

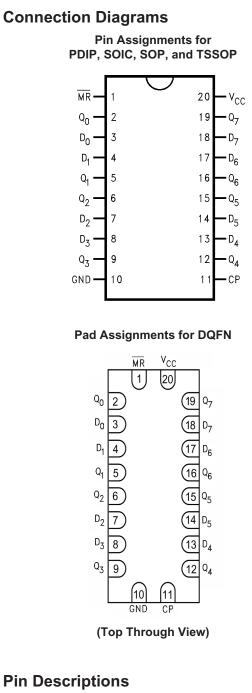
74VHC273 Octal D-Type Flip-Flop

Features

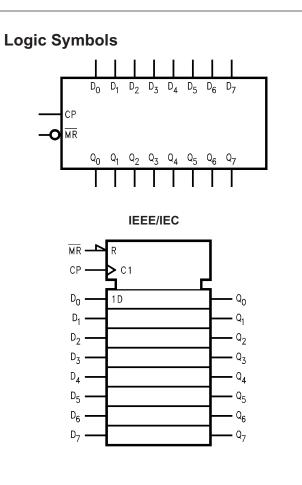
- High Speed: f_{MAX} = 165MHz (typ) at V_{CC} = 5V
- Low power dissipation: I_{CC} = 4µA (max) at T_A = 25°C
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Power down protection is provided on all inputs
- Low noise: V_{OLP} = 0.9V (max)
- Pin and function compatible with 74HC273
- Leadless DQFN Package

General Description

The VHC273 is an advanced high speed CMOS Octal D-type flip-flop fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.


The register has a common buffered Clock (CP) which is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output. The Master Reset ($\overline{\text{MR}}$) input will clear all flip-flops simultaneously. All outputs will be forced LOW independently of Clock or Data inputs by a LOW voltage level on the $\overline{\text{MR}}$ input.

An input protection circuit insures that 0V to 7V can be applied to the inputs pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

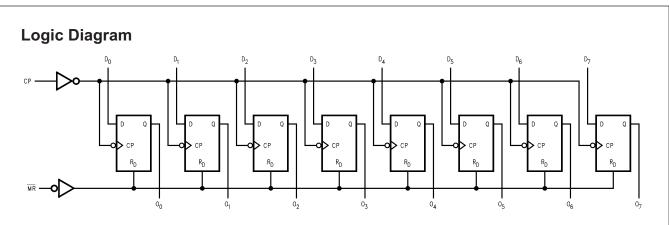

Order Number	Package Number	Package Description
74VHC273M	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74VHC273SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHC273BQ (Preliminary)	MLP020B (Preliminary)	20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 4.5mm
74VHC273MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Ordering Information

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering number. Pb-Free package per JEDEC J-STD-020B.

Pin Names	Description					
D ₀ -D ₇	Data Inputs					
MR	Master Reset					
CP	Clock Pulse Input					
Q ₀ -Q ₇	Data Outputs					

Function Table


Operating		Inputs	Outputs	
Mode	MR	СР	D _n	Q _n
Reset (Clear)	L	Х	Х	L
Load '1'	Н	~	Н	Н
Load '0'	Н	~	L	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

✓ = LOW-to-HIGH Transition

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Figure 1.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
V _{IN}	DC Input Voltage	-0.5V to +7.0V
V _{OUT}	DC Output Voltage	–0.5V to V _{CC} + 0.5V
I _{IK}	Input Diode Current	–20mA
I _{OK}	Output Diode Current	±20mA
I _{OUT}	DC Output Current	±25mA
I _{CC}	DC V _{CC} /GND Current	±75mA
T _{STG}	Storage Temperature	–65°C to +150°C
ΤL	Lead Temperature (Soldering, 10 seconds)	260°C

Recommended Operating Conditions⁽¹⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	2.0V to +5.5V
V _{IN}	Input Voltage	0V to +5.5V
V _{OUT}	Output Voltage	0V to V _{CC}
T _{OPR}	Operating Temperature	–40°C to +85°C
t _r , t _f	Input Rise and Fall Time,	
	$V_{CC} = 3.3V \pm 0.3V$	0ns/V ~ 100ns/V
	$V_{CC} = 5.0V \pm 0.5V$	0ns/V ~ 20ns/V

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

74VHC273
Octal
D-Type
Flip-Flop

						T _A =					
						25°C		–40°C t	o +85°C		
Symbol	Parameter	V _{CC} (V)	Сог	nditions	Min.	Тур.	Max.	Min.	Max.	Units	
V _{IH}	HIGH Level	2.0			1.50			1.50		V	
	Input Voltage	3.0–5.5			$0.7 \times V_{CC}$			0.7 x V _{CC}			
V _{IL}	LOW Level Input	2.0					0.50		0.50	V	
	Voltage	3.0–5.5					0.3 x V _{CC}		$0.3 \times V_{CC}$		
101	HIGH Level	2.0	$V_{IN} = V_{IH}$	I _{OH} = –50μA	1.9	2.0		1.9		V	
	Output	3.0	or V _{IL}		2.9	3.0		2.9			
	voltage	4.5			4.4	4.5		4.4			
		3.0		I _{OH} = -4mA	2.58			2.48			
		4.5		I _{OH} =8mA	3.94			3.80			
V _{OL}	LOW Level	2.0		I _{OL} = 50μA		0.0	0.1		0.1	V	
	Output Voltage	3.0	or V _{IL}			0.0	0.1		0.1		
		4.5				0.0	0.1		0.1		
		3.0		$I_{OL} = 4mA$			0.36		0.44		
		4.5		I _{OL} = 8mA			0.36		0.44		
I _{IN}	Input Leakage Current	0–5.5	$V_{IN} = 5.5V$ or GND				±0.1		±1.0	μA	
I _{CC}	Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND				4.0		40.0	μA	

Noise Characteristics

				$T_A = 25^{\circ}C$		
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	Limits	Units
V _{OLP} ⁽²⁾	Quiet Output Maximum Dynamic V _{OL}	5.0	$C_L = 50 pF$	0.6	0.9	V
V _{OLV} ⁽²⁾	Quiet Output Minimum Dynamic V _{OL}	5.0	$C_L = 50 pF$	-0.6	-0.9	V
V _{IHD} ⁽²⁾	Minimum HIGH Level Dynamic Input Voltage	5.0	$C_L = 50 pF$		3.5	V
V _{ILD} ⁽²⁾	Maximum LOW Level Dynamic Input Voltage	5.0	$C_L = 50 pF$		1.5	V

Note:

2. Parameter guaranteed by design.

AC Electrical Characteristics

					т	A = 25°	с		–40°C 85°C	
Symbol	Parameter	V _{CC} (V)	Co	nditions	Min.	Тур.	Max.	Min.	Max.	Units
f _{MAX}	Maximum Clock	3.3 ± 0.3		$C_L = 15 pF$	75	120		65		MHz
	Frequency			$C_L = 50 pF$	50	75		45		
		5.0 ± 0.5		C _L = 15pF	120	165		100		MHz
				$C_L = 50 pF$	80	110		70		
t _{PLH} , t _{PHL}	Propagation Delay	3.3 ± 0.3		$C_L = 15 pF$		8.7	13.6	1.0	16.0	ns
	Time (CK – Q)			$C_L = 50 pF$		11.2	17.1	1.0	19.5	
		5.0 ± 0.5		$C_L = 15 pF$		5.8	9.0	1.0	10.5	ns
				$C_L = 50 pF$		7.3	11.0	1.0	12.5	
t _{PHL}	Propagation Delay	3.3 ± 0.3		$C_L = 15 pF$		8.9	13.6	1.0	16.0	ns
	Time (MR – Q)			$C_L = 50 pF$		11.4	17.1	1.0	19.5	
		5.0 ± 0.5		$C_L = 15 pF$		5.2	8.5	1.0	10.0	ns
				$C_L = 50 pF$		6.7	10.5	1.0	12.0	
t _{OSLH} ,	Output to Output	3.3 ± 0.3	(3)	$C_L = 50 pF$			1.5		1.5	ns
toshl	Skew	5.0 ± 0.5]	$C_L = 50 pF$			1.0		1.0	
C _{IN}	Input Capacitance		$V_{CC} = C$	Dpen		4.0	10.0		10.0	pF
C _{PD}	Power Dissipation Capacitance		(4)			31				pF

Notes:

3. Parameter guaranteed by design $t_{OSLH} = |t_{PLH}max - t_{PLH}min|$; $t_{OSHL} = |t_{PHL}max - t_{PHL}min|$.

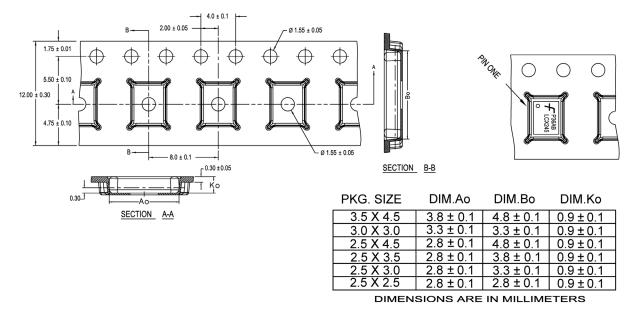
4. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained from the equation:
I_{CC} (opr.) = C_{PD} • V_{CC} • f_{IN} + I_{CC} / 8 (per F/F). The total C_{PD} when n pieces of the Flip-Flop operates can be calculated by the equation: C_{PD} (total) = 22 + 9n.

AC Operating Requirements

			T _A =	25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
Symbol	Parameter	V _{CC} (V) ⁽⁵⁾	Тур.	Gua	aranteed Minimum	Units
$t_W(L), t_W(H)$	Minimum Pulse Width (CK)	3.3		5.5	6.5	ns
		5.0		5.0	5.0	
t _W (L)	Minimum Pulse Width (MR)	3.3		5.0	6.0	ns
		5.0		5.0	5.0	1
t _S	Minimum Setup Time	3.3		5.5	6.5	ns
		5.0		4.5	4.5	1
t _H	Minimum Hold Time	3.3		1.0	1.0	ns
		5.0		1.0	1.0	1
t _{REC}	Minimum Removal Time (MR)	3.3		2.5	2.5	ns
		5.0		2.0	2.0	

Note:

5. V_{CC} is 3.3 \pm 0.3V or 5.0 \pm 0.5V


Tape and Reel Specification

Tape Format for DQFN

Package Designator	Tape Section	Number Cavities	Cavity Status	Cover Tape Status
BQ	Leader (Start End)	125 (typ.)	Empty	Sealed
	Carrier	2500/3000	Filled	Sealed
	Trailer (Hub End)	75 (typ.)	Empty	Sealed

Tape Dimensions

Dimensions are in millimeters unless otherwise noted.

NOTES: unless otherwise specified

1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed 0.008[0.20] over 10 pitch span.

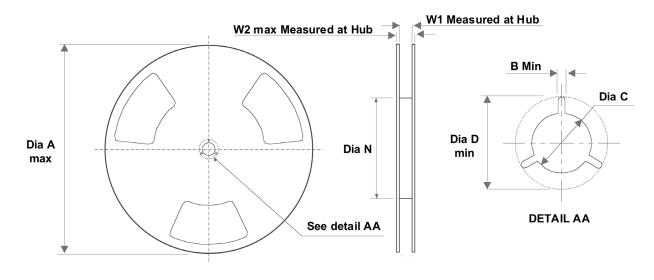
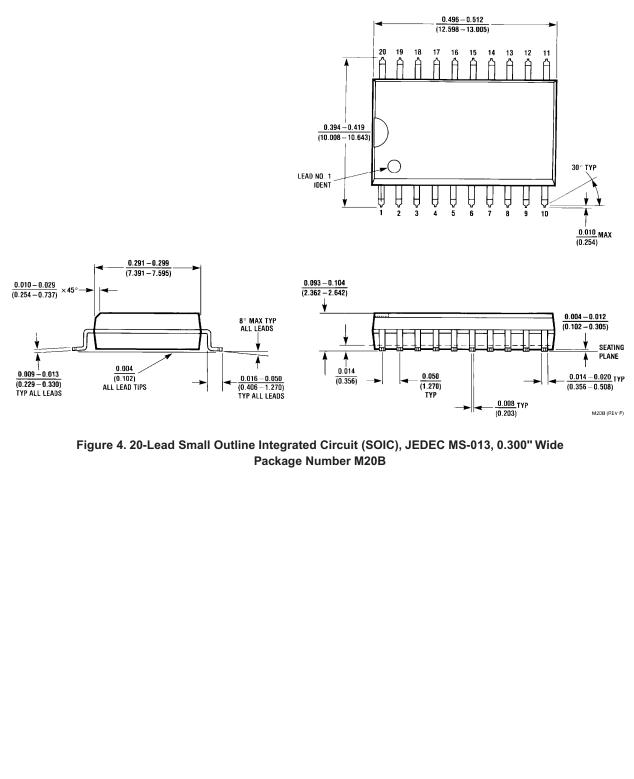

- 2. Smallest allowable bending radius.
- 3. Thru hole inside cavity is centered within cavity.
- 4. Tolerance is $\pm 0.002[0.05]$ for these dimensions on all 12mm tapes.
- 5. Ao and Bo measured on a plane 0.120[0.30] above the bottom of the pocket.
- 6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- 7. Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole.
- 8. Controlling dimension is millimeter. Diemension in inches rounded.

Figure 2.

Tape and Reel Specification (Continued)

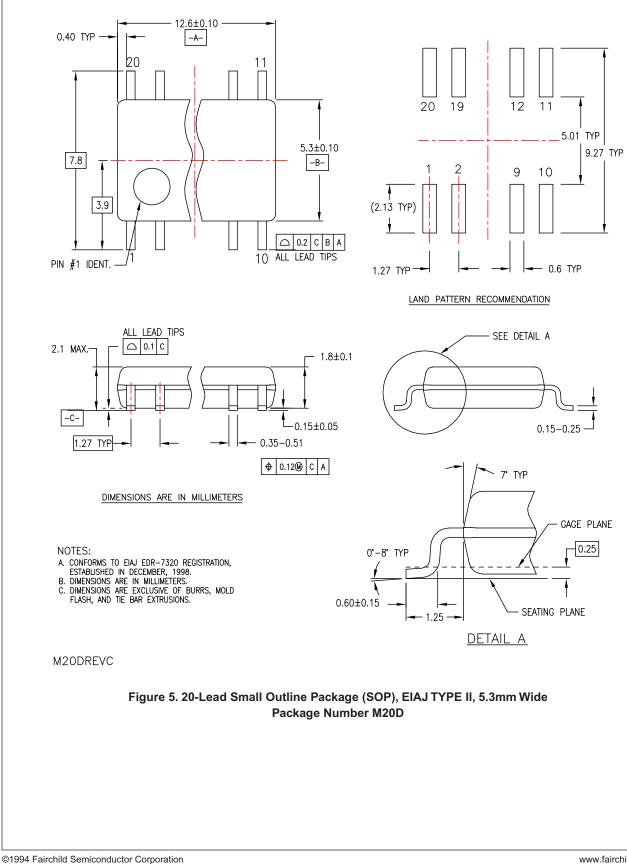
Reel Dimensions for DQFN

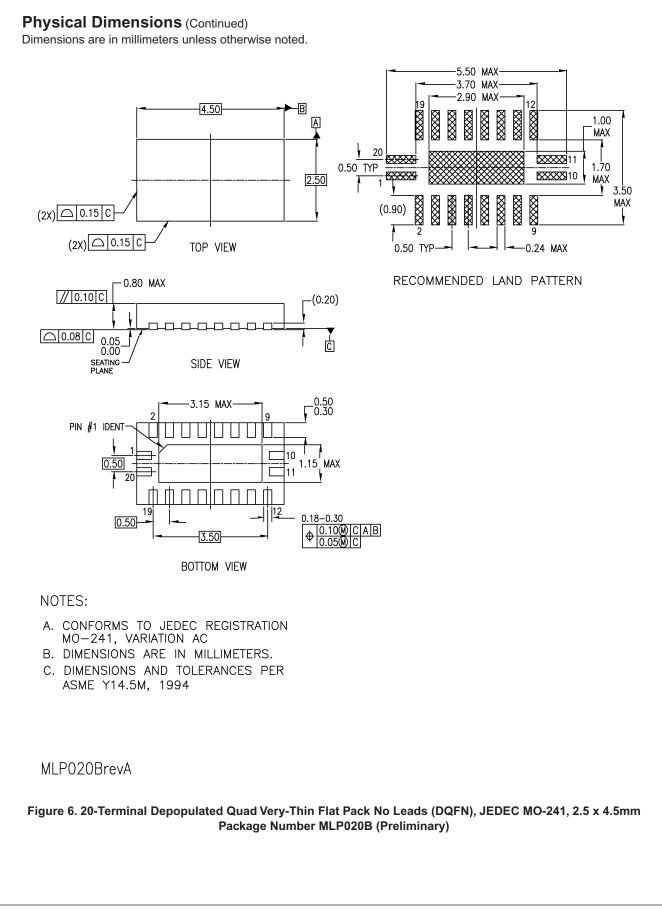
Dimensions are in inches (millimeters) unless otherwise noted.



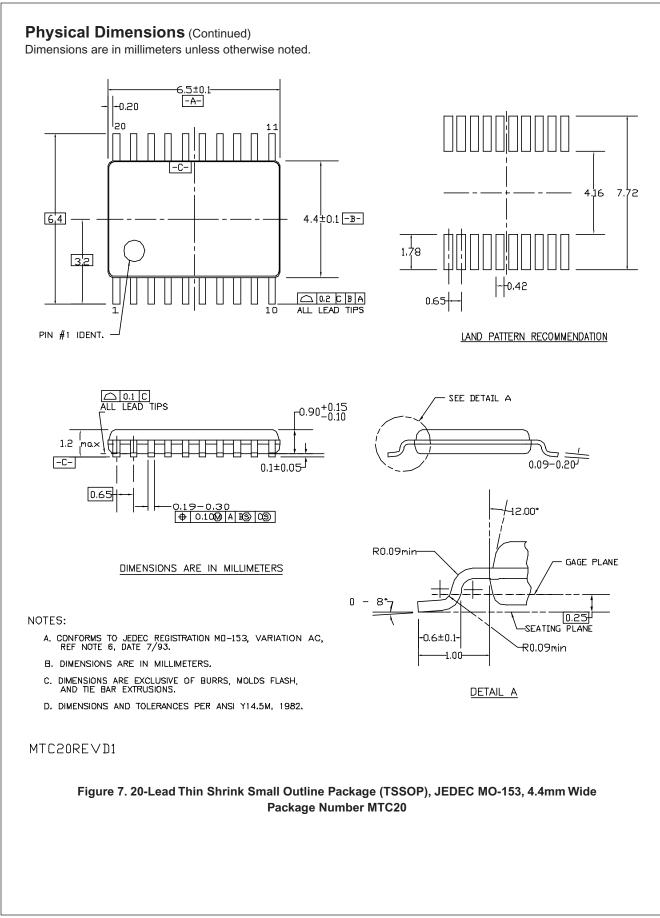
Tape Size	Α	В	С	D	N	W1	W2
12mm	13.0	0.059	0.512	0.795	7.008	0.488	0.724
	(330)	(1.50)	(13.00)	(20.20)	(178)	(12.4)	(18.4)

Figure 3.


Dimensions are in inches (millimeters) unless otherwise noted.



74VHC273 Octal D-Type Flip-Flop


Physical Dimensions (Continued)

Dimensions are in millimeters unless otherwise noted.

74VHC273 Octal D-Type Flip-Flop

tm

74VHC273 Octal D-Type Flip-Flop

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [®]	HiSeC™	Programmable Active Droop™	TinyLogic [®]
Across the board. Around the world. [™]	<i>i-Lo</i> ™	QFET [®]	TINYOPTO™
ActiveArray [™]	ImpliedDisconnect™	QS™	TinyPower™
Bottomless [™]	IntelliMAX™	QT Optoelectronics™	TinyWire™
Build it Now [™]	ISOPLANAR™	Quiet Series™	TruTranslation™
CoolFET TM $CROSSVOLT^{TM}$ CTL^{TM} Current Transfer Logic TM DOME TM E^2CMOS^{TM} EcoSPARK [®] Ensigna TM FACT Quiet Series TM FACT [®] FAST [®] ColobalOptoisolator TM GTO TM	MICROCOUPLER™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC® OPTOPLANAR® PACMAN™ POPT™ Power220® Power247® Power247® PowerSaver™ PowerSaver™ PowerTrench®	RapidConfigure™ RapidConnect™ ScalarPump™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-6 SuperSOT™-8 SyncFET™ TCM™ The Power Franchise® ↓ ™ TinyBoost™ TinyBoost™ TinyBuck™	µSerDes™ UHC® UniFET™ VCX™ Wire™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

PRODUCT STATUS DEFINITIONS

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition	
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.	
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
No Identification Needed Full Production		This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.	

Rev. 124