapter 3. Software Peripheral Library
3.1 INTRODUCTION

This chapter documents software peripheral library functions. The source code for all

of these functions is included with MPLAB-C17 in the c:\mcc\src\pmc directory,

where c:\mcc is the compiler install directory.

See the MPASM™ User's Guide with MPLINK™ and MPLIB™ (DS33014) for more

information about building libraries.

3.2 HIGHLIGHTS

This chapter is organized as follows:

• External LCD Functions

• Software I2C Functions

• Software SPI Functions

• Software UART Functions

3.3 EXTERNAL LCD FUNCTIONS

This section contains a list of individual functions and an example of use of the functions

in this section. Functions may be implemented as macros.

3.3.1 Function Descriptions

BusyXLCD

Device: PIC17C4X, PIC17C756

Function: Returns the status of the busy flag of the Hitachi HD44780 LCD

controller.

Include: xlcd.h

Prototype: unsigned char BusyXLCD (void);

Arguments: None

Remarks: This function returns the status of the busy flag of the Hitachi

HD44780 LCD controller.

Return Value: This function returns 0 if the LCD controller is not busy;

otherwise 1 is returned.

File Name: xlcd.c

Code Example: while (BusyXLCD());
 2002 Microchip Technology Inc. apRNOVS^-page 67

MPLAB® C17 C Compiler Libraries
OpenXLCD

Device: PIC17C4X, PIC17C756

Function: Configures the I/O pins and initializes the Hitachi HD44780 LCD

controller.

Include: xlcd.h

Prototype: void OpenXLCD (static unsigned char lcdtype);

Arguments: lcdtype

The value of lcdtype can be one of the following values

(defined in xlcd.h):

Function Set defines

FOUR_BIT 4-bit data interface mode

EIGHT_BIT 8-bit data interface mode

LINE_5X7 5x7 characters, single line display

LINE_5X10 5x10 characters display

LINES_5X7 5x7 characters, multiple line display

Remarks: This function configures the I/O pins used to control the Hitachi

HD44780 LCD controller. It also initializes this controller.The I/O

pin definitions that must be made to ensure that the external

LCD operates correctly are:

Control I/O pin definitions
RW_PIN PORTxbits.Rx?
TRIS_RW DDRxbits.Rx?
RS_PIN PORTxbits.Rx?
TRIS_RS DDRxbits.Rx?
E_PIN PORTxbits.Rx?
TRIS_E DDRxbits.Rx?
where x is the PORT, ? is the pin number

Data Port definitions
DATA_PORT PORTx
TRIS_DATA_PORT DDRx

The control pins can be on any port and are not required to be

on the same port. The data interface must be defined as either

4-bit or 8-bit. The 8-bit interface is defined when a #define

BIT8 is included in the header file xlcd.h. If no define is

included, then the 4-bit interface is included. When in 8-bit data

interface mode, all 8 pins must be on the same port. When in

4-bit data interface mode, the 4 pins must be either the high or

low nibble of a single port. When in 4-bit interface mode, the

high nibble is specified by including #define UPPER in the

header file xlcd.h. Otherwise, the lower nibble is specified by

commenting this line out.

After these definitions have been made, the user must compile

xlcd.c into an object to be linked. Please refer to the MPLAB

CXX Compiler User’s Guide (DS51217) for information on the

compilers and to the MPASM™ User's Guide with MPLINK™

and MPLIB™ (DS33014) for information on linking.

This function also requires three external routines to be

provided by the user for specific delays:

DelayFor18TCY() 18 Tcy delay

DelayPORXLCD() 15 ms delay

DelayXLCD() 5 ms delay
apRNOVS^-page 68  2002 Microchip Technology Inc.

Software Peripheral Library

Return Value: None

File Name: xlcd.c

Code Example: OpenXLCD(EIGHT_BIT&LINES_5X7);

putrsXLCD

Device: PIC17C4X, PIC17C756

Function: Writes a string of characters in ROM to the Hitachi HD44780

LCD controller.

Include: xlcd.h

Prototype: void putrsXLCD (static rom char *buffer);

Arguments: buffer

Pointer to characters to be written to the LCD controller.

Remarks: This functions writes a string of characters located in program

memory to the Hitachi HD44780 LCD controller. It stops

transmission after the character before the null character, i.e.,

the null character is not sent.

Return Value: None

File Name: xlcd.c

Code Example: rom char mybuff [20];
putrsXLCD(mybuff);

putcXLCD

Function: This function operates identically to WriteDataXLCD.

File Name: #define in xlcd.h

putsXLCD

Device: PIC17C4X, PIC17C756

Function: Writes a string of characters to the Hitachi HD44780 LCD

controller.

Include: xlcd.h

Prototype: void putsXLCD (static char *buffer);

Arguments: buffer

Pointer to characters to be written to the LCD controller.

Remarks: This functions writes a string of characters located in buffer to

the Hitachi HD44780 LCD controller. It stops transmission after

the character before the null character, i.e., the null character is

not sent.

Return Value: None

File Name: xlcd.c

Code Example: char mybuff [20];
putsXLCD(mybuff);

OpenXLCD (Continued)
 2002 Microchip Technology Inc. apRNOVS^-page 69

MPLAB® C17 C Compiler Libraries
ReadAddrXLCD

Device: PIC17C4X, PIC17C756

Function: Reads the address byte from the Hitachi HD44780 LCD

controller.

Include: xlcd.h

Prototype: unsigned char ReadAddrXLCD (void);

Arguments: None

Remarks: This function reads the address byte from the Hitachi HD44780

LCD controller. The user must first check to see if the LCD

controller is busy by calling the BusyXLCD() function.

The address read from the controller is for the character gener-

ator RAM or the display data RAM depending on the previous

Set??RamAddr() function that was called.

Return Value: This function returns an 8-bit which is the 7-bit address in the

lower 7-bits of the byte and the BUSY status flag in the 8th bit.
Bit7 Bit0
 BF A6 A5 A4 A3 A2 A1 A0

File Name: xlcd.c

Code Example: char addr;
while (BusyXLCD());
addr = ReadAddrXLCD();

ReadDataXLCD

Device: PIC17C4X, PIC17C756

Function: Reads a data byte from the Hitachi HD44780 LCD controller.

Include: xlcd.h

Prototype: char ReadDataXLCD (void);

Arguments: None

Remarks: This function reads a data byte from the Hitachi HD44780 LCD

controller. The user must first check to see if the LCD controller

is busy by calling the BusyXLCD() function.

The data read from the controller is for the character generator

RAM or the display data RAM depending on the previous

Set??RamAddr() function that was called.

Return Value: This function returns the 8-bit data value.

File Name: xlcd.c

Code Example: char data;
while (BusyXLCD());
data = ReadAddrXLCD();
apRNOVS^-page 70  2002 Microchip Technology Inc.

Software Peripheral Library

SetCGRamAddr

Device: PIC17C4X, PIC17C756

Function: Sets the character generator address.

Include: xlcd.h

Prototype: void SetCGRamAddr (static unsigned char CGaddr);

Arguments: CGaddr

Character generator address.

Remarks: This function sets the character generator address of the

Hitachi HD44780 LCD controller. The user must first check to

see if the controller is busy by calling the BusyXLCD() function.

Return Value: None

File Name: xlcd.c

Code Example: char cgaddr = 0x1F;
while (BusyXLCD());
SetCGRamAddr(cgaddr);

SetDDRamAddr

Device: PIC17C4X, PIC17C756

Function: Sets the display data address.

Include: xlcd.h

Prototype: void SetDDRamAddr (static unsigned char DDaddr);

Arguments: DDaddr

Display data address.

Remarks: This function sets the display data address of the Hitachi

HD44780 LCD controller. The user must first check to see if the

controller is busy by calling the BusyXLCD() function.

Return Value: None

File Name: xlcd.c

Code Example: char ddaddr = 0x10;
while (BusyXLCD());
SetDDRamAddr(ddaddr);

WriteCmdXLCD

Device: PIC17C4X, PIC17C756

Function: Writes a command to the Hitachi HD44780 LCD controller.

Include: xlcd.h

Prototype: void WriteCmdXLCD (static unsigned char cmd);

Arguments: cmd

The value of cmd can be one of the following values

(defined in xlcd.h):

Function Set defines

FOUR_BIT 4-bit data interface mode

EIGHT_BIT 8-bit data interface mode

LINE_5X7 5x7 characters, single line display

LINE_5X10 5x10 characters display

LINES_5X7 5x7 characters, multiple line display
 2002 Microchip Technology Inc. apRNOVS^-page 71

MPLAB® C17 C Compiler Libraries
Display ON/OFF control defines

DON Display on

DOFF Display off

CURSOR_ON Cursor on

CURSOR_OFF Cursor off

BLINK_ON Blinking cursor on

BLINK_OFF Blinking cursor off

Cursor or Display shift defines

SHIFT_CUR_LEFT Cursor shifts to the left

SHIFT_CUR_RIGHT Cursor shifts to the right

SHIFT_DISP_LEFT Display shifts to the left

SHIFT_DISP_RIGHT Display shifts to the right

The above defines can not be mixed. The only commands that

can be issued are function set, display control and cursor/

display shift control.

Remarks: This function writes the command byte to the Hitachi HD44780

LCD controller. The user must first check to see if the LCD

controller is busy by calling the BusyXLCD() function.

Return Value: None

File Name: xlcd.c

Code Example: while (BusyXLCD());
WriteCmdXLCD(EIGHT_BIT&LINES_5X7);
WriteCmdXLCD(DON);
WriteCmdXLCD(SHIFT_DISP_LEFT);

WriteDataXLCD

Device: PIC17C4X, PIC17C756

Function: Writes a data byte (one character) from the Hitachi HD44780

LCD controller.

Include: xlcd.h

Prototype: void WriteDataXLCD (static char data);

Arguments: data

The value of data can be any 8-bit value, but should correspond

to the character RAM table of the HD44780 LCD controller.

Remarks: This function writes a data byte to the Hitachi HD44780 LCD

controller. The user must first check to see if the LCD controller

is busy by calling the BusyXLCD() function.

The data read from the controller is for the character generator

RAM or the display data RAM depending on the previous

Set??RamAddr() function that was called.

This function operates identically to putcXLCD.

Return Value: None

File Name: xlcd.c

Code Example: char data;

data = ReadUSART1();
WriteDataXLCD(data);

WriteCmdXLCD (Continued)
apRNOVS^-page 72  2002 Microchip Technology Inc.

Software Peripheral Library
3.3.2 Example of Use

#include <p17c756.h>
#include <xlcd.h>
#include <delays.h>
#include <usart16.h>
void DelayFor18TCY(void)
{
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 Nop;
 return;
}

void DelayPORXLCD(void)
{
 Delay1KTCYx(60);//Delay of 15ms
 return;
}

void DelayXLCD(void)
{
 Delay1KTCYx(20);//Delay of 5ms
 return;
}

void main(void)
{
 char data;
 // configure external LCD
 OpenXLCD(EIGHT_BIT&LINES_5X7);
 // configure USART
 OpenUSART1(USART_TX_INT_OFF&USART_RX_INT_OFF&
 USART_ASYNCH_MODE&USART_EIGHT_BIT&
 USART_CONT_RX, 25);
 while(1)
 {
 while(!DataRdyUSART1()); //wait for data
 data = ReadUSART1(); //read data
 WriteDataXLCD(data); //write to LCD
 if(data=='Q')
 break;
 }
 CloseXLCD(); //close modules
 CloseUSART1();
 return;
}

 2002 Microchip Technology Inc. apRNOVS^-page 73

MPLAB® C17 C Compiler Libraries
3.4 SOFTWARE I²C FUNCTIONS

This section contains a list of individual functions and an example of use of the functions

in this section. Functions may be implemented as macros.

3.4.1 Function Descriptions

Clock_test

Device: PIC17CXXX

Function: Generates delay for slave clock stretching.

Include: swi2c16.h

Prototype: void Clock_test (void);

Arguments: None

Remarks: This function is called to allow for slave clock stretching. The

delay time may need to be adjusted per application

requirements. If at the end of the delay period the clock line is

low, a bit field in the global structure BUS_STATUS

(BUS_STATUS.clk) is set to 1. If the clock line is high at the end

of the delay, this bit field is a 0.

far ram union i2cbus_state
{
 struct
 {
 unsigned busy :1; bus state is busy
 unsigned clk :1; clock timeout or
 failure
 unsigned ack :1; acknowledge error or
 not ACK
 unsigned :5; bit padding
 };
 unsigned char dummy; dummy variable
} BUS_STATUS; define union/struct

Return Value: None

File Name: swckti2c.c

Code Example: Clock_test();

SWAckI2C

Device: PIC17CXXX

Function: Generates I2C bus acknowledge condition.

Include: swi2c16.h

Prototype: void SWAckI2C (void);

Arguments: None

Remarks: This function is called to generate an I2C bus acknowledge

sequence. A bit field in the global structure BUS_STATUS

(BUS_STATUS.ack) is set to 1 if the slave device did not ack.

This error condition could also indicate a bus error on the SDA

line. If no error occurred this bit field is a 0.
apRNOVS^-page 74  2002 Microchip Technology Inc.

Software Peripheral Library
far ram union i2cbus_state
{
 struct
 {
 unsigned busy :1; bus state is busy
 unsigned clk :1; clock timeout or
 failure
 unsigned ack :1; acknowledge error or
 not ACK
 unsigned :5; bit padding
 };
 unsigned char dummy; dummy variable
} BUS_STATUS; define union/struct

This function operates identically to SWNotAckI2C.

Return Value: None

File Name: swacki2c.c

Code Example: SWAckI2C();

SWGetcI2C

Function: This function operates identically to SWReadI2C.

File Name: #define in swi2c16.h

SWGetsI2C

Device: PIC17CXXX

Function: Reads in data string via software I2C implementation.

Include: swi2c16.h

Prototype: unsigned char SWGetsI2C (static unsigned char far
*rdptr, static unsigned char length);

Arguments: rdptr

Character type pointer to PICmicro RAM for storage of data

read from I2C device.

length

Number of bytes to read from I2C bus.

Remarks: This function reads in a predetermined data string length. Each

byte is retrieved via a call to the SWGetcI2C function.

Return Value: This function returns -1 if all bytes have been received and the

master generated a not ack bus condition.

File Name: swgtsi2c.c

Code Example: char x[10];
SWGetsI2C(x,5);

SWNotAckI2C

Function: This function operates identically to SWAckI2C.

File Name: #define in swi2c16.h

SWAckI2C (Continued)
 2002 Microchip Technology Inc. apRNOVS^-page 75

MPLAB® C17 C Compiler Libraries
SWPutcI2C

Function: This function operates identically to SWWriteI2C.

File Name: #define in swi2c16.h

SWPutsI2C

Device: PIC17CXXX

Function: Writes out data string via software I2C implementation.

Include: swi2c16.h

Prototype: unsigned char SWPutsI2C
(static unsigned char far *wrdptr);

Arguments: wrdptr

Character type pointer to data objects in PICmicro RAM. The

data objects are written to the I2C device.

Remarks: This function writes out a data string until a null character is

evaluated. Each byte is written via a call to the SWPutcI2C

function. The actual called function body is termed

SWWriteI2C. SWPutcI2C and SWWriteI2C refer to the same

function via a #define statement in the swi2c16.h file.

Return Value: This function returns -1 if there was an error else returns a 0.

File Name: swptsi2c.c

Code Examples: char mybuff [20];
SWPutsI2C(mybuff);

SWReadI2C

Device: PIC17CXXX

Function: Reads a single data byte (one character) via software I2C

implementation.

Include: swi2c16.h

Prototype: unsigned char SWReadI2C (void);

Arguments: None

Remarks: This function reads in a single data byte by generating the

appropriate signals on the predefined I2C clock line.

Return Value: This function returns the acquired I2C data byte. If there was an

error in this function, the return value will be -1. This condition

can be evaluated by testing the bit field BUS_STATUS.clk. If this

bit field is 1, then there was an error, else it is a 0. This function

operates identically to SWGetcI2C.

File Name: swgtci2c.c

Code Example: char x;
x = SWReadI2C();
apRNOVS^-page 76  2002 Microchip Technology Inc.

Software Peripheral Library

SWRestartI2C

Device: PIC17CXXX

Function: Generates I2C restart bus condition.

Include: swi2c16.h

Prototype: void SWRestartI2C (void);

Arguments: None

Remarks: This function is called to generate an I2C bus restart condition.

Return Value: None

File Name: swrsti2c.c

Code Example: SWRestartI2C();

SWStartI2C

Device: PIC17CXXX

Function: Generates I2C bus start condition.

Include: swi2c16.h

Prototype: void SWStartI2C (void);

Arguments: None

Remarks: This function is called to generate an I2C bus start condition.

Return Value: None

File Name: swstri2c.c

Code Example: SWStartI2C();

SWStopI2C

Device: PIC17CXXX

Function: Generates I2C bus stop condition.

Include: swi2c16.h

Prototype: void SWStopI2C (void);

Arguments: None

Remarks: This function is called to generate an I2C bus stop condition.

Return Value: None

File Name: swstpi2c.c

Code Example: SWStopI2C();
 2002 Microchip Technology Inc. apRNOVS^-page 77

MPLAB® C17 C Compiler Libraries
SWWriteI2C

Device: PIC17CXXX

Function: Writes out single data byte via software I2C implementation.

Include: swi2c16.h

Prototype: unsigned char SWWriteI2C
(static unsigned char data_out);

Arguments: data_out

Single data byte to be written to the I2C device.

Remarks: This function writes out a single data byte to the predefined data

pin. The clock and data pins are user defined in the swi2c16.h

file and must be set per application requirements. This function

operates identically to SWPutcI2C.

Return Value: This function returns -1 if there was an error condition else

returns a 0.

File Name: swptci2c.c

Code Example: char x;
SWWriteI2C(x);
apRNOVS^-page 78  2002 Microchip Technology Inc.

Software Peripheral Library
3.4.2 Example of Use

The following are simple code examples illustrating a software I2C implementation

communicating with a Microchip 24LC01B I2C EE Memory Device. In all the examples

provided no error checking utilizing the value returned from a function is implemented.

The port pins used are defined in the swi2c16.h file and must be set per application

requirements.

#include <p17cxx.h>
#include <swi2c16.h>
#include <delays.h>
extern far ram union i2cbus_state
{
 struct
 {
 unsigned busy :1; // bus state is busy
 unsigned clk :1; // clock timeout or failure
 unsigned ack :1; // acknowledge error or not ACK
 unsigned :5; // bit padding
 };
 unsigned char dummy;
} BUS_STATUS;

// FUNCTION Prototype
void main(void);
void byte_write(void);
void page_write(void);
void current_address(void);
void random_read(void);
void sequential_read(void);
void ack_poll(void);
unsigned char warr[] = {8,7,6,5,4,3,2,1,0};
unsigned char rarr[15];
unsigned char far *rdptr = rarr;
unsigned char far *wrptr = warr;
unsigned char var;
#define W_CS PORTA.2
//**
#pragma code _main=0x100
void main(void)
{
 byte_write();
 ack_poll();
 page_write();
 ack_poll();
 Nop();
 sequential_read();
 Nop();
 while (1);
}

void byte_write(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 swAckI2C();
 var = SWPutcI2C(0x10); // word address
 swAckI2C();
 var = SWPutcI2C(0x66); // data
 SWAckI2C();
 SWStopI2C();
 2002 Microchip Technology Inc. apRNOVS^-page 79

MPLAB® C17 C Compiler Libraries
}

void page_write(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 SWAckI2C();
 var = SWPutcI2C(0x20); // word address
 SWAckI2C();
 var = SWPutsI2C(wrptr); // data
 SWStopI2C();
}

void sequential_read(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 SWAckI2C();
 var = SWPutcI2C(0x00); // address to read from
 SWAckI2C();
 SWRestartI2C();
 var = SWPutcI2C(0xA1);
 SWAckI2C();
 var = SWGetsI2C(rdptr,9);
 SWStopI2C();
}

void current_address(void)
{
 SWStartI2C();
 SWPutcI2C(0xA1); // control byte
 SWAckI2C();
 SWGetcI2C(); // word address
 SWNotAckI2C();
 SWStopI2C();
}

void ack_poll(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 SWAckI2C();
 while (BUS_STATUS.ack)
 {
 BUS_STATUS.ack = 0;
 SWRestartI2C();
 var = SWPutcI2C(0xA0); // data
 SWAckI2C();
 }
 SWStopI2C();
}

apRNOVS^-page 80  2002 Microchip Technology Inc.

Software Peripheral Library
3.5 SOFTWARE SPI FUNCTIONS

This section contains a list of individual functions and an example of use of the functions

in this section. Functions may be implemented as macros.

3.5.1 Function Descriptions

ClearSWCSSPI

Device: PIC17C4X, PIC17C756

Function: Clears the chip select (CS) pin that is specified in the

swspi16.h header file.

Include: swspi16.h

Prototype: void SWClearCSSPI (void);

Arguments: None

Remarks: This function clears the I/O pin that is specified in swspi16.h to

be the chip select (CS) pin for the software SPI.

Return Value: None

File Name: swspi16.c

Code Example: ClearSWCSSPI();

OpenSWSPI

Device: PIC17C4X, PIC17C756

Function: Configures the I/O pins for the software SPI.

Include: swspi16.h

Prototype: void SWOpenSPI (void);

Arguments: None

Remarks: This function configures the I/O pins used for the software SPI

to the correct input or ouput state and logic level. The I/O pins

used for chip select (CS), data in (DIN), data out (DOUT) and

serial clock (SCK) must be defined in the header file swspi16.h.

The definitions that must be made to ensure that the software

SPI operates correctly are:

I/O pin definitions
SW_CS_PIN PORTxbits.Rx?
TRIS_SW_CS_PIN DDRxbits.Rx?
SW_DIN_PIN PORTxbits.Rx?
TRIS_SW_DIN_PIN DDRxbits.Rx?
SW_DOUT_PIN PORTxbits.Rx?
TRIS_SW_DOUT_PIN DDRxbits.Rx?
SW_SCK_PIN PORTxbits.Rx?
TRIS_SW_SCK_PIN DDRxbits.Rx?
where x is the PORT, ? is the pin number

SPI Mode
#define MODE0 or
#define MODE1 or
#define MODE2 or
#define MODE3
Only one of the MODEx can be defined.
 2002 Microchip Technology Inc. apRNOVS^-page 81

MPLAB® C17 C Compiler Libraries

After these definitions have been made, compile the software

SPI files into an executable. For information on compilers, refer

to the MPLAB CXX Compiler User’s Guide (DS51217). Refer to

the MPASM™ User's Guide with MPLINK™ and MPLIB™

(DS33014) for information on linking.

Return Value: None

File Name: swspi16.c

Code Example: OpenSWSPI();

putcSWSPI

Function: This function operates identically to WriteSWSPI.

File Name: #define in swspi16.h

SetSWCSSPI

Device: PIC17C4X, PIC17C756

Function: Sets the chip select (CS) pin that is specified in the swspi16.h

header file.

Include: swspi16.h

Prototype: void SWSetCSSPI (void);

Arguments: None

Remarks: This function sets the I/O pin that is specified in swspi16.h to be

the chip select (CS) pin for the software SPI.

Return Value: None

File Name: swspi16.c

Code Example: SetSWCSSPI();

WriteSWSPI

Device: PIC17C4X, PIC17C756

Function: Reads/writes one byte of data out the software SPI.

Include: swspi16.h

Prototype: char SWWriteSPI (static char data);

Arguments: data

Byte of data written to software SPI.

Remarks: This function writes the specified byte of data out the software

SPI and returns the byte of data that was read. This function

does not provide any control of the chip select pin (CS).

This function operates identically to putcSWSPI.

Return Value: This function returns the byte of data that was read from the

data in (DIN) pin of the software SPI.

File Name: swspi16.c

Code Example: char addr;
WriteSWSPI(addr);

OpenSWSPI (Continued)
apRNOVS^-page 82  2002 Microchip Technology Inc.

Software Peripheral Library
3.5.2 Example of Use

#include <p17c756.h>
#include <swspi16.h>
#include <delays.h>
void main(void)
{
 char address;
 // configure software SPI
 OpenSWSPI();
 for(address=0;address<0x10;address++)
 {
 ClearCSSWSPI(); //clear CS pin
 WriteSWSPI(0x02); //send write cmd
 WriteSWSPI(address); //send address h
 WriteSWSPI(address); //send address low
 SetCSSWSPI(); //set CS pin
 Delay10KTCYx(50); //wait 5000,000TCY
 }
 return;
}

 2002 Microchip Technology Inc. apRNOVS^-page 83

MPLAB® C17 C Compiler Libraries
3.6 SOFTWARE UART FUNCTIONS

This section contains a list of individual functions and an example of use of the functions

in this section. Functions may be implemented as macros.

3.6.1 Function Descriptions

getcUART

Function: This function operates identically to ReadUART.

File Name: #define in uart16.h

getsUART

Device: PIC17C4X, PIC17C756

Function: Reads a string of characters from the software UART.

Include: uart16.h

Prototype: void getsUART (static char *buffer, static unsigned
char len);

Arguments: buffer

Pointer to the string of characters read from the software UART.

len

Number of characters read from the software UART. The value

of len can be any 8-bit value, but is restricted to the maximum

size of an array within any bank of RAM.

Remarks: This function reads a string of characters from the software

UART and places them in buffer. The number of characters read

is given in the variable len.

Return Value: None

File Name: uart16_c.c

Code Example: char x[10];
getsUART(x,5);

OpenUART

Device: PIC17C4X, PIC17C756

Function: Configures the I/O pins for the software UART.

Include: uart16.h

Prototype: void OpenUART (void);

Arguments: None

Remarks: This function configures the I/O pins used for the software

UART to the correct input or ouput state and logic level. The I/O

pins used for receive data (RXD) and transmit data (TXD) must

be defined in the header file uart16_a.asm.

The definitions that must be made to ensure that the software

UART operates correctly are:
apRNOVS^-page 84  2002 Microchip Technology Inc.

Software Peripheral Library
I/O pin definitions
SWTXD equ PORTx
SWTXDpin equ ?
TRIS_SWTXD equ DDRx
SWRXD equ PORTx
SWRXDpin equ ?
TRIS_SWRXD equ DDRx
UART_PORT_BSR equ b
where x is the PORT, ? is the pin number, b is the PORTx bank

After these definitions have been made, compile the software

ART files into an object to be linked. Refer to the MPLAB CXX

Compiler User’s Guide (DS51217) for information on compilers.

Refer to the MPASM™ User's Guide with MPLINK™ and

MPLIB™ (DS33014) for information on linking.

Return Value: None

File Name: uart16_c.c

Code Example: OpenUART();

putcUART

Function: This function operates identically to WriteUART.

File Name: #define in uart16.h

putsUART

Device: PIC17C4X, PIC17C756

Function: Writes a string of characters to the software UART.

Include: uart16.h

Prototype: void getsUART (static char *buffer);

Arguments: buffer

Pointer to characters written to data string of software UART.

Remarks: This function writes a string of characters to the software UART.

The entire string including the null is sent to the UART.

Return Value: None

File Name: uart16_c.c

Code Example: char mybuff [20];
putsUART(mybuff);

OpenUART (Continued)
 2002 Microchip Technology Inc. apRNOVS^-page 85

MPLAB® C17 C Compiler Libraries

3.6.2 Example of Use

#include <p17c756.h>
#include <uart16.h>
void main(void)
{
 char data
 // configure software UART
 OpenUART();
 while(1)
 {
 data = ReadUART(); //read a byte
 WriteUART(data); //bounce it back
 }
 return;
}

ReadUART

Device: PIC17C4X, PIC17C756

Function: Reads one byte of data out the software UART.

Include: uart16.h

Prototype: char ReadUART (void);

Arguments: None

Remarks: This function reads a byte of data out the software UART and

returns the byte of data. This function operates identically to

getcUART.

Return Value: This function returns the byte of data that was read from the

receive data (RXD) pin of the software UART.

File Name: uart16_a.asm

Code Example: char x;
x = ReadUART();

WriteUART

Device: PIC17C4X, PIC17C756

Function: Writes one byte of data out the software UART.

Include: uart16.h

Prototype: void WriteUART (static char data);

Arguments: data

Byte of data written to software UART. The value of data can be

any 8-bit value.

Remarks: This function writes the specified byte of data out the software

UART. This function operates identically to putcUART.

Return Value: None

File Name: uart16_a.asm

Code Example: char x;
WriteUART(x);
apRNOVS^-page 86  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

LIBRARIES
Chapter 4. General Software Library
4.1 INTRODUCTION

This chapter documents general software library functions. The source code for all of

these functions is included with MPLAB-C17 in the c:\mcc\src\pmc directory, where

c:\mcc is the compiler install directory.

See the MPASM™ User's Guide with MPLINK™ and MPLIB™ (DS33014) for more

information about building libraries.

4.2 HIGHLIGHTS

This chapter is organized as follows:

• Character Classification Functions

• Number and Text Conversion Functions

• Delay Functions

• Memory and String Manipulation Functions

4.3 CHARACTER CLASSIFICATION FUNCTIONS

4.3.1 Function Descriptions

isalnum

Device: PIC17C4X, PIC17C756

Function: Alphanumeric character classification.

Include: ctype.h

Prototype: char isalnum (static char ch);

Arguments: ch

Character.

Remarks: This function determines if ch is an alphanumeric character in

the ranges of:
A to Z(0x41 to 0x5A)
a to z(0x61 to 0x7A)
0 to 9(0x30 to 0x39)

Return Value: This function returns 1 when the argument is within the

specified range of values; otherwise 0 is returned.

File Name: isalnum.c
 2002 Microchip Technology Inc. apRNOVS^-page 87

MPLAB® C17 C Compiler Libraries
isalpha

Device: PIC17C4X, PIC17C756

Function: Alphabetical character classification.

Include: ctype.h

Prototype: char isalpha (static char ch);

Arguments: ch

Character.

Remarks: This function determines if ch is a valid character of the alphabet

in the ranges of:

A to Z (0x41 to 0x5A)

a to z (0x61 to 0x7A)

Return Value: This function returns 1 when the argument is within the specified

range of values; otherwise 0 is returned.

File Name: isalpha.c

isascii

Device: PIC17C4X, PIC17C756

Function: ASCII character classification.

Include: ctype.h

Prototype: char isascii (static char ch);

Arguments: ch

Character.

Remarks: This function determines if ch is an ASCII character which has a

range of 0x00 to 0x7F.

Return Value: This function returns 1 when the argument is within the specified

range of values; otherwise 0 is returned.

File Name: isascii.c

iscntrl

Device: PIC17C4X, PIC17C756

Function: Control character classification.

Include: ctype.h

Prototype: char iscntrl (static char ch);

Arguments: ch

Character.

Remarks: This function determines if ch is a control character in the

ranges of:

0x00 to 0x1F

0x7f

Return Value: This function returns 1 when the argument is within the specified

range of values; otherwise 0 is returned.

File Name: iscntrl.c
apRNOVS^-page 88  2002 Microchip Technology Inc.

General Software Library

isdigit

Device: PIC17C4X, PIC17C756

Function: Numeric character classification.

Include: ctype.h

Prototype: char isdigit (static char ch);

Arguments: ch

Character.

Remarks: This function determines if ch is an numeric character in the

ranges of:

0 to 9 (0x30 to 0x39)

Return Value: This function returns 1 when the argument is within the specified

range of values; otherwise 0 is returned.

File Name: isdigit.c

islower

Device: PIC17C4X, PIC17C756

Function: Lower case alphabetical character classification.

Include: ctype.h

Prototype: char islower (static char ch);

Arguments: ch

Character.

Remarks: This function determines if ch is a lower case alphabetical

character in the ranges of:

a to z (0x61 to 0x7A)

Return Value: This function returns 1 when the argument is within the specified

range of values; otherwise 0 is returned.

File Name: islower.c

isupper

Device: PIC17C4X, PIC17C756

Function: Upper case alphabetical character classification.

Include: ctype.h

Prototype: char isupper (static char ch);

Arguments: ch

Character.

Remarks: This function determines if ch is an upper case alphabetical

character in the ranges of:

A to Z (0x41 to 0x5A)

Return Value: This function returns 1 when the argument is within the specified

range of values; otherwise 0 is returned.

File Name: isupper.c
 2002 Microchip Technology Inc. apRNOVS^-page 89

MPLAB® C17 C Compiler Libraries
isxdigit

Device: PIC17C4X, PIC17C756

Function: Hexadecimal character classification.

Include: ctype.h

Prototype: char isxdigit (static char ch);

Arguments: ch

Character.

Remarks: This function determines ifch is a hexadecimal character in the

ranges of:

A to F (0x41 to 0x46)

a to f (0x61 to 0x66)

0 to 9 (0x30 to 0x39)

Return Value: This function returns 1 when the argument is within the specified

range of values; otherwise 0 is returned.

File Name: isxdig.c
apRNOVS^-page 90  2002 Microchip Technology Inc.

General Software Library
4.4 NUMBER AND TEXT CONVERSION FUNCTIONS

atob

Device: PIC17C4X, PIC17C756

Function: Converts a string to an 8-bit signed byte.

Include: stdlib.h

Prototype: char atob (static char *string);

Arguments: string

Pointer to ASCII string.

Remarks: This function converts the ASCII string into an 8-bit signed byte.

It first finds the length of the string by searching for the null

character. If the string length is greater than 5 characters, this

function returns 0. It then starts processing the string into the

8-bit signed byte (-128 to 127).

Return Value: 8-bit signed byte for all strings with 5 characters or less (-128 to

127). 0 for all strings greater than 5 characters.

File Name: atob.c

atoi

Device: PIC17C4X, PIC17C756

Function: Converts a string to an 16-bit signed integer.

Include: stdlib.h

Prototype: int atoi(static char *string);

Arguments: string

Pointer to ASCII string.

Remarks: This function converts the ASCII string into an 16-bit signed

integer. It first finds the length of the string by searching for the

null character. If the string length is greater than 7 characters,

this function returns 0. It then starts processing the string into

the 16-bit signed integer (-32768 to 32767).

Return Value: 16-bit signed integer for all strings with 7 characters or less

(-32768 to 32767). 0 for all strings greater than 7 characters.

File Name: atoi.c
 2002 Microchip Technology Inc. apRNOVS^-page 91

MPLAB® C17 C Compiler Libraries

atoub

Device: PIC17C4X, PIC17C756

Function: Converts a string to an 8-bit unsigned byte.

Include: stdlib.h

Prototype: unsigned char atoub (static char *string);

Arguments: string

Pointer to ASCII string.

Remarks: This function converts the ASCII string into an 8-bit unsigned

byte. It first finds the length of the string by searching for the null

character. If the string length is greater than 4 characters, this

function returns 0. It then starts processing the string into the

8-bit unsigned byte (0 to 255).

Return Value: 8-bit unsigned byte for all strings with 4 characters or less (0 to

255). 0 for all strings greater than 4 characters.

File Name: atoub.c

atoui

Device: PIC17C4X, PIC17C756

Function: Converts a string to an 16-bit unsigned integer.

Include: stdlib.h

Prototype: unsigned int atoui (static char *string);

Arguments: string

Pointer to ASCII string.

Remarks: This function converts the ASCII string into an 16-bit unsigned

integer. It first finds the length of the string by searching for the

null character. If the string length is greater than 6 characters,

this function returns 0. It then starts processing the string into

the 16-bit unsigned integer. (0 to 65535)

Return Value: 16-bit unsigned integer for all strings with 6 characters or less (0

to 65535). 0 for all strings greater than 6 characters

File Name: atoui.c

btoa

Device: PIC17C4X, PIC17C756

Function: Converts an 8-bit signed byte to string.

Include: stdlib.h

Prototype: void btoa (static char value, static char *string);

Arguments: value

An 8-bit signed byte.

string

Pointer to ASCII string.

Remarks: This function converts the 8-bit signed byte in the argument

value to a ASCII string representation. The string must be long

enough to hold the ASCII representation which is:

number(3) + sign(1) + null(1) = 5
apRNOVS^-page 92  2002 Microchip Technology Inc.

General Software Library
The conversion process uses the minimum amount of

characters in the string. Some examples are:

-120 5 characters

- 57 4 characters

 -6 3 characters

 0 2 characters

 29 3 characters

107 4 characters

Return Value: None

File Name: btoa.c

itoa

Device: PIC17C4X, PIC17C756

Function: Converts an 16-bit signed integer to string.

Include: stdlib.h

Prototype: void itoa (static int value, static char *string);

Arguments: value

An 8-bit signed byte.

string

Pointer to ASCII string.

Remarks: This function converts the 16-bit signed integer in the argument

value to a ASCII string representation. The string must be long

enough to hold the ASCII representation which is:

number(5) + sign(1) + null(1) = 7

The conversion process uses the minimum amount of

characters in the string. Some examples are:

-24290 7 characters

-6183 6 characters

-120 5 characters

-57 4 characters

-6 3 characters

0 2 characters

29 3 characters

107 4 characters

1187 5 characters

32000 6 characters

Return Value: None

File Name: itoa.c

btoa (Continued)
 2002 Microchip Technology Inc. apRNOVS^-page 93

MPLAB® C17 C Compiler Libraries

toascii

Device: PIC17C4X, PIC17C756

Function: Converts a character to an ASCII character

Include: ctype.h

Prototype: char toascii (static char ch);

Arguments: ch

Character.

Remarks: This function converts ch to a valid ASCII character by setting

the MSB bit7 to a zero.

Return Value: This function returns the converted ASCII character.

File Name: toascii.c

tolower

Device: PIC17C4X, PIC17C756

Function: Converts a character to a lower case alphabetical ASCII

character.

Include: ctype.h

Prototype: char tolower (static char ch);

Arguments: ch

Character.

Remarks: This function converts ch to a lower case alphabetical ASCII

character provided that the argument is a valid upper case

alphabetical character.

Return Value: This function returns a lower case character if the argument was

upper case to begin with, otherwise the original character is

returned.

File Name: tolower.c

toupper

Device: PIC17C4X, PIC17C756

Function: Converts a character to a upper case alphabetical ASCII

character.

Include: ctype.h

Prototype: char toupper (static char ch);

Arguments: ch

Character.

Remarks: This function converts ch to a upper case alphabetical ASCII

character provided that the argument is a valid lower case

alphabetical

haracter.

Return Value: This function returns a lower case character if the argument

was upper case to begin with, otherwise the original character is

returned.

File Name: toupper.c
apRNOVS^-page 94  2002 Microchip Technology Inc.

General Software Library
ubtoa

Device: PIC17C4X, PIC17C756

Function: Converts an 8-bit unsigned byte to string.

Include: stdlib.h

Prototype: void ubtoa (static unsigned char value, static char
*string);

Arguments: value

An 8-bit signed byte.

string

Pointer to ASCII string.

Remarks: This function converts the 8-bit unsigned byte in the argument

value to a ASCII string representation. The string must be long

enough to hold the ASCII representation which is:

number(3) + null(1) = 4

The conversion process uses the minimum amount of

characters in the string. Some examples are:

0 2 characters

29 3 characters

107 4 characters

255 4 characters

Return Value: None

File Name: ubtoa.c

uitoa

Device: PIC17C4X, PIC17C756

Function: Converts an 16-bit unsigned integer to string.

Include: stdlib.h

Prototype: void uitoa (static unsigned int value, static char
*string);

Arguments: value

An 8-bit signed byte.

string

Pointer to ASCII string.

Remarks: This function converts the 16-bit unsigned integer in the

argument value to a ASCII string representation. The string

must be long enough to hold the ASCII representation which is:

number(2) + null(1) = 6

The conversion process uses the minimum amount of

characters in the string. Some examples are:

0 2 characters

29 3 characters

107 4 characters

3481 5 characters

57912 6 characters

Return Value: None

File Name: uitoa.c
 2002 Microchip Technology Inc. apRNOVS^-page 95

MPLAB® C17 C Compiler Libraries
4.5 DELAY FUNCTIONS

Delay1TCY

Device: PIC17C4X, PIC17C756

Function: Delay of 1 instruction cycle (Tcy).

Include: delays.h

Prototype: void Delay1TCY (void);

Arguments: None

Remarks: This function is actually a #define for the Nop() instruction.

When encountered in the source code, the compiler simply

inserts a Nop().

Return Value: None

File Name: #define in delays.h

Delay10TCY

Device: PIC17C4X, PIC17C756

Function: Delay of 10 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay10TCY (void);

Arguments: None

Remarks: This function creates a delay of 10 instruction cycles.

Return Value: None

File Name: dy10tcy.asm

Delay10TCYx

Device: PIC17C4X, PIC17C756

Function: Delay of multiples of 10 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay10TCYx (static unsigned char unit);

Arguments: unit

The value of unit can be any 8-bit value from 2 to 255 or 0. A

value of 0 represents sending 256 to the function.

Remarks: This function creates delays of multiples of 10 instruction

cycles.

Return Value: None

File Name: dy1otcyx.asm
apRNOVS^-page 96  2002 Microchip Technology Inc.

General Software Library
Delay100TCYx

Device: PIC17C4X, PIC17C756

Function: Delay of multiples of 100 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay100TCYx (static unsigned char unit);

Arguments: unit

The value of unit can be any 8-bit value from 2 to 255 or 0. A

value of 0 represents sending 256 to the function.

Remarks: This function creates delays of multiples of 100 instruction

cycles.

Return Value: None

File Name: dy100tcx.asm

Delay1KTCYx

Device: PIC17C4X, PIC17C756

Function: Delay of multiples of 1000 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay1KTCYx (static unsigned char unit);

Arguments: unit

The value of unit can be any 8-bit value from 2 to 255 or 0. A

value of 0 represents sending 256 to the function.

Remarks: This function creates delays of multiples of 1000 instruction

cycles.

Return Value: None

File Name: dy1ktcyx.asm

Delay10KTCYx

Device: PIC17C4X, PIC17C756

Function: Delay of multiples of 10000 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay10KTCYx (static unsigned char unit);

Arguments: unit

The value of unit can be any 8-bit value from 2 to 255 or 0. A

value of 0 represents sending 256 to the function.

Remarks: This function creates delays of multiples of 10000 instruction

cycles.

Return Value: None

File Name: dy10ktcx.asm
 2002 Microchip Technology Inc. apRNOVS^-page 97

MPLAB® C17 C Compiler Libraries
4.6 MEMORY AND STRING MANIPULATION FUNCTIONS

memcmp

Device: PIC17C4X, PIC17C756

Function: Compares the contents of two arrays of bytes.

Include: mem.h

Prototype: signed char memcmp (static char *buf1, static char
*buf2, static unsigned char memsize);

Arguments: buf1

Pointer to first array.

buf2

Pointer to second array.

memsize

Number of elements to be compared in arrays.

Remarks: This function compares the first memsize number of elements

in buf1 to the first memsize number of elements in buf2 and

returns if the buffers are less than, equal to, or greater than

each other.

Return Value: -1 if buf1 < buf2

0 if buf1 == buf2

1 if buf1 > buf2

File Name: memcmp.c

memcpy

Device: PIC17C4X, PIC17C756

Function: Copies the contents of the source buffer into the destination

buffer.

Include: mem.h

Prototype: void memcpy (static char *dest, static char *src,
static unsigned char memsize);

Arguments: dest

Pointer to destination array.

src

Pointer to source array.

memsize

Number of elements of src array copied into dest.

Remarks: This function copies the first memsize number of elements in

src to the array dest.

Return Value: None

File Name: memcpy.c
apRNOVS^-page 98  2002 Microchip Technology Inc.

General Software Library
memset

Device: PIC17C4X, PIC17C756

Function: Copies the specified character into the destination array.

Include: mem.h

Prototype: void memset (static char *dest, static char value,
static unsigned char memsize);

Arguments: dest

Pointer to destination array.

value

Character value to be copied.

memsize

Number of elements of dest into which value is copied.

Remarks: This function copies the character value into the first memsize

elements of the array dest.

Return Value: None

File Name: memset.c

strcat

Device: PIC17C4X, PIC17C756

Function: Concatenates the source string to the end of the destination

string.

Include: string.h

Prototype: void strcat (static char *dest, static char *src);

Arguments: dest

Pointer to destination array.

src

Pointer to source array.

Remarks: This function copies the string in src to the end of the string in

dest. The src string starts at the null in dest. A null character is

added to the end of the resulting string in dest.

Return Value: None

File Name: strcat.c
 2002 Microchip Technology Inc. apRNOVS^-page 99

MPLAB® C17 C Compiler Libraries
strcmp

Device: PIC17C4X, PIC17C756

Function: Compares two strings.

Include: string.h

Prototype: signed char strcmp (static char *str1, static char *str2);

Arguments: str1

Pointer to first string.

str2

Pointer to second string.

Remarks: This function compares the string in str1 to the string in str2

and returns if str1 is less than, equal to, or greater than str2.

Return Value: -1 if str1 < str2

0 if str1 == str2

1 if str1 > str2

File Name: strcmp.c

strcpy

Device: PIC17C4X, PIC17C756

Function: Copies the source string into the destination string.

Include: string.h

Prototype: void strcpy (static char *dest, static char *src);

Arguments: dest

Pointer to destination string.

src

Pointer to source string.

Remarks: This function copies the string in src to dest. Characters in src

are copied until the null character is reached. The string dest

is null terminated.

Return Value: None

File Name: strcpy.c

strlen

Device: PIC17C4X, PIC17C756

Function: Returns the length of the string.

Include: string.h

Prototype: unsigned char strlen (static char *str);

Arguments: str

Pointer to string.

Remarks: This function determines the length of the string minus the null

character.

Return Value: This function returns the length of the string in an unsigned

8-bit byte.

File Name: strlen.c
apRNOVS^-page 100  2002 Microchip Technology Inc.

General Software Library
strlwr

Device: PIC17C4X, PIC17C756

Function: Converts all upper case characters in a string to lower case.

Include: string.h

Prototype: void strlwr (static char *str);

Arguments: str

Pointer to string.

Remarks: This function converts all upper case characters in str to lower

case characters. All characters that are not upper case (A to

Z) are not affected.

Return Value: None

File Name: strlwr.c

strset

Device: PIC17C4X, PIC17C756

Function: Copies the specified character into all characters in a string.

Include: string.h

Prototype: void strset (static char *str, static char ch);

Arguments: str

Pointer to string.

ch

Character.

Remarks: This function copies the character in ch to all characters in the

string up to the null character.

Return Value: None

File Name: strset.c

strupr

Device: PIC17C4X, PIC17C756

Function: Converts all lower case characters in a string to upper case.

Include: string.h

Prototype: void strupr (static char *str);

Arguments: str

Pointer to string.

Remarks: This function converts all lower case characters in str to upper

case characters. All characters that are not lower case (a to z)

are not affected.

Return Value: None

File Name: strupr.c
 2002 Microchip Technology Inc. apRNOVS^-page 101

MPLAB® C17 C Compiler Libraries
NOTES:
apRNOVS^-page 102  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

LIBRARIES
Chapter 5. Math Library
5.1 INTRODUCTION

This chapter documents math library functions. For more information on math libraries,

see the Embedded Control Handbook, Volume 2 (DS00167). See the MPASM™ User's

Guide with MPLINK™ and MPLIB™ (DS33014) for more information on creating and

using libraries in general.

5.2 HIGHLIGHTS

This chapter is organized as follows:

• 32-Bit Integer and 32-Bit Floating Point Math Libraries

• Decimal/Floating Point and Floating Point/Decimal Conversions

5.3 32-BIT INTEGER AND 32-BIT FLOATING POINT MATH LIBRARIES

The math routines used by MPLAB-C17 are based on the Microchip Application Note

AN575. Source code for the routines may be found in the c:\mcc\src\math

directory, where c:\mcc is the compiler install directory. These source files have been

compiled into object code and added to a library called cmath17.lib, which may be

found in the c:\mcc\lib folder. The cmath17.lib file must be included during the

linking process when using floating point or 32-bit integer routine function calls in your

C code.

The mathematical functions performed by the floating point library routines are: 32-bit

signed and unsigned integer multiplication; 32-bit signed and unsigned integer division;

32-bit floating point multiplication and division. The routines also contain conversion

functions to go from 8, 16 and 32-bit signed and unsigned integers to 32-bit floating

point, as well as a 32-bit floating point conversion to 32-bit integer. Calling conventions

will be discussed later.

5.3.1 Floating Point Representation

Floating point numbers are represented in a modified IEEE-754 format. This format

allows the floating-point routines to take advantage of the processor architecture and

reduce the amount of overhead required in the calculations. The representation is

shown below:

where s is the sign bit, y is the LSb of the exponent and x is a placeholder for the

mantissa and exponent bits.

Format Exponent Mantissa 0 Mantissa 1 Mantissa 2

IEEE-754 sxxx xxxx yxxx xxxx xxxx xxxx xxxx xxxx

Microchip xxxx xxxy sxxx xxxx xxxx xxxx xxxx xxxx
 2002 Microchip Technology Inc. apRNOVS^-page 103

MPLAB® C17 C Compiler Libraries
The two formats may be easily converted from one to the other by simple a

manipulation of the Exponent and Mantissa 0 bytes. The following C code shows an

example of this operation.

EXAMPLE 5-1: IEEE-754 TO MICROCHIP

Rlcf(AARGB0);
Rlcf(AEXP);
Rrcf(AARGB0);

EXAMPLE 5-2: MICROCHIP TO IEEE-754

Rlcf(AARGB0);
Rrcf(AEXP);
Rrcf(AARGB0);

5.3.2 Variables Used by the Floating Point Libraries

Several 8-bit RAM registers are used by the math routines to hold the operands for and

results of floating point and integer operations. Since there may be two operands

required for a floating point operation (such as multiplication or division), there are two

sets of exponent and mantissa registers reserved. AEXP and BEXP hold the exponent

for arguments A and B respectively while AARGB0, AARGB1 and AARGB2 or

BARGB0, BARGB1 and BARGB2 hold the mantissa.

For 32-bit integers, AARGB0, AARGB1, AARGB2 and AARGB3 or BARGB0,

BARGB1, BARGB2 and BARGB3 are used to hold the operands. Results of integer

operations will be placed in AARGB0, AARGB1, AARGB2 and AARGB3. In the case

of 32-bit division, the remainder is placed in an additional set of registers, REMB0,

REMB1, REMB2 and REMB3. The MSB of the 32-bit integer is contained in AARGB0,

BARGB0 or REMB0.

5.3.3 Calling the Math Functions

Before calling a math operation, the exponent and/or mantissa operands must be set

up by your C code. For those operations that require two arguments (such as division

or multiplication), both sets of arguments must be initialized. Once initialization is

complete, the math function may be called using standard C function calls. The

operands of the math routine are not passed as arguments to the function.Table 5-1

shows the syntax, operation, operand(s) required and where to extract the result of the

operation.

Note: The MSB of the mantissa is stored in the AARGB0 or BARGB0 byte.

Results of the floating point routines are placed in the AEXP and

AARGB0:2 registers.
apRNOVS^-page 104  2002 Microchip Technology Inc.

Math Library
TABLE 5-1: MATH FUNCTIONS

5.3.4 Example

Given two 32-bit signed integers, int1 (AARG) and int2 (BARG), the following code

will multiply the two numbers and place the result in int1 (AARG). Banking and paging

considerations have been omitted for clarity. Include this code into your C program as

inline assembly code.

MOVFP int1, WREG ; Load AARG
MOVWF AARGB0
MOVFP int1+1, WREG
MOVWF AARGB1
MOVFP int1+2, WREG
MOVWF AARGB2
MOVPF int1+3, WREG
MOVWF AARGB3
MOVFP int2, WREG
MOVWF BARGB0 ; Load BARG
MOVFP int2+1, WREG
MOVWF BARGB1
MOVFP int2+2, WREG
MOVWF BARGB2
MOVPF int2+3, WREG
MOVWF BARGB3
CALL FXM3232S ; Perform the multiply
MOVFP AARGB0, WREG ; Save the result
MOVWF int1
MOVFP AARGB1, WREG
MOVWF int1+1
MOVFP AARGB2, WREG
MOVWF int1+2
MOVFP AARGB3, WREG
MOVWF int1+3

Syntax Operation Operand(s) Result In

FXM3232U() A·B (unsigned 32-bit integers) A, B A

FXM3232S() A·B (signed 32-bit integers) A, B A

FXD3232U() A/B (unsigned 32-bit integers) A, B A, REM

FXD3232S() A/B (signed 32-bit integers) A, B A, REM

FPM32() A·B (32-bit floating point) A, B A

FPD32() A/B (32-bit floating point) A, B A

FLO3232U() 32-bit unsigned int to 32-bit floating point A A

FLO3232S() 32-bit signed int to 32-bit floating point A A

FLO1632U() 16-bit unsigned int to 32-bit floating point A A

FLO1632S() 16-bit signed int to 32-bit floating point A A

FLO0832U() 8-bit unsigned int to 32-bit floating point A A

FLO0832S() 8-bit signed int to 32-bit floating point A A

INT3232() 32-bit floating point to 32-bit integer A A
 2002 Microchip Technology Inc. apRNOVS^-page 105

MPLAB® C17 C Compiler Libraries
5.4 DECIMAL/FLOATING POINT AND FLOATING POINT/DECIMAL
CONVERSIONS

The details of how decimal numbers are converted to floating point numbers and how

floating point numbers are converted to decimal numbers are discuss in the following

sections.

5.4.1 Converting Decimal to Microchip Floating Point

There are several methods that will allow the conversion of decimal (base 10) numbers

to Microchip floating point format. Microchip provides a PC utility called FPREP.EXE,

which will convert decimal numbers to floating point for use in the math library routines.

This utility may be download from the Microchip web site along with the AN575 source

code.

Alternatively, the floating point equivalent to decimal numbers may be calculated long-

hand. To calculate the floating point via a longhand method, both the exponent and

mantissa must be found.

To find the exponent, the following formulae are used:

EQUATION 5-1:

EQUATION 5-2:

where Z is the fractional exponent, A10 is the original decimal number, and Exp is the

integer portion of Z.

To solve for the exponent, first begin by rearranging Equation 5-1 to solve for Z.

The absolute value of Z is then rounded to the next larger absolute value integer to yield

the value of Exp. Finally a bias value of 0x7F is added to convert Exp to Microchip

floating point format.

Next, the mantissa is determined. The exponent value just determined must be

removed from the original decimal number, using division.

EQUATION 5-3:

where x is the fractional portion of the mantissa, and A10 and Z are values as described

above.

To determine the binary representation of the mantissa, x is compared in turn to

decreasing powers of 2, starting with 20 and decreasing to 2-23. If x is greater than or

equal to the power of 2 currently being compared, a ‘1’ is placed in the corresponding

bit position of the binary representation and the power of 2 value is subtracted from x.

Note: x will always be a value greater than 1.

2
Z

A10=

Exp int Z()=

Z
A10()ln

2()ln
-------------------=

x
A10

2
Z

---------=
apRNOVS^-page 106  2002 Microchip Technology Inc.

Math Library
The new x is then used for the next decreasing power of 2 comparison. If x is less than

the power of 2 currently being compared, a ‘0’ is placed in the bit position and no

subtraction occurs. The same value of x is used to compare to the next power of 2

value.

This process repeats until all 24 bits have been determined or until subtraction yields

an x value of 0. Finally, to convert this 24-bit value to Microchip floating point format,

the MSb is substituted with the sign of the original decimal number, i.e., ‘1’ for negative

or ’0’ for positive.

To demonstrate the method of conversion, the same example as in AN575 will be used,

where A10 = 0.15625.

First, find the exponent:

Next calculate the fractional portion of the mantissa:

And then the binary representation:

Therefore, the binary representation is:

A2=1.01000000000000000000000.

Finally, convert to Microchip floating point format by placing the proper sign bit in the

MSb of the mantissa and add 0x7F to the calculated exponent. The Microchip floating

point representation of 0.156256 is then 0x7C200000.For more details on the floating

point conversion, please consult AN575.

5.4.2 Converting Microchip Floating-Point to Decimal

The process of converting floating-point number to decimal is relatively simple and can

be done by hand (or using a calculator) to check your results.To convert from floating

point to decimal, the following formula is used:

EQUATION 5-4:

where Exp is the unbiased exponent and A is the binary expansion of the mantissa.

Some processing of the values stored in AEXP and AARGB0:2 must be performed in

order to use the above formula. The exponent is stored in a biased format, which simply

means that 0x7F has been added to the true exponent that of the number. To extract

the exponent to be used in the above calculation, subtract 0x7F from the value stored

in AEXP.

x = 1.25 ≥ 20? Yes bit = 1 x = 1.25 - 1 = 0.25

x = 0.25 ≥ 2-1? No bit = 0 x = 0.25

x = 0.25 ≥ 2-2? Yes bit = 1 x = 0.25 - 0.25 = 0

x = 0 Process complete

2
Z

0.15625=

Z
0.15625()ln

2()ln
----------------------------- 2.6780719–= =

Exp int Z() 3–= =

x
0.15625

2
3–

------------------- 1.25= =

A10 2
Exp

A2⋅=
 2002 Microchip Technology Inc. apRNOVS^-page 107

MPLAB® C17 C Compiler Libraries
The sign bit is stored in the MSB of the mantissa. To allow the full 24-bit precision of

the mantissa, the MSB is assumed to be 1 explicitly, once the sign bit is stripped out.

To calculate A2, a simple binary expansion is used, as shown in the formula below.

Since the MSB is explicitly 1, the expansion will always contain the term 20.

EQUATION 5-5:

As in AN575, we will use the example of the decimal number 50.2654824574. which

has a floating point representation of 0x84490FDB, with the biased exponent being

0x84 and the mantissa (including sign bit) being 0x490FDB. The unbiased exponent

is calculated to be Exp = 0x84 - 0x7F = 0x05. To process the mantissa, it is first

translated to binary format and the MSB is set to prepare for the expansion.

0x490FDB =

0100 1001 0000 1111 1101 10112 →

1100 1001 0000 1111 1101 10112

The expansion is then performed according to Equation 5-5.

A2 = 20 + 2-1 + 2-4 + 2-7 + 2-12 + 2-13 + 2-14 + 2-15 + 2-16 + 2-17 +

2-19 + 2-20 + 2-22 + 2-23

A2 = 1.570796371

Finally, to calculate the actual floating point number, the exponent and expanded

mantissa are plugged into the conversion formula (Equation 5-4).

A10 = 20 • 1.570796371

A10 = 50.26548387

The result of these calculations are accurate out to about 5 decimal places, with

rounding and calculation errors creating some degree of uncertainty for the remaining

decimal places. For more details on the sources of error, please consult AN575.

A2 2
0

Bit22() 2
1–

⋅ Bit21() 2
2–

⋅ … Bit0() 2
23–

⋅+ + + +=
apRNOVS^-page 108  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

LIBRARIES
Glossary
A

Absolute Section (MPLINK Linker)

A section with a fixed (absolute) address that can not be changed by the linker.

Access RAM - PIC18CXXX Devices Only

Special general purpose registers on PIC18CXXX devices that allow access regardless

of the setting of the bank select bit (BSR).

Alpha Character

Alpha characters are those characters that are letters of the arabic alphabet

(a, b, …, z, A, B, …, Z).

ANSI

American National Standards Institute, which is an organization responsible for

formulating and approving computer-related standards in the United States.

Alphanumeric

Alphanumeric characters are comprised of alpha characters and decimal digits

(0,1, …, 9).

Application

A set of software and hardware usually designed to be a product controlled by a

PICmicro® microcontroller.

ASCII

American Standard Code for Information Interchange is character set encoding using

7 binary digits to represent each character. It includes upper and lower case letters, dig-

its, symbols and control characters.

Assembler (Assemblers)

A language tool that translates assembly source code into machine code.

Assembly Language (Assemblers)

A programming language that is once removed from machine language. Machine

languages consist entirely of numbers and are difficult for humans to read and write.

Assembly languages enable a programmer to use names (mnemonics) instead of

numbers.

Assigned Section (MPLINK™ Linker)

A section which has been assigned to a target memory block in the linker command

file. The linker allocates an assigned section into its specified target memory block.

Asynchronous Stimulus (Simulators)

Data generated to simulate external inputs to a simulator device.
 2002 Microchip Technology Inc. apRNOVS^-page 109

MPLAB® C17 C Compiler Libraries
B

Breakpoint – Hardware (MPLAB® ICE 2000, MPLAB ICD, MPLAB ICD 2)

An event whose execution will cause a halt.

Breakpoint – Software (Debuggers)

An address where execution of the firmware will halt. Usually achieved by a special

break opcode.

Build (MPLAB® IDE v5.xx/v6.xx)

The compilation and linking of all the source files for an application.

C

C (Compilers)

A high level programming language that may be used to develop applications for

microcontrollers, especially high-end device families.

Calibration Memory

A special function register or registers used to hold values for calibration of a

PICmicro® microcontroller on-board RC oscillator or other device peripherals.

COFF (MPLAB ASM30, Linkers)

Common Object File Format. An object file format that contains machine code and

debugging information.

Command Line Interface

Command line interface refers to executing a program on the command line with

options.

Compiler (Compilers)

A language tool that translates source code into assembly code.

Configuration Bits

Special-purpose bits programmed to set PICmicro® microcontroller modes of

operation. A configuration bit may or may not be preprogrammed.

Control Directives (Assemblers)

Control directives in an assembler permit code to be conditionally assembled.

Cross Reference File (Linkers)

A file that references a table of symbols and a list of files that references the symbol. If

the symbol is defined, the first file listed is the location of the definition. The remaining

files contain references to the symbol.

D

Data Directives (Assemblers)

Data directives are those that control the assembler’s allocation of program or data

memory and provide a way to refer to data items symbolically; that is, by meaningful

names.

Data Memory

On a PICmicro MCU device, data memory (RAM) is comprised of General Purpose

Registers (GPRs) and Special Function Registers (SFRs). Some devices also have

EEPROM data memory.
apRNOVS^-page 110  2002 Microchip Technology Inc.

Library/Precompiled Object Overview
Directives

Directives provide control of the language tool’s operation.

Download

Download is the process of sending data from a host to another device, such as an

emulator, programmer or target board.

DSC

See Digital Signal Controller.

DSP

See Digital Signal Processing.

E

EEPROM

Electrically Erasable Programmable Read Only Memory. A special type of PROM that

can be erased electrically. Data is written or erased one byte at a time. EEPROM

retains its contents even when power is turned off.

EPROM

Erasable Programmable Read Only Memory. A programmable read-only memory that

can be erased usually by exposure to ultraviolet radiation.

Emulation (MPLAB ICE 2000)

The process of executing software loaded into emulation memory as if it were firmware

residing on a microcontroller device.

Emulation Memory (MPLAB ICE 2000)

Program memory contained within the emulator.

Emulator (MPLAB ICE 2000)

Hardware that performs emulation.

Emulator System (MPLAB ICE 2000)

The MPLAB ICE 2000 emulator system includes the pod, processor module, device

adapter, cables and MPLAB IDE software.

Event (MPLAB IDE v5.xx/v6.xx)

A description of a bus cycle which may include address, data, pass count, external

input, cycle type (fetch, R/W) and time stamp. Events are used to describe triggers and

breakpoints.

Executable Code

Software that is ready to be loaded for execution.

Export (MPLAB IDE v5.xx/v6.xx)

Send data out of the MPLAB IDE in a standardized format.

Expressions

Expressions are used in the operand field of the source line and may contain constants,

symbols, or combinations of constants and/or symbols separated by arithmetic or

logical operators. Each constant or symbol may be preceded by a plus or minus to

indicate a positive or negative expression.
 2002 Microchip Technology Inc. apRNOVS^-page 111

MPLAB® C17 C Compiler Libraries
Extended Microcontroller Mode - PIC17CXXX and PIC18CXXX Devices Only

In extended microcontroller mode, on-chip program memory as well as external

memory is available. Execution automatically switches to external if the program

memory address is greater than the internal memory space of the PIC17CXXX or

PIC18CXXX device.

External Input Line (MPLAB ICE 2000)

An external input signal logic probe line (TRIGIN) for setting an event based upon

external signals.

External Label (Linkers)

A label that has external linkage.

External Linkage (Linkers)

A function or variable has external linkage if it can be referenced from outside the

module in which it is defined.

External RAM - PIC17CXXX and PIC18CXXX Devices Only

Off-chip Read/Write memory.

External Symbol (Linkers)

A symbol for an identifier which has external linkage.

External Symbol Definition (Linkers)

A symbol for a function or variable defined in the current module.

External Symbol Reference (Linkers)

A symbol which references a function or variable defined outside the current module.

External Symbol Resolution (Linkers)

A process performed by the linker in which external symbol definitions from all input

modules are collected in an attempt to resolve all external symbol references. Any

external symbol references which do not have a corresponding definition cause a linker

error to be reported.

F

File Registers

On-chip general purpose and special function registers.

Flash

A type of EEPROM where data is written or erased in blocks instead of bytes.

FNOP

Forced No Operation. A forced NOP cycle is the second cycle of a two-cycle

instruction. Since the PICmicro microcontroller architecture is pipelined, it prefetches

the next instruction in the physical address space while it is executing the current

instruction. However, if the current instruction changes the program counter, this

prefetched instruction is explicitly ignored, causing a forced NOP cycle.

G

GPR

General Purpose Register. The portion of PICmicro MCU data memory (RAM)

available for general use, e.g., program-specific variables.
apRNOVS^-page 112  2002 Microchip Technology Inc.

Library/Precompiled Object Overview
H

Halt (MPLAB IDE v5.xx/v6.xx)

A stop of program execution. Executing Halt is the same as stopping at a breakpoint.

HEX Code

Executable instructions assembled or compiled from source code into hexadecimal

format code. HEX code is contained in a HEX file.

HEX File

An ASCII file containing hexadecimal addresses and values (HEX code) suitable for

programming a device.

High Level Language (Language Tools)

A language for writing programs that is of a higher level of abstraction from the

processor than assembly code. High level languages (such as C) employ a compiler to

translate statements into machine instructions that the target processor can execute.

I

ICD

In-Circuit Debugger. MPLAB ICD and MPLAB ICD 2 are Microchip’s in-circuit

debuggers for PIC16F87X and PIC18FXXXX devices, respectively. These ICDs work

with MPLAB IDE.

ICE

In-Circuit Emulator. MPLAB ICE 2000 is Microchip’s in-circuit emulator that works with

MPLAB IDE. PICMASTER (Obsolete product) and ICEPIC (Third Party product) are

other ICE devices.

IDE

Integrated Development Environment. A software application that is used for firmware

development. The MPLAB IDE integrates a project manager, an editor, language tools,

debug tools, programmers and an assortment of other tools within one Windows®

application. A user developing an application can write code, compile, debug and test

an application without leaving the MPLAB IDE desktop.

Identifier

A function or variable name.

Import (MPLAB IDE v5.xx/v6.xx)

Bring data into the MPLAB IDE from an outside source, such as from a HEX file.

Initialized Data (Language Tools)

Data which is defined with an initial value. In C,

int myVar=5

defines a variable which will reside in an initialized data section.

Instructions (Language Tools)

A sequence of bits that tells a central processing unit to perform a particular operation

and can contain data to be used in the operation.

Instruction Set (Language Tools)

The collection of machine language instructions that a particular processor

understands.

Internal Linkage (Linkers)
 2002 Microchip Technology Inc. apRNOVS^-page 113

MPLAB® C17 C Compiler Libraries
A function or variable has internal linkage if it can not be accessed from outside the

module in which it is defined.

International Organization for Standardization

An organization that sets standards in many businesses and technologies, including

computing and communications.

Interrupt

An asynchronous event that suspends normal processing and temporarily diverts the

flow of control through an "interrupt handler" routine.

Interrupts may be caused by both hardware (I/O, timer, machine check) and software

(supervisor, system call or trap instruction).

In general the computer responds to an interrupt by storing the information about the

current state of the running program; storing information to identify the source of the

interrupt; and invoking a first-level interrupt handler. This is usually a kernel level

privileged process that can discover the precise cause of the interrupt (e.g. if several

devices share one interrupt) and what must be done to keep operating system tables

(such as the process table) updated. This first-level handler may then call another

handler, e.g. one associated with the particular device which generated the interrupt.

Interrupt Handler

A routine which is executed when an interrupt occurs. Interrupt handlers typically deal

with low-level events in the hardware of a computer system such as a character arriving

at a serial port or a tick of a real-time clock. Special case is required when writing an

interrupt handler to ensure that either the interrupt which triggered the handler's

execution is masked out (inhibited) until the handler is done, or the handler is written in

a re-entrant fashion so that multiple concurrent invocations will not interfere with each

other.

If interrupts are masked then the handler must execute as quickly as possible so that

important events are not missed. This is often arranged by splitting the processing

associated with the event into "upper" and "lower" halves. The lower part is the interrupt

handler which masks out further interrupts as required, checks that the appropriate

event has occurred (this may be necessary if several events share the same interrupt),

services the interrupt, e.g. by reading a character from a UART and writing it to a

queue, and re-enabling interrupts.

The upper half executes as part of a user process. It waits until the interrupt handler

has run. Normally the operating system is responsible for reactivating a process which

is waiting for some low-level event. It detects this by a shared flag or by inspecting a

shared queue or by some other synchronization mechanism. It is important that the

upper and lower halves do not interfere if an interrupt occurs during the execution of

upper half code. This is usually ensured by disabling interrupts during critical sections

of code such as removing a character from a queue.

Interrupt Request

The name of an input found on many processors which causes the processor to

suspend normal instruction execution temporarily and to start executing an interrupt

handler routine. Such an input may be either "level sensitive" - the interrupt condition

will persist as long as the input is active or "edge triggered" - an interrupt is signaled by

a low-to-high or high-to-low transition on the input. Some processors have several

interrupt request inputs allowing different priority interrupts.
apRNOVS^-page 114  2002 Microchip Technology Inc.

Library/Precompiled Object Overview
Interrupt Service Routine

User-generated code that is entered when an interrupt occurs. The location of the code

in program memory will usually depend on the type of interrupt that has occurred.

IRQ

See Interrupt Request.

ISO

See International Organization for Standardization.

ISR

See Interrupt Service Routine.

L

Librarian (Librarians)

A language tool that creates and manipulates libraries.

Library (Librarians)

A library is a collection of relocatable object modules. It is created by assembling

multiple source files to object files, and then using the librarian to combine the object

files into one library file. A library can be linked with object modules and other libraries

to create executable code.

Linker (Linkers)

A language tool that combines object files and libraries to create executable code,

resolving references from one module to another.

Linker Script Files (Linkers)

Linker script files are the command files of a linker. They define linker options and

describe available memory on the target platform.

Listing Directives (Assemblers)

Listing directives are those directives that control the assembler listing file format. They

allow the specification of titles, pagination and other listing control.

Listing File (Assemblers)

A listing file is an ASCII text file that shows the machine code generated for each C

source statement, assembly instruction, assembler directive, or macro encountered in

a source file.

Logic Probes (MPLAB ICE 2000)

Up to 14 logic probes can be connected to some Microchip emulators. The logic probes

provide external trace inputs, trigger output signal, +5V and a common ground.

M

Machine Code

The representation of a computer program that is actually read and interpreted by the

processor. A program in machine code consists of a sequence of machine instructions

(possibly interspersed with data). Instructions are binary strings. The collection of all

possible instructions for a particular processor is known as its "instruction set".

Machine Language

A set of instructions for a specific central processing unit, designed to be usable by a

processor without being translated. Also called machine code.
 2002 Microchip Technology Inc. apRNOVS^-page 115

MPLAB® C17 C Compiler Libraries
Macro (Assemblers)

A collection of assembler instructions that are included in the assembly code when the

macro name is encountered in the source code. Macros must be defined before they

are used; forward references to macros are not allowed.

All statements following a MACRO directive and prior to an ENDM directive are part of the

macro definition. Labels used within the macro must be local to the macro so the macro

can be called repetitively.

Macro Directives (Assemblers)

Directives that control the execution and data allocation within macro body definitions.

Make Project (MPLAB IDEv5.xx/v6.xx)

A command that rebuilds an application by recompiling only those source files that

have changed since the last complete compilation.

MCU

Microcontroller Unit. An abbreviation for microcontroller. Also µC.

Memory Models (Compilers)

(C17): Versions of libraries and/or precompiled object files based on a device’s memory

(RAM/ROM) size and structure.

(C18): A description that specifies the size of pointers that point to program memory.

Microcontroller

A highly integrated chip that contains all the components comprising a controller.

Typically this includes a CPU, RAM, some form of ROM, I/O ports and timers. Unlike a

general-purpose computer, which also includes all of these components, a

microcontroller is designed for a very specific task – to control a particular system. As

a result, the parts can be simplified and reduced, which cuts down on production costs.

Microcontroller Mode - PIC17CXXX and PIC18CXXX Devices Only

One of the possible program memory configurations of the PIC17CXXX and PIC18CXXX

families of microcontrollers. In microcontroller mode, only internal execution is allowed.

Thus, only the on-chip program memory is available in microcontroller mode.

Microprocessor Mode - PIC17CXXX and PIC18CXXX Devices Only

One of the possible program memory configurations of the PIC17CXXX and

PIC18CXXX families of microcontrollers. In microprocessor mode, the on-chip program

memory is not used. The entire program memory is mapped externally.

Mnemonics

Instructions that are translated directly into machine code. Mnemonics are used to

perform arithmetic and logical operations on data residing in program or data memory

of a microcontroller. They can also move data in and out of registers and memory as

well as change the flow of program execution. Also referred to as Opcodes.
apRNOVS^-page 116  2002 Microchip Technology Inc.

Library/Precompiled Object Overview
MPASM Assembler

Microchip Technology’s relocatable macro assembler. MPASM assembler is a

command-line or Windows-based PC application that provides a platform for

developing assembly language code for Microchip’s PICmicro microcontroller (MCU)

families, KeeLoq devices and Microchip memory devices. Generically, MPASM

assembler will refer to the entire development platform including the macro assembler

and utility functions.

MPASM assembler will translate source code into either object or executable code. The

object code created by the assembler may be turned into executable code through the

use of the MPLINK linker.

MPLAB C1X

Refers to both the MPLAB C17 and MPLAB C18 C compilers from Microchip. MPLAB

C17 is the C compiler for PIC17CXXX devices and MPLAB C18 is the C compiler for

PIC18CXXX and PIC18FXXXX devices.

MPLAB ICD and MPLAB ICD 2

Microchip’s in-circuit debuggers, for PIC16F87X and PIC18FXXX devices,

respectively. The ICDs work with MPLAB IDE. The main component of each ICD is the

module. A complete system consists of a module, header, demo board, cables and

MPLAB IDE Software.

MPLAB ICE 2000

Microchip’s in-circuit emulator that works with MPLAB IDE.

MPLAB IDE

The name of the main executable program that supports the IDE.

(IDE5): MPLAB IDE v5.xx has a built-in project manager, editor and simulator (MPLAB

SIM) and support for an emulator or debugger. The MPLAB IDE software resides on

the PC host. The executable (mplab.exe) calls many other files. MPLAB IDE v5.xx

and lower is a 16-bit application.

(IDE6): MPLAB IDE v6.xx has a built-in project manager, editor and support for debug

and programming tools. The MPLAB IDE software resides on the PC host. The

executable calls many other files. MPLAB IDE v6.xx and higher is a 32-bit application.

MPLAB SIM

Microchip’s simulator that works with MPLAB IDE in support of PICmicro MCU devices.

MPLIB Object Librarian

MPLIB librarian is an object librarian for use with COFF object modules created using

either MPASM assembler (mpasm or mpasmwin v2.0) or MPLAB C1X C compilers.

MPLIB librarian will combine multiple object files into one library file. Then the librarian

can be used to manipulate the object files within the created library.

MPLINK Object Linker

MPLINK linker is an object linker for the Microchip MPASM assembler and the

Microchip MPLAB C17 or C18 C compilers. MPLINK linker also may be used with the

Microchip MPLIB librarian. MPLINK linker is designed to be used with MPLAB IDE,

though it does not have to be.

MPLINK linker will combine object files and libraries to create a single executable file.
 2002 Microchip Technology Inc. apRNOVS^-page 117

MPLAB® C17 C Compiler Libraries
MPSIM Simulator

The DOS version of Microchip’s MPLAB SIM simulator.

MRU

Most Recently Used. Refers to files and windows available to be selected from

MPLAB IDE main pull down menus.

N

Nesting Depth

The maximum level to which macros can include other macros.

Node (MPLAB IDE v5.xx)

MPLAB IDE project component.

Non Real-Time

Refers to the processor at a breakpoint or executing single step instructions or

MPLAB IDE being run in simulator mode.

Non-Volatile Storage

A storage device whose contents are preserved when its power is off.

NOP

No Operation. An instruction that has no effect when executed except to advance the

program counter.

O

Object Code

The machine code generated by a source code language processor such as an

assembler or compiler. A file of object code may be immediately executable or it

may require linking with other object code files, e.g. libraries, to produce a complete

executable program.

Object File

A module which may contain relocatable code or data and references to external code

or data. Typically, multiple object modules are linked to form a single executable output.

Special directives are required in the source code when generating an object file. The

object file contains object code.

Object File Directives

Directives that are used only when creating an object file.

Off-Chip Memory - PIC17CXXX and PIC18CXXX Devices Only

Off-chip memory refers to the memory selection option for the PIC17CXXX or

PIC18CXXX device where memory may reside on the target board, or where all

program memory may be supplied by the Emulator. The Memory tab accessed from

Options > Development Mode provides the Off-Chip Memory selection dialog box.

Opcodes

Operational Codes. See Mnemonics.

Operators

Arithmetic symbols, like the plus sign ‘+’ and the minus sign ‘-’, that are used when

forming well-defined expressions. Each operator has an assigned precedence.

OTP
apRNOVS^-page 118  2002 Microchip Technology Inc.

Library/Precompiled Object Overview
One Time Programmable. EPROM devices that are not in windowed packages. Since

EPROM needs ultraviolet light to erase its memory, only windowed devices are

erasable.

P

Pass Counter (MPLAB IDE v5.xx/v6.xx)

A counter that decrements each time an event (such as the execution of an instruction

at a particular address) occurs. When the pass count value reaches zero, the event is

satisfied. You can assign the Pass Counter to break and trace logic, and to any

sequential event in the complex trigger dialog.

PC

Personal Computer or Program Counter.

PC Host

Any IBM or compatible Personal Computer running Windows 3.1x or

Windows 95/98, Windows NT, or Windows 2000.

PICmicro MCUs

PICmicro microcontrollers (MCUs) refers to all Microchip microcontroller families.

PICSTART Plus Programmer

A device programmer from Microchip. Programs 8, 14, 28 and 40 pin PICmicro

microcontrollers. Must be used with MPLAB IDE Software.

Pod (MPLAB ICE 2000)

The external emulator box that contains emulation memory, trace memory, event and

cycle timers and trace/breakpoint logic.

Power-on-Reset Emulation (MPLAB ICE 2000)

A software randomization process that writes random values in data RAM areas to

simulate uninitialized values in RAM upon initial power application.

Pragma (Compilers)

A standardized form of comment which has meaning to a compiler. It may use a special

syntax or a specific form within the normal comment syntax. A pragma usually conveys

non-essential information, often intended to help the compiler to optimize the program.

Precedence

The concept that some elements of an expression are evaluated before others;

(i.e., * and / before + and -). In MPASM assembler, operators of the same precedence

are evaluated from left to right. Use parentheses to alter the order of evaluation.

Program Counter

A register that specifies the current execution address for emulation and simulation.

Program Memory

The memory area in a microcontroller where instructions are stored. Also, the memory

in the emulator or simulator containing the downloaded target application firmware.

Programmer

A device used to program electrically programmable semiconductor devices such as

microcontrollers.
 2002 Microchip Technology Inc. apRNOVS^-page 119

MPLAB® C17 C Compiler Libraries
Project (MPLAB IDE v5.xx/v6.xx)

A set of source files and instructions to build the object and executable code for an

application.

PRO MATE II Programmer

A device programmer from Microchip. Programs all PICmicro microcontrollers and

most memory and Keeloq devices. Can be used with MPLAB IDE or stand-alone.

Prototype System

A term referring to a user's target application, or target board.

PWM Signals

Pulse Width Modulation Signals. Certain PICmicro MCU devices have a PWM

peripheral.

Q

Qualifier

An address or an address range used by the Pass Counter or as an event before

another operation in a complex trigger.

R

Radix

The number base, HEX, or decimal, used in specifying an address and for entering

data in the Window > Modify command.

RAM

Random Access Memory (Data Memory).

Raw Data

The binary representation of code or data associated with a section.

Real-Time

When released from the halt state in the emulator or MPLAB ICD mode, the processor

runs in real-time mode and behaves exactly as the normal chip would behave. In

real-time mode, the real-time trace buffer of MPLAB ICE is enabled and constantly

captures all selected cycles, and all break logic is enabled. In the emulator or MPLAB

ICD, the processor executes in real-time until a valid breakpoint causes a halt, or until

the user halts the emulator.

In the simulator real-time simply means execution of the microcontroller instructions as

fast as they can be simulated by the host CPU.

Recursion

The concept that a function or macro, having been defined, can call itself. Great care

should be taken when writing recursive macros; it is easy to get caught in an infinite

loop where there will be no exit from the recursion.

Relaxation

The process of converting an instruction to an identical, but smaller instruction. This is

useful for saving on code size. The assembler currently knows how to RELAX a CALL

instruction into an RCALL instruction. This is done when the symbol that is being called

is within +/- 32k instruction words from the current instruction.
apRNOVS^-page 120  2002 Microchip Technology Inc.

Library/Precompiled Object Overview
Relocatable Section (Linkers)

A section whose address is not fixed (absolute). The linker assigns addresses to

relocatable sections through a process called relocation.

Relocation (Linkers)

A process performed by the linker in which absolute addresses are assigned to

relocatable sections and all identifier symbol definitions within the relocatable sections

are updated to their new addresses.

ROM

Read Only Memory (Program Memory).

Run

The command that releases the emulator from halt, allowing it to run the application

code and change or respond to I/O in real time.

S

Section (Linkers)

An portion of code or data which has a name, size and address.

SFR

See Special Function Registers.

Shared Section (MPLINK Linker)

A section which resides in a shared (non-banked) region of data RAM.

Shell (MPASM Assembler)

The MPASM assembler shell is a prompted input interface to the macro assembler.

There are two MPASM assembler shells: one for the DOS version and one for the

Windows® version.

Simulator

A software program that models the operation of PICmicro microcontrollers.

Single Step (MPLAB IDE v5.xx/v6.xx)

This command steps though code, one instruction at a time. After each instruction,

MPLAB IDE updates register windows, watch variables and status displays so you can

analyze and debug instruction execution.

You can also single step C compiler source code, but instead of executing single

instructions, MPLAB IDE will execute all assembly level instructions generated by the

line of the high level C statement.

Skew (MPLAB ICE 2000)

The information associated with the execution of an instruction appears on the

processor bus at different times. For example, the executed Opcodes appears on the

bus as a fetch during the execution of the previous instruction, the source data address

and value and the destination data address appear when the Opcodes is actually

executed, and the destination data value appears when the next instruction is

executed. The trace buffer captures the information that is on the bus at one instance.

Therefore, one trace buffer entry will contain execution information for three

instructions. The number of captured cycles from one piece of information to another

for a single instruction execution is referred to as the skew.
 2002 Microchip Technology Inc. apRNOVS^-page 121

MPLAB® C17 C Compiler Libraries
Skid (MPLAB ICE 2000, MPLAB ICD, MPLAB ICD 2))

When a hardware breakpoint is used to halt the processor, one or more additional

instructions may be executed before the processor halts. The number of extra

instructions executed after the intended breakpoint is referred to as the skid.

Source Code - Assembly

Source code consists of PICmicro MCU instructions and MPASM assembler directives

and macros that will be translated into machine code by an assembler.

Source Code - C

A program written in the high level language called “C” which will be converted into

PICmicro MCU machine code by a compiler. Machine code is suitable for use by a

PICmicro MCU or Microchip development system product like MPLAB IDE.

Source File - Assembly

The ASCII text file of PICmicro MCU instructions and MPASM assembler directives and

macros (source code) that will be translated into machine code by an assembler. It is

an ASCII file that can be created using any ASCII text editor.

Source File - C

The ASCII text file containing C source code that will be translated into machine code

by a compiler. It is an ASCII file that can be created using any ASCII text editor.

Special Function Registers

Registers that control I/O processor functions, I/O status, timers, or other modes or

peripherals.

Stack - Hardware

An area in PICmicro MCU memory where function arguments, return values, local

variables and return addresses are stored; (i.e., a “Push-Down” list of calling routines).

Each time a PICmicro MCU executes a CALL or responds to an interrupt, the software

pushes the return address to the stack. A return command pops the address from the

stack and puts it in the program counter.

The PIC18CXXX family also has a hardware stack to store register values for “fast”

interrupts.

Stack - Software

The compiler uses a software stack for storing local variables and for passing

arguments to and returning values from functions.

Static RAM or SRAM

Static Random Access Memory. Program memory you can Read/Write on the target

board that does not need refreshing frequently.

Status Bar (MPLAB IDE v5.xx/v6.xx)

The Status Bar is located on the bottom of the MPLAB IDE window and indicates such

current information as cursor position, development mode and device and active tool

bar.

Step Into (MPLAB IDE v5.xx/v6.xx)

This command is the same as Single Step. Step Into (as opposed to Step Over) follows

a CALL instruction into a subroutine.
apRNOVS^-page 122  2002 Microchip Technology Inc.

Library/Precompiled Object Overview
Step Over (MPLAB IDE v5.xx/v6.xx)

Step Over allows you to debug code without stepping into subroutines. When stepping

over a CALL instruction, the next breakpoint will be set at the instruction after the CALL.

If for some reason the subroutine gets into an endless loop or does not return properly,

the next breakpoint will never be reached.

The Step Over command is the same as Single Step except for its handling of CALL

instructions.

Stimulus (Simulators)

Input to the simulator, i.e., data generated to exercise the response of simulation to

external signals. Often the data is put into the form of a list of actions in a text file.

Stimulus may be asynchronous, synchronous (pin), clocked and register.

Stopwatch (Simulators)

A counter for measuring execution cycles.

Symbol (MPLAB IDE v5.xx/v6.xx)

A symbol is a general purpose mechanism for describing the various pieces which

comprise a program. These pieces include function names, variable names, section

names, file names, struct/enum/union tag names, etc.

Symbols in MPLAB IDE refer mainly to variable names, function names and assembly

labels.

System Button

The system button is another name for the system window control. Clicking on the

system button pops up the system menu.

System Window Control

The system window control is located in the upper left corner of windows and some

dialogs. Clicking on this control usually pops up a menu that has the items “Minimize,”

“Maximize,” and “Close.” In some MPLAB IDE windows, additional modes or functions

can be found.

T

Target (MPLAB ICE 2000, MPLAB ICD, MPLAB ICD 2)

Refers to user hardware.

Target Application (MPLAB ICE 2000, MPLAB ICD, MPLAB ICD 2)

Firmware residing on the target board.

Target Board (MPLAB ICE 2000, MPLAB ICD, MPLAB ICD 2)

The circuitry and programmable device that makes up the target application.

Target Processor (MPLAB ICE 2000, MPLAB ICD, MPLAB ICD 2)

The microcontroller device on the target application board.

Template (Editor)

Lines of text that you build for inserting into your files at a later time. The MPLAB Editor

stores templates in template files.

Tool Bar (MPLAB IDE v5.xx/v6.xx)

A row or column of icons that you can click on to execute MPLAB IDE functions.
 2002 Microchip Technology Inc. apRNOVS^-page 123

MPLAB® C17 C Compiler Libraries
Trace (Debuggers)

An emulator or simulator function that logs program execution. The emulator logs

program execution into its trace buffer which is uploaded to MPLAB IDE’s trace

window.

Trace Memory (Debuggers)

Trace memory contained within the emulator. Trace memory is sometimes called the

trace buffer.

Trigger Output (MPLAB ICE 2000)

Trigger output refers to an emulator output signal that can be generated at any address

or address range, and is independent of the trace and breakpoint settings. Any number

of trigger output points can be set.

Trigraphs (Compilers)

These are three-character sequences, all starting with ??, that are defined by ISO C to

stand for single characters

The nine trigraphs and their replacements are

U

Unassigned Section (MPLINK Linker)

A section which has not been assigned to a specific target memory block in the linker

command file. The linker must find a target memory block in which to allocate an

unassigned section.

Uninitialized Data

Data which is defined without an initial value. In C,

int myVar;

defines a variable which will reside in an uninitialized data section.

Upload

The Upload function transfers data from a tool, such as an emulator or programmer, to

the host PC or from the target board to the emulator.

W

Warning

An alert that is provided to warn you of a situation that would cause physical damage

to a device, software file, or equipment.

Watchdog Timer (WDT)

A timer on a PICmicro microcontroller that resets the processor after a selectable

length of time. The WDT is enabled or disabled and set up using configuration bits.

Watch Variable (MPLAB IDE v5.xx/v6.xx)

A variable that you may monitor during a debugging session in a watch window.

Watch Window (MPLAB IDE v5.xx/v6.xx)

Watch windows contain a list of watch variables that are updated at each breakpoint.

Trigraph: ??(??) ??< ??> ??= ??/ ??' ??! ??-

Replacement: [] { } # \ ^ | ~
apRNOVS^-page 124  2002 Microchip Technology Inc.

MPLAB® C17 C COMPILER

LIBRARIES

Index
Symbols

.lib ... 8

.o .. 9, 10

A

A/D Converter ... 12

Buzy ... 12

Close .. 12

Convert .. 12

Example of Use .. 16

Open .. 13

Read .. 14

Set Channel ... 14

AckI2C .. 22

Alphabetical Character 100

Alphanumeric Character 99

Arrays ... 33

ASCII .. 100, 104

Asynchronous Mode 73

atob .. 103

atoi .. 103

atoub .. 104

atoui .. 104

B

Brown-out Reset ... 50

btoa .. 104

BusyADC .. 12

BusyUSART ... 70

BusyXLCD .. 79

C

Calling the Math Functions 116

Capture ... 17, 18

Close .. 17

Example of Use .. 21

Open .. 17

Read .. 20

Character Classification 99

Alphabetic .. 100

Alphanumeric ... 99

ASCII .. 100

Control ... 100

Decimal .. 101

Hexadecimal .. 102

Lower Case Alphabetic 101

Upper Case Alphabetic 101

Characters

Control .. 100

ClearSWCSSPI ... 93

Clock_test ... 86

CloseADC ... 12

CloseCapture .. 17

CloseI2C ... 22

CloseMwire ... 41

ClosePORTB .. 37

ClosePWM .. 47

CloseRA0INT .. 34

CloseSPI ... 57

CloseTimer ... 65

CloseUSART .. 70

Code

Start Up .. 9

Control Character ... 100

ConvertADC .. 12

Converting Decimal to Microchip

Floating Point 118

Converting Microchip Floating-Point

to Decimal .. 119

Customer Support ... 4

D

DataRdyI2C .. 22

DataRdyMwire .. 41

DataRdySPI .. 57

DataRdyUSART .. 71

Delay ... 108

1 Tcy .. 108

10 Tcy .. 108

10 Tcy Mult. .. 108

100 Tcy Mult. .. 109

10K Tcy Mult. ... 109

1K Tcy Mult. ... 109

Delay100TCYx .. 109

Delay10KTCYx ... 109

Delay10TCY ... 108

Delay10TCYx .. 108

Delay1KTCYx ... 109

Delay1TCY ... 108

Disable .. 34

DisablePullups .. 37
 2002 Microchip Technology Inc. DS51296A-page 125

MPLAB® C17 C Compiler Libraries
Documentation

Conventions ...2

Layout ...1

Numbering Conventions2

Updates ..2

E

EEAckPolling ..30

EEByteWrite ...30

EECurrentAddRead ..31

EEPageWrite ..31

EERandomRead ...32

EESequentialRead ...32

Enable ...34

EnablePullups ...37

F

Floating Point Representation115

G

getcI2C ...23

getcMwire ...41

getcSPI ...57

getcUART ...96

getcUSART ...71

getsI2C ...23

getsMwire ...41

getsSPI ...57

getsUART ...96

getsUSART ...71

Glossary ..121

H

Hardware Libraries ...8

I

I2C, Hardware ...22

Acknowledge ..22

Close ..22

Data Ready ..22

EEPROM Acknowledge Polling30

EEPROM Byte Write30

EEPROM Current Address Read31

EEPROM Page Write31

EEPROM Random Read32

EEPROM Sequential Read32

Example of Use ..33

Get Character ...23

Get String ...23

Idle ..24

No Acknowledge24

Open ...24

Put Character ...25

Put String ..25

Read ...28

Restart ..28

Start ..28

Stop ..29

Write ...29

I2C, Software ...86

Acknowledge ..86

Clock Test ...86

Example of Use ..91

Get Character ...87

Get String ...87

No Acknowledge87

Put Character ...88

Put String ..88

Read ...88

Restart ..89

Start ..89

Stop ..89

Write ...89

IdleI2C ...24

Index ...137

Initialization

Data ..9

Interrupts ...34

Disable ..34

Disable RA0/INT34

Enable ..34

Enable RA0/INT ..35

Example of Use ..36

Handler Code ...10

isalnum ..99

isalpha ...100

isascii ..100

isBOR ..50

iscntrl ...100

isdigit ...101

islower ...101

isMCLR ...50

isPOR ..52

isupper ..101

isWDTTO ..52

isWDTWU ...54

isWU ..54

isxdigit ...102

itoa ..105

L

LCD, External ..79

Busy ..79

Example of Use ..85

Open ...80

Put Character ...81

Put ROM String ..81

Read Address ...82

Read Data ..82

Set Character Generator Address83

Set Display Data Address83

Write Command ..83
DS51296A-page 126  2002 Microchip Technology Inc.

Index
Write Data .. 84

lib Directory .. 7, 9

Libraries .. 3

Hardware ... 8

Precompiled Math 8

Software ... 8

Standard .. 8

Library

Files ... 8

Lower Case Characters 113

M

Math Libraries

Integer and Floating Point 115

MCLR ... 50

memcmp ... 110

memcpy .. 110

Memory .. 110

Compare .. 110

Copy .. 110

Devices .. 29, 62

Set ... 111

memset ... 111

Microwire .. 41

Close .. 41

Data Ready .. 41

Example of Use 45

Get Character .. 41

Get String ... 41

Open .. 42

Put Character ... 42

Read .. 42

Write .. 44

MPLAB C17 Description 129

MPLAB C17 Libraries 3

N

NotAckI2C .. 24

Number and Text Conversion 103

Byte to String (B to A) 104

Character to ASCII 106

Character to Lower-case ASCII 106

Character to Upper-case ASCII 106

Integer to String (I to A) 105

String to Byte (A to B) 103

String to Integer (A to I) 103

String to Unsigned Byte (A to UB) 104

String to Unsigned Integer (A to UI) 104

Unsigned Byte to String (UB to A) 107

Unsigned Integer to String (UI to A) 107

Numeric Character 101

O

Object Files, Precompiled 9, 10

OpenADC ... 13

OpenCapture .. 17

OpenI2C ... 24

OpenMwire ... 42

OpenPORTB .. 38

OpenPWM .. 47

OpenRA0INT .. 35

OpenSPI ... 58

OpenSWSPI ... 93

OpenTimer .. 65

OpenUART ... 96

OpenUSART ... 73

OpenXLCD ... 80

P

PICmicro MCU .. 134

Pointers .. 33

Port B .. 37

Close .. 37

Disable Pullups .. 37

Enable Pullups ... 37

Open .. 38

Precompiled Math Libraries 8

Preface ... 1

PRODH ... 7

PRODL ... 7

Pulse Width Modulation Functions 47

putcI2C ... 25

putcMwire ... 42

putcSPI ... 59

putcSWSPI ... 94

putcUART ... 97

putcUSART ... 73

putcXLCD ... 81

putrsUSART ... 74

putrsXLCD .. 81

putsI2C ... 25

putsSPI ... 60

putsUART ... 97

putsUSART ... 74

PWM ... 47

Close .. 47

Example of Use .. 49

Open .. 47

Set Duty Cycle ... 48

R

ReadADC ... 14

ReadAddrXLCD .. 82

ReadCapture .. 20

ReadDataXLCD .. 82

ReadI2C ... 28

README File ... 3

ReadMwire ... 42

ReadSPI ... 60

ReadTimer .. 67

ReadUART ... 98
 2002 Microchip Technology Inc. DS51296A-page 127

MPLAB® C17 C Compiler Libraries
ReadUSART ... 75

References ... 3

Register Definitions .. 10

Reset .. iii, 50

Brown-out ... 50

Master Clear .. 50

Power-on .. 52

Status ... 56

Wake-up ... 54

Watchdog Timer Time-out 52

Watchdog Timer Wake-up 54

RestartI2C .. 28

S

SetCGRamAddr ... 83

SetChanADC .. 14

SetDCPWM .. 48

SetDDRamAddr .. 83

SetSWCSSPI ... 94

Sleep .. 54

Software Libraries .. 8

SPI .. iii

SPI, Hardware .. 57

Close .. 57

Data Ready .. 57

Example of Use .. 62

Get Character .. 57

Get String ... 57

Open .. 58

Put Character ... 59

Put String ... 60

Read .. 60

Write ... 60

SPI, Software ... 93

Clear Chip Select 93

Example of Use .. 95

Open .. 93

Put Character ... 94

Set Chip Select .. 94

Write ... 94

src Directory ... 7

SSP .. 22

Standard Libraries .. 8

Start Up Code ... 9

StartI2C .. 28

StatusReset .. 56

StopI2C .. 29

stray cat .. 111

strcat ... 111

strcmp ... 112

strcpy .. 112

String .. 110

Compare .. 112

Concatenation .. 111

Convert to Lower-case 113

Convert to Upper Case 113

Copy ... 112

Length .. 112

Set .. 113

Strings ... 104

strlen ... 112

strlwr ... 113

strset ... 113

strupr ... 113

Support

Customer .. 4

SWAckI2C .. 86, 87

SWGetsI2C ... 87

SWPutsI2C ... 88

SWReadI2C .. 87, 88

SWRestartI2C ... 89

SWStartI2C ... 89

SWStopI2C ... 89

SWWriteI2C .. 89

Synchronous Mode ... 73

T

Timers ... 65

Close .. 65

Example of Use .. 69

Open .. 65

Read ... 67

Write ... 68

toascii .. 106

tolower .. 106

toupper .. 106

Troubleshooting .. 4

U

UART, Software .. 96

Example of Use .. 98

Get Character ... 96

Get String ... 96

Open .. 96

Put Character ... 97

Put String ... 97

Read ... 98

Write ... 98

ubtoa ... 107

uitoa .. 107

Upper Case Characters 113

USART ..iii

USART, Hardware .. 70

Buzy ... 70

Close .. 70

Data Ready .. 71

Example of Use .. 77

Get Character ... 71

Get String ... 71

Open .. 73
DS51296A-page 128  2002 Microchip Technology Inc.

Index
Put Character ... 73

Put ROM String .. 74

Put String ... 74

Read .. 75

Write .. 75

V

Variables Used by the

Floating Point Libraries 116

W

Watchdog Timer (WDT) 52, 54

WriteCmdXLCD .. 83

WriteDataXLCD .. 84

WriteI2C ... 29

WriteMwire ... 44

WriteSPI ... 60

WriteSWSPI ... 94

WriteTimer .. 68

WriteUART ... 98

WriteUSART ... 75
 2002 Microchip Technology Inc. DS51296A-page 129

MPLAB® C17 C Compiler Libraries
NOTES:
DS51296A-page 130  2002 Microchip Technology Inc.

Index
NOTES:
 2002 Microchip Technology Inc. DS51296A-page 131

DS51296A-page 132  2002 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380 Fax: 86-755-82966626

China - Qingdao
Rm. B503, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205

India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

12/05/02

WORLDWIDE SALES AND SERVICE

	Preface
	Chapter 1. Library/Precompiled Object Overview
	1.1 Introduction
	1.2 Highlights
	1.3 MPLAB C17 Libraries
	1.3.1 Hardware, Software and Standard Libraries
	1.3.2 Math Library

	1.4 MPLAB C17 Precompiled Object Files
	1.4.1 Start Up Code
	1.4.2 Initialization Code
	1.4.3 Interrupt Handler Code
	1.4.4 Special Function Register Definitions

	Chapter 2. Hardware Peripheral Library
	2.1 Introduction
	2.2 Highlights
	2.3 A/D Converter Functions
	2.3.1 Function Descriptions
	2.3.2 Example of Use

	2.4 Input Capture Functions
	2.4.1 Function Descriptions
	2.4.2 Example of Use

	2.5 I2C® Functions
	2.5.1 Function Descriptions
	2.5.2 Example of Use

	2.6 Interrupt Functions
	2.6.1 Function Descriptions
	2.6.2 Example of Use

	2.7 Port B Functions
	2.7.1 Function Descriptions
	2.7.2 Example of Use

	2.8 Microwire® Functions
	2.8.1 Function Descriptions
	2.8.2 Example of Use

	2.9 Pulse Width Modulation Functions
	2.9.1 Function Descriptions
	2.9.2 Example of Use

	2.10 Reset Functions
	2.10.1 Function Descriptions
	2.10.2 Example of Use

	2.11 SPI™ Functions
	2.11.1 Function Descriptions
	2.11.2 Example of Use

	2.12 Timer Functions
	2.12.1 Function Descriptions
	2.12.2 Example of Use

	2.13 USART Functions
	2.13.1 Function Descriptions
	2.13.2 Example of Use

	Chapter 3. Software Peripheral Library
	3.1 Introduction
	3.2 Highlights
	3.3 External LCD Functions
	3.3.1 Function Descriptions
	3.3.2 Example of Use

	3.4 Software I2C Functions
	3.4.1 Function Descriptions
	3.4.2 Example of Use

	3.5 Software SPI Functions
	3.5.1 Function Descriptions
	3.5.2 Example of Use

	3.6 Software UART Functions
	3.6.1 Function Descriptions
	3.6.2 Example of Use

	Chapter 4. General Software Library
	4.1 Introduction
	4.2 Highlights
	4.3 Character Classification Functions
	4.3.1 Function Descriptions

	4.4 Number and Text Conversion Functions
	4.5 Delay Functions
	4.6 Memory and String Manipulation Functions

	Chapter 5. Math Library
	5.1 Introduction
	5.2 Highlights
	5.3 32-Bit Integer and 32-Bit Floating Point Math Libraries
	5.3.1 Floating Point Representation
	5.3.2 Variables Used by the Floating Point Libraries
	5.3.3 Calling the Math Functions
	5.3.4 Example

	5.4 Decimal/Floating Point and Floating Point/Decimal Conversions
	5.4.1 Converting Decimal to Microchip Floating Point
	5.4.2 Converting Microchip Floating-Point to Decimal

	Glossary
	Index
	Worldwide Sales and Service

