LP5527

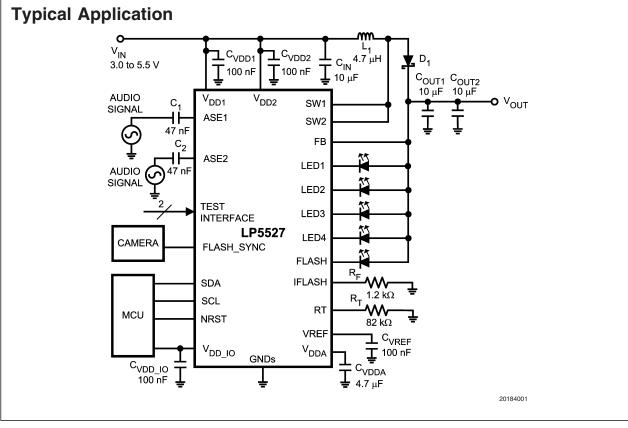
LP5527 Tiny LED Driver for Camera Flash and 4 LEDs with I2C Programmability, Connectivity Test and Audio Synchronization

Literature Number: SNVS436

LP5527 Tiny LED Driver for Camera Flash and 4 LEDs with I²C Programmability, Connectivity Test and Audio Synchronization

General Description

The LP5527 is a lighting management unit for handheld devices with I²C compatible control interface. The LP5527 has a step-up DC/DC converter with high current output and it drives display and keypad backlights and powers the camera flash LED. In addition the DC/DC converter has the output current to power for example an audio amplifier simultaneously. The chip has four 8-bit programmable high efficiency constant current LED drivers and a FLASH LED driver. Built-in audio synchronization feature allows the user to synchronize one of the LEDs to audio input.

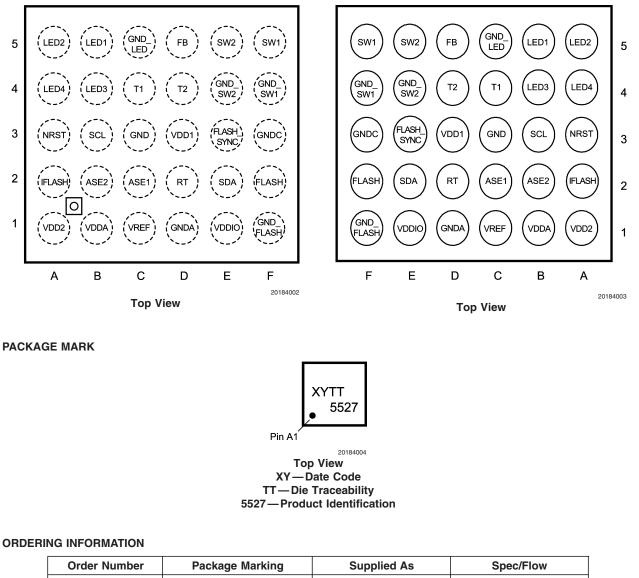

The LP5527 has an integrated 400 mA flash driver with a safety stop feature and 50 mA torch mode. An external enable pin is provided for the synchronizing the flash with the camera action. An external software independent test interface provides a fast way to find a broken path or short on LED circuits. Very small microSMD package together with minimum number of external components is a best fit for handheld devices.

Features

- High current boost DC-DC converter (up to 1A output current)
- Programmable boost output voltage
- 400 mA flash LED constant current driver with low tolerance and a safety circuit
- Synchronization pin for the flash timing
- Two single-ended audio inputs with gain control
- Four constant current 15 mA LED drivers with 8-bit programmable brightness control
- Audio synchronization feature
- I²C compatible control interface
- Built-in LED connectivity test to maximize manufacturing yield
- Small microSMD-30 package (2.5 mm x 3.0 mm x 0.6 mm)

Applications

Camera FLASH, funlight and backlight driving in battery powered devices



est and Audio Synchronization P5527 Tiny LED Driver for Camera Flash and 4 LEDs with I²C Programmability, Connectivity

May 2006

Connection Diagrams and Package Mark Information

Connection Diagrams microSMD-30 package, 2.466 x 2.974 x 0.60 mm body size, 0.5 mm pitch NS Package Number TLA3011A

Order Number	Package Marking	Supplied As	Spec/Flow
LP5527TL	5527	TNR 250	NoPB
LP5527TLX	5527	TNR 3000	NoPB

Connection Diagrams and Package Mark Information microSMD-30 package, 2.466 x 2.974 x 0.60 mm body size, 0.5 mm pitch NS Package Number TLA3011A (Continued)

Pin Descriptions

Pin	Name	Туре	Description
D3	VDD1	Р	Supply Voltage
A1	VDD2	Р	Supply Voltage
F5	SW1	A	Boost Converter Switch
E5	SW2	A	Boost Converter Switch
D5	FB	A	Boost Converter Feedback
B5	LED1	0	LED1 Driver Output
A5	LED2	0	LED2 Driver Output
B4	LED3	0	LED3 Driver Output
A4	LED4	0	LED4 Driver Output
F2	FLASH	0	Flash LED Driver Output
F3	GNDC	G	Ground for Core Circuitry
D2	RT	A	Oscillator Frequency Setting
C1	VREF	A	Reference Voltage
B1	VDDA	Р	Internal LDO
F4	GND_SW1	G	Boost Converter Ground
E4	GND_SW2	G	Boost Converter Ground
C5	GND_LED	G	LEDs 1 to 4 Driver Ground Connection
F1	GND_FLASH	G	Flash Driver Ground Connection
A2	IFLASH	А	Resistor for Flash Current Setting
D1	GNDA	G	Analog Ground Connection
C3	GND	G	Ground
E1	VDD_IO	Р	Supply Voltage for Digital Interface
A3	NRST	DI	Low Active Reset
B3	SCL	DI	I ² C Compatible Interface Clock Signal
E2	SDA	OD	I ² C Compatible Interface Data Signal
E3	FLASH_SYNC	DI	FLASH LED Control
D4	T2	DO	Test Pin (Result)
C4	T1	DI	Test Pin (Clock)
C2	ASE1	AI	Audio Input
B2	ASE2	AI	Audio Input

A: Analog Pin D: Digital Pin G: Ground Pin P: Power Pin

I: Input Pin I/O: Input/Output Pin O: Output Pin OD: Open Drain Pin

Absolute Maximum Ratings (Notes 1, 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Voltage on power pins $(V_{DD1,2})$	-0.3V to +6.0V
Voltage on analog pins	-0.3V to V _{DD1,2} +0.3V with 6.0V max
Voltage on input/output pins	-0.3V to V _{DD1,2} +0.3V with 6.0V max
V(all other pins): Voltage to GND	-0.3V to 6.0V
I(V _{REF})	10 µA
I(FLASH)	500 mA
Continuous Power Dissipation (Note 3)	Internally Limited
Junction Temperature (T _{J-MAX})	125°C
Storage Temperature Range	-65°C to +150°C
Maximum Lead Temperature (Reflow soldering, 3 times) (Note 4)	260°C

ESD Rating (Note 5) Human Body Model

Operating Ratings (Note 1), (Note 2)

Voltage on power pins $(V_{DD1,2})$	3.0 to 5.5V
Voltage on ASE1, ASE2	0V to 1.6V
V _{DD_IO}	1.65V to V_{DD1}
Junction Temperature (T _J) Range	-30°C to +125°C
Ambient Temperature (T _A) Range	-30°C to +85°C
(Note 6)	

2 kV

Thermal Properties

Junction-to-Ambient Thermal	60 - 100°C/W
Resistance (θ_{JA}),	
TLA3011A Package (Note 7)	

Electrical Characteristics (Notes 2, 8)

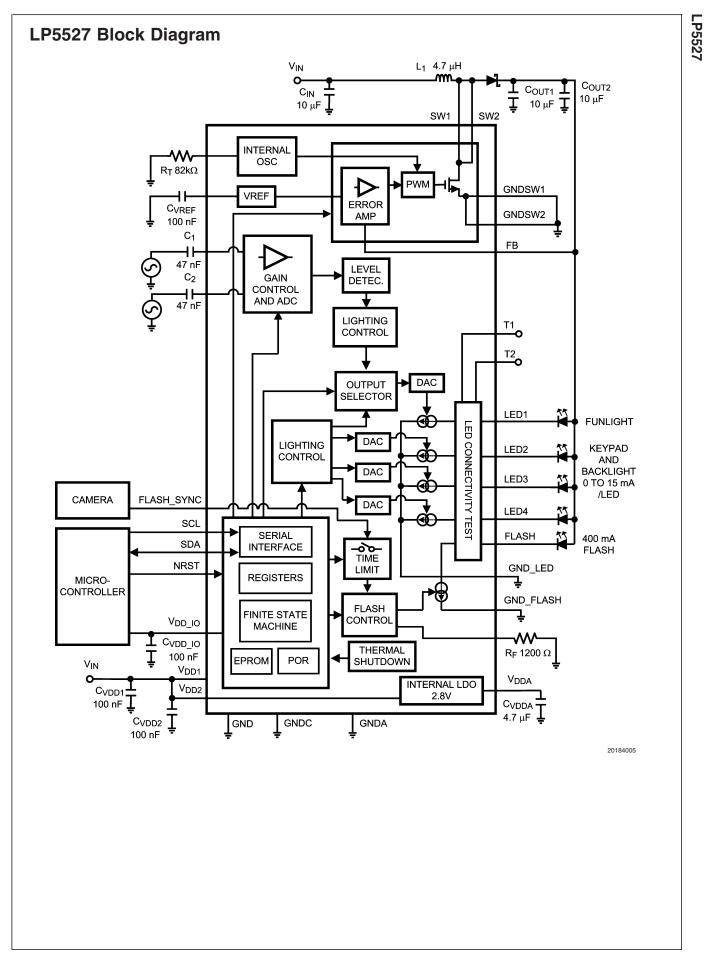
Limits in standard typeface are for $T_J = 25^{\circ}$ C. Limits in boldface type apply over the operating ambient temperature range (-30°C < T_A < +85°C). Unless otherwise noted, specifications apply to the LP5527 Block Diagram with: $V_{IN} = 3.6V$, $C_{IN} = 10 \ \mu$ F, $C_{OUT1} = 10 \ \mu$ F, $C_{OUT2} = 10 \ \mu$ F, $C_{VDD_{-IO}} = 100 \ n$ F, $C_{VREF} = 100 \ n$ F, $C_{VDDA} = 4.7 \ \mu$ F, $C_{VDD1} = 100 \ n$ F, $C_{VDD2} = 100 \ n$ F, $C_{VDD2} = 100 \ n$ F, $C_{VDD4} = 4.7 \ \mu$ F, $C_{VDD1} = 100 \ n$ F, $C_{VDD2} = 100 \ n$ F, $L_1 = 4.7 \ \mu$ H. (Note 9)

Symbol	Parameter	Condition	Min	Тур	Мах	Units
I _{SHUT DOWN}	Current of $V_{DD1} + V_{DD2}$ pins +	Voltage on $V_{DD_IO} = 0V$, NRST = L,		1	5	μA
	Leakage Current of SW1, SW2,	NSTBY(bit) = L				
	LED1 to 4 and FLASH					
I _{DD}	Active Mode Supply Current	NRST = H, NSTBY(bit) = H, no load,		350		μA
	(V _{DD1} + V _{DD2} current)	EN_BOOST(bit) = L, SCL, SDA = H				
I _{DD}	No load supply current	NSTBY(bit) = H, EN_BOOST(bit) = H,		850		μA
	(V _{DD1} + V _{DD2} current)	SCL, SDA, NRST = H,				
		AUTOLOAD_EN(bit) = L				
I _{VDDIO}	V _{DD_IO} Standby Supply current	NSTBY(bit) = L			1	μA
V _{DDA}		I _{VDDA} = 1 mA	-4%	2,8V	+4%	V

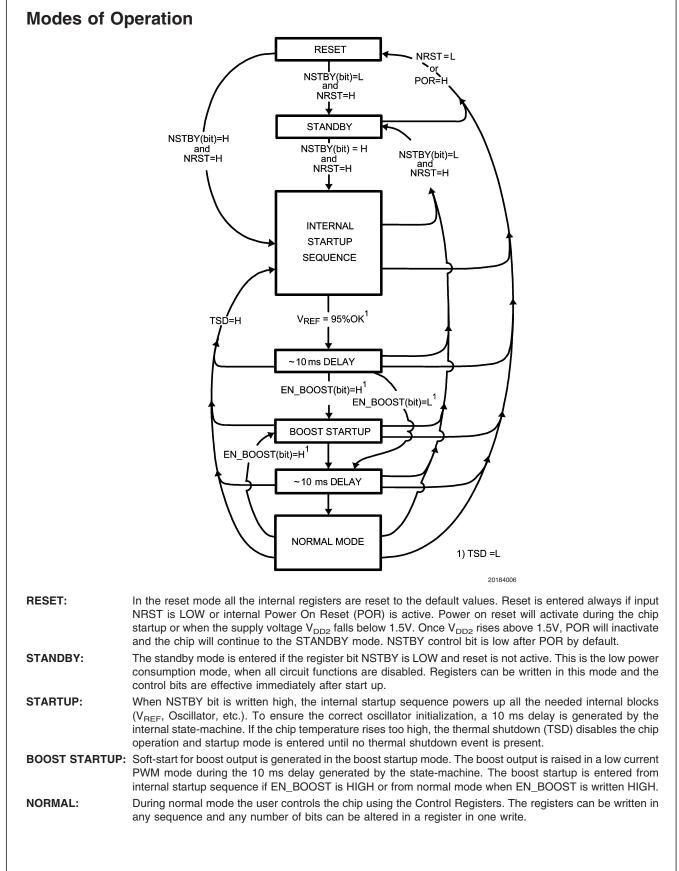
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.

Note 2: All voltages are with respect to the potential at the GND pins.

Note 3: Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at $T_J=160^{\circ}C$ (typ.) and disengages at $T_J=140^{\circ}C$ (typ.).


Note 4: For detailed soldering specifications and information, please refer to National Semiconductor Application Note AN1112 : Micro SMD Wafer Level Chip Scale Package.

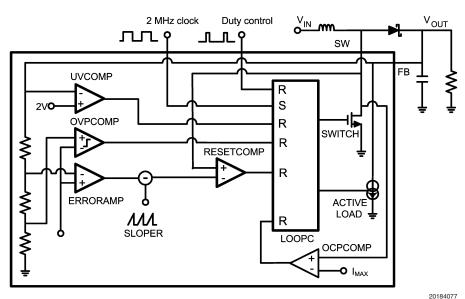
Note 5: The Human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin. MIL-STD-883 3015.7


Note 6: In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (T_{A-MAX}) is dependent on the maximum operating junction temperature ($T_{J-MAX-OP} = 125^{\circ}C$), the maximum power dissipation of the device in the application (P_{D-MAX}), and the junction-to ambient thermal resistance of the part/package in the application (θ_{JA}), as given by the following equation: $T_{A-MAX} = T_{J-MAX-OP} - (\theta_{JA} \times P_{D-MAX})$.

Note 7: Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.

Note 8: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm. Note 9: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.

Magnetic Boost DC/DC Converter


The LP5527 boost DC/DC converter generates a 4.55 – 5.00V output voltage to drive the LEDs from a single Li-Ion battery (3.0V to 4.5V). The output voltage is controlled with a 4-bit register in 4 steps. The converter is a magnetic switching PWM mode DC/DC converter with a current limit. The converter has 2.0 MHz / 1.0 MHz selectable switching frequency operation, when the timing resistor RT is 82 k Ω .

The LP5527 boost converter uses pulse-skipping elimination method to stabilize the noise spectrum. Even with light load or no load a minimum length current pulse is fed to the inductor. An internal active load is used to remove the excess charge from the output capacitor when needed.

The topology of the magnetic boost converter is called CPM control, current programmed mode, where the inductor current is measured and controlled with the feedback. The output voltage control changes the resistor divider in the feedback loop.

The following figure shows the boost topology with the protection circuitry. Four different protection schemes are implemented:

- 1. Over voltage protection, limits the maximum output voltage
 - Keeps the output below breakdown voltage.
 - Prevents boost operation if battery voltage is much higher than desired output.
- 2. Over current protection, limits the maximum inductor current
 - Voltage over switching NMOS is monitored; too high voltages turn the switch off.
- 3. Feedback (FB) protection for no connection.
- 4. Duty cycle limiting, done with digital control.

Boost Converter Topology

Magnetic Boost DC/DC Converter (Continued)

MAGNETIC BOOST DC/DC CONVERTER ELECTRICAL CHARACTERISTICS

Limits in standard typeface are for $T_J = 25^{\circ}$ C. Limits in **boldface** type apply over the operating ambient temperature range (-30°C < T_A < +85°C). Unless otherwise noted, specifications apply to the LP5527 Block Diagram with: $V_{IN} = 3.6V$, $C_{IN} = 10 \ \mu$ F, $C_{OUT1} = 10 \ \mu$ F, $C_{OUT2} = 10 \ \mu$ F, $C_{VDDIO} = 100 \ n$ F, $C_{VREF} = 100 \ n$ F, $C_{VDDA} = 4.7 \ \mu$ F, $C_{VDD1} = 100 \ n$ F, $C_{VDD2} = 100 \ n$ F, $L_1 = 4.7 \ \mu$ H. (Note 9)

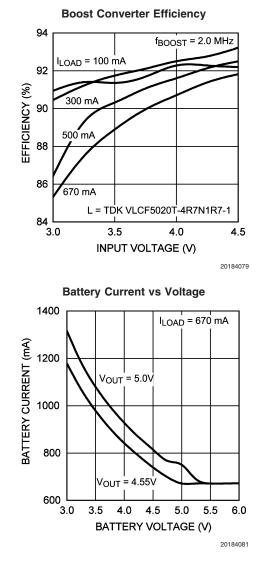
Symbol	Parameter	Conditions	Min	Тур	Max	Units
ILOAD	Load Current	$3.2V \le V_{IN} \le 4.5V$			670	mA
	(Note 10)	$V_{OUT} = 5.0V$				
V _{OUT}	Output Voltage Accuracy	$3.2V \le V_{IN} \le 4.5V$	-3		+3	%
	(FB pin)	V_{OUT} (target value) = 5.0V, active load off				
	Output Voltage (FB Pin)	$3.0V \le V_{IN} \le (5.0V+V_{SCHOTTKY})$ active load off		5.0		V
		$V_{IN} > (5.0V + V_{SCHOTTKY})$		V _{IN} - V _{SCHOTTKY}		
RDS _{ON}	Switch ON Resistance	V _{IN} = 3.6V, I _{SW} = 1.0A		0.20	0.4	Ω
f _{PWF}	PWM Mode Switching	RT = 82 kΩ				MHz
	Frequency	FREQ_SEL (bit) = 1		2.0		
		FREQ_SEL (bit) = 0		1.0		
	Frequency Accuracy	$3.2V \le V_{DD1,2} \le 4.5V$	-6	±3	+6	%
		RT = 82 kΩ	-9		+9	
t _{PULSE}	Switch Pulse Minimum Width	no load		25		ns
t _{startup}	Startup Time			10		ms
I _{CL OUT}	SW1+ SW2 current limit			1.7		A

Note 10: Specified currents are the worst case currents. If input voltage is larger or output voltage is smaller, current can be increased according to graph "Boost Maximum Output Current".

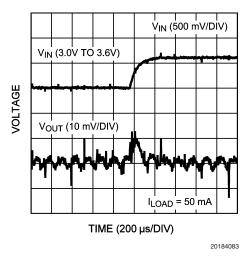
BOOST STANDBY MODE

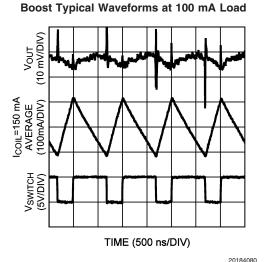
User can set the boost converter to STANDBY mode by writing the register bit EN_BOOST low when there is no load to avoid idle current consumption. When EN_BOOST is written high, the converter starts in low current PWM (Pulse Width Modulation) mode for 10 ms and then goes to normal PWM mode.

FREQ SEL Bit	Boost Switching Frequency (Typical)
0	1.0 MHz default
1	2.0 MHz

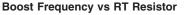

BOOST CONTROL REGISTERS

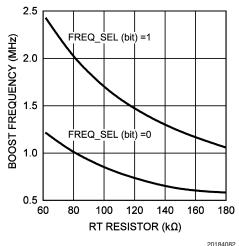
User can control the boost output voltage and the switching frequency according to the following tables.

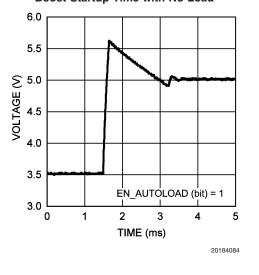

Boost Output Voltage [3:0] Register	Boost Output Voltage (Typical)
0000	4.55V
0001	4.70V
0011	4.85V
0111	5.00V


Boost Converter Typical Performance Characteristics

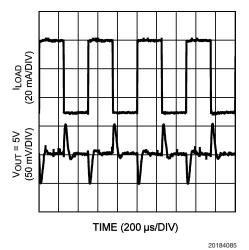
 $T_{J} = 25^{\circ}C.$ Unless otherwise noted, typical performance characteristics apply to the LP5527 Block Diagram with: $V_{IN} = 3.6V$, $V_{OUT} = 5.0V$, $C_{IN} = 10 \ \mu\text{F}$, $C_{OUT1} = 10 \ \mu\text{F}$, $C_{OUT2} = 10 \ \mu\text{F}$, $C_{VDD_{-}IO} = 100 \ n\text{F}$, $C_{VREF} = 100 \ n\text{F}$, $C_{VDDA} = 4.7 \ \mu\text{F}$, $C_{VDD1} = 100 \ n\text{F}$, $C_{VDD2} = 100 \ n\text{F}$, $L1 = 4.7 \ \mu\text{H}$ (Note 9).




Boost Line Regulation 3.0V - 3.6V, no load



20101000



Boost Startup Time with No Load

Boost Converter Typical Performance Characteristics (Continued)

Boost Load Transient Response, 50 mA to 100 mA

1500 f_{BOOST} = 2.0 MHz 1400 OUTPUT CURRENT (mA) 1300 1200 V_{OUT} = 4.55V 1100 1000 900 $V_{OUT} = 5.0V$ 800 700 L = TDK VLCF5020T-4R7N1R7-1 600 <u>L - IDK VLOF 00201 - KURKET</u> 3.00 3.25 3.50 3.75 4.00 4.25 4.50 INPUT VOLTAGE (V)

Boost Maximum Output Current

20184098

Flash Driver

LP5527 has an internal constant current driver that is capable for sinking low (50 mA) and high (400 mA) current mainly targeted for torch and flash LED in camera phone applications. 400 mA flash driver can be hardware or software enabled. Flash safety function prevents hardware damages due to possible overheating when the flash has been stuck on because of a hardware, software, or user error. Flash safety counter starts counting when the flash is activated, and disables the flash automatically when the predefined 1.0s or 2.0s time limit is reached. Flash is activated with FLASH_SYNC bit or FLASH_SYNC pin, as defined in the table below. Safety time limit is defined by SAFETY_TIME bit. (Time limit is 2.0s if SAFETY_TIME bit is low and 1.0s if the bit is high.)

Flash LED Control (X = don't care)

EN_TORCH bit	EN_FLASH bit	FLASH_SYNC bit or pin	SAFETY_TIME bit	Flash LED Action
0	0	Х	Х	Off
1	0	Х	Х	Torch
Х	1	Change from LOW to HIGH to	0 for 2.0 seconds;	Flash
		engage; from HIGH to LOW to	1 for 1.0 second	
		disengage		

Flash Programming Example

Address	Data	Function
00H	8FH	Sets safety time to 1.0s. In this example LED1 to LED4 are enabled.
00H	9FH	Enables torch.
00H	FFH	Activates FLASH. EN_FLASH bit and FLASH_SYNC bit are written simultaneously because EN_FLASH disables torch.
00H	BFH	Disables FLASH. If FLASH is disabled by safety time, FLASH_SYNC bit needs to be written to 0 before next FLASH.

FLASH DRIVER ELECTRICAL CHARACTERISTICS

Limits in standard typeface are for T_J = 25°C. Limits in **boldface** type apply over the operating ambient temperature range (-30°C < T_A < +85°C). Unless otherwise noted, specifications apply to the LP5527 Block Diagram with: V_{IN} = 3.6V, C_{IN} = 10 µF, C_{OUT1} = 10 µF, C_{OUT2} = 10 µF, C_{VDD10} = 100 nF, C_{VREF} = 100 nF, C_{VDDA} = 4.7 µF, C_{VDD1} = 100 nF, C_{VDD2} = 100 nF, L_1 = 4.7 µH, R_F = 1200 Ω

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{MAX}	Maximum Sink Current	$3.0V \le V_{IN} \le 5.5V$, $V_{FLASH} = 1.0V$	370	400	430	mA
			(-7,5%)		(+7,5%)	
I _{TORCH}	Torch Mode Sink Current	$3.0V \le V_{IN} \le 5.5V$		50		mA
I _{leakage}	Flash Driver Leakage	V _{FB} = 5.0V		0.1		μA
	Current					
t _{FLASH}	Flash Turn-On Time			20		μs
	(Note 11)					
V _{SAT}	Saturation Voltage	$3.0V \le V_{IN} \le 5.5V$, Current Decreased to		550		mV
		95% of the Maximum Sink Current				
t _{SAFETY}	Safety Time Accuracy		-9		+9	%

Note 11: Flash turn-on time is measured from the moment the flash is activated until the flash current crosses 90% of its target value.

Constant Current Sink Outputs LED1, LED2, LED3, LED4

LP5527 has four independent backlight/keypad LED drivers. All the drivers are regulated constant current sinks. LED currents are controlled by 8-bit current mode DACs. Every driver can be controlled in two ways:

- 1. Brightness control with constant current drivers
- Direct ON/OFF control. The current is pre-set by 8-bit current mode DAC.

In addition, LED1 driver can be synchronized to audio input signal amplitude.

By using brightness control user can set brightness of every single LED by using 8-bit brightness control registers. If analog audio is available on system the user can use audio synchronization for synchronizing LED1 to the music. Direct ON/OFF control is mainly for switching LEDs on and off. LED Control Register (00 hex) has control bits for direct on/off control of all the LEDs. Note that the LEDs have to be turned on in order to control them with audio synchronization (LED1 only) or brightness control.

The brightness is programmed as described in the following.

where:

 $\label{eq:n} \begin{array}{l} n = LED[7:0] \mbox{ (8-bit)} \\ step = 15 \mbox{ mA } / \mbox{ 255 } \approx \mbox{ 0.05882 mA} \\ For example if \mbox{ 13.2 mA is required for driver current:} \\ n = 13.2 \mbox{ mA } / \mbox{ (15 mA } / \mbox{ 255)} \approx \mbox{ 224} \end{array}$

224 = 1110 0000, E0 hex

LED1 to LED4 Brightness Control

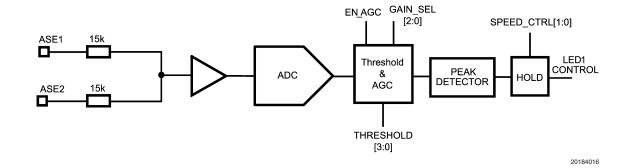
LED1[7:0], LED2[7:0] LED3[7:0], LED4[7:0] Register	Driver Current, mA (typical)
0000 0000	0
0000 0001	0.059
0000 0010	0.118
•	•
1110 0000	13.176
•	•
1111 1110	14.941
1111 1111	15

LED1 TO LED4 DRIVERS ELECTRICAL CHARACTERISTICS

Limits in standard typeface are for $T_J = 25^{\circ}$ C. Limits in **boldface** type apply over the operating ambient temperature range (-30°C < $T_A < +85^{\circ}$ C). Unless otherwise noted, specifications apply to the LP5527 Block Diagram with: $V_{IN} = 3.6$ V, $C_{IN} = 10 \ \mu$ F, $C_{OUT1} = 10 \ \mu$ F, $C_{OUT2} = 10 \ \mu$ F, $C_{VDDIO} = 100 \ n$ F, $C_{VREF} = 100 \ n$ F, $C_{VDDA} = 4.7 \ \mu$ F, $C_{VDD1} = 100 \ n$ F, $C_{VDD2} = 100 \ n$ F, $L_1 = 4.7 \ \mu$ H. (Note 9)

Symbol	Parameter	Condition	Min	Typical	Max	Units
I _{MAX}	Maximum Sink Current			15		mA
I _{LEAKAGE}	Leakage Current	V _{FB} = 5.0V		0.03		μA
I _{LED}	Current Tolerance	I _{SINK} =13.2 mA (target value)	11.9	13.2	14.5	mA
			-10		+10	%
I _{MATCH}	Sink Current Matching	I _{SINK} =13.2 mA		1		%
	Between LED 1 to 4					
V _{SAT}	Saturation Voltage	$3.0V \le V_{IN} \le 5.5V$, Current Decreased		150	230	mV
		to 95% of the Maximum Sink Current				

Note: Sink current matching is the maximum difference from the average.


Audio Synchronization

The LED1 output can be synchronized to incoming audio signal with Audio Synchronization feature. Audio Synchronization synchronizes LED1 based on input signal's peak amplitude. Programmable gain and automatic gain control function are also available for adjustment of input signal amplitude to light response. Control of LED1 brightness refreshing frequency is done with four different frequency configurations. The digitized input signal has a DC component that is removed by a digital DC-remover. The DC-remover is a high-pass filter where corner frequency is user selectable by using DC_FREQ bit. LP5527 has 2-channel audio (stereo) input for audio synchronization, as shown in the figure below. The inputs accept signals in the range of 0V to 1.6V peak-to-peak and these signals are mixed into a single wave so that they can be filtered simultaneously.

LP5527 audio synchronization is mainly done digitally and it consists following signal path blocks (see figure below).

- Input buffer
- AD converter
- Automatic Gain Control (AGC) and manually programmable gain
- Peak detector

Automatic Gain Control (AGC) adjusts the input signal to suitable range automatically. User can disable AGC and the gain can be set manually with programmable gain. Audio synchronization is based on peak detection method.

Audio Synchronization Input Electrical Parameters

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Z _{IN}	Input Impedance of		10	15		kΩ
	ASE1, ASE2					
A _{IN}	ASE1, ASE2 Audio	Min input level needs maximum gain;	0		1600	mV
	Input Level Range	Max input level for minimum gain.				
	(peak-to-peak)					

CONTROL OF AUDIO SYNCHRONIZATION

The following table describes the controls required for audio synchronization. LED1 brightness control through serial interface is not available when audio synchronization is enabled.

Audio Synchronization Control

EN_SYNC	Audio synchronization enabled. Set EN_SYNC = 1 to enable audio synchronization or 0 to disable.
EN_AGC	Automatic gain control. Set EN_AGC = 1 to enable automatic control or 0 to disable.
	When EN_AGC is disabled, the audio input signal gain value is defined by GAIN_SEL.
GAIN_SEL[2:0]	Input signal gain control. Gain has a range from 0 dB to -46 dB.
SPEED_CTRL[1:0]	Control for refreshing frequency. Sets the typical refreshing rate for the LED1 output.
THRESHOLD[3:0]	Control for the audio input threshold. Sets the typical threshold for the audio inputs signals.
	May be needed if there is noise on the audio lines.
DC_FREQ	Control for the high-pass filter corner frequency.
	0 = 80 Hz
	1 = 510 Hz

Audio Synchronization (Continued)

Audio Input Threshold Setting

Threshold[3:0]	Threshold Level, mV (typical)	
0000	Disabled	
0001	0.2	
0010	0.4	
*	*	
*	*	
1110	2.5	
1111	2.7	

Input Signal Gain Control

GAIN_SEL[2:0]	Gain dB
000	0
001	-6
010	-12
011	-18
100	-24
101	-31
110	-37
111	-46

Refreshing Frequency

SPEED_CTRL[1:0]	Refreshing Rate Hz
00	FASTEST
01	15
10	7.6
11	3.8

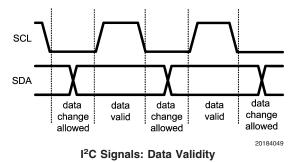
Typical Gain Values vs. Audio Input Amplitude

Audio Input Amplitude mV _{P-P}	Gain Value dB
0 to 10	0
0 to 20	-6
0 to 40	-12
1 to 85	-18
3 to 170	-24
5 to 400	-31
10 to 800	-37
20 to 1600	-46

Logic Interface Characteristics

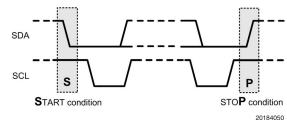
Limits in standard typeface are for $T_J = 25^{\circ}$ C. Limits in **boldface** type apply over the operating ambient temperature range (-30°C < T_A < +85°C). Unless otherwise noted, specifications apply to the LP5527 Block Diagram with: $V_{IN} = 3.6V$, $C_{IN} = 10 \ \mu$ F, $C_{OUT1} = 10 \ \mu$ F, $C_{OUT2} = 10 \ \mu$ F, $C_{VDDIO} = 100 \ n$ F, $C_{VREF} = 100 \ n$ F, $C_{VDDA} = 4.7 \ \mu$ F, $C_{VDD1} = 100 \ n$ F, $C_{VDD2} = 100 \ n$ F, $C_{VDD2} = 100 \ n$ F, $C_{VDD1} = 100 \ n$ F, $C_{VDD2} = 100 \ n$ F, $C_{VDD1} = 100 \ n$ F, $C_{VDD2} = 100 \ n$ F, $C_{VDD2} = 100 \ n$ F, $C_{VDD1} = 100 \ n$ F, $C_{VDD2} = 100 \ n$ F, $C_{VDD1} = 100 \ n$ F, $C_{VDD2} = 100 \ n$ F, $C_{VDD1} = 100 \ n$ F, $C_{VDD2} = 100 \ n$ F, $C_{VDD2} = 100 \ n$ F, $C_{VDD2} = 100 \ n$ F, $C_{VDD1} = 100 \ n$ F, $C_{VDD2} = 100 \ n$ F, $C_{VD2} = 100 \ n$ F, C_{VD2}

Symbol	Parameter	Condition	Min	Typical	Max	Unit
Logic Inp	uts SCL and FLASH_SYNC					1
V _{IL}	Input Low Level	$V_{DD_{-}IO} = 1.65V$ to $V_{DD1,2}$			0.2xV _{DD_IO}	V
VIH	Input High Level		0.8xV _{DD_IO}			V
I _I	Input Current		-1.0		1.0	μA
f _{SCL}	SCL Pin Clock Frequency			400		kHz
Logic Inp	ut NRST		•		•	
V _{IL}	Input Low Level	$V_{DD_{-}IO} = 1.65V$ to $V_{DD1,2}$			0.5	V
VIH	Input High Level		1.2			V
I _I	Input Current		-1.0		1.0	μA
t _{NRST}	Reset Pulse Width		10			μs
Logic Inp	ut/Output SDA	•	•	•	•	
V _{OL}	Output Low Level	I _{OUT} = 3 mA		0.3	0.5	V
IL	Output leakage current	V _{OUT} = 2.8V			1.0	μA


I²C Compatible Interface

I²C SIGNALS

The SCL pin is used for the I²C clock and the SDA pin is used for bidirectional data transfer. Both these signals need a pull-up resistor according to I²C specification. The values of the pull-up resistors are determined by the capacitance of the bus (typ. ~1.8 k Ω). Signal timing specifications are shown in table I²C Timing Parameters.


I²C DATA VALIDITY

The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can only be changed when CLK is LOW.

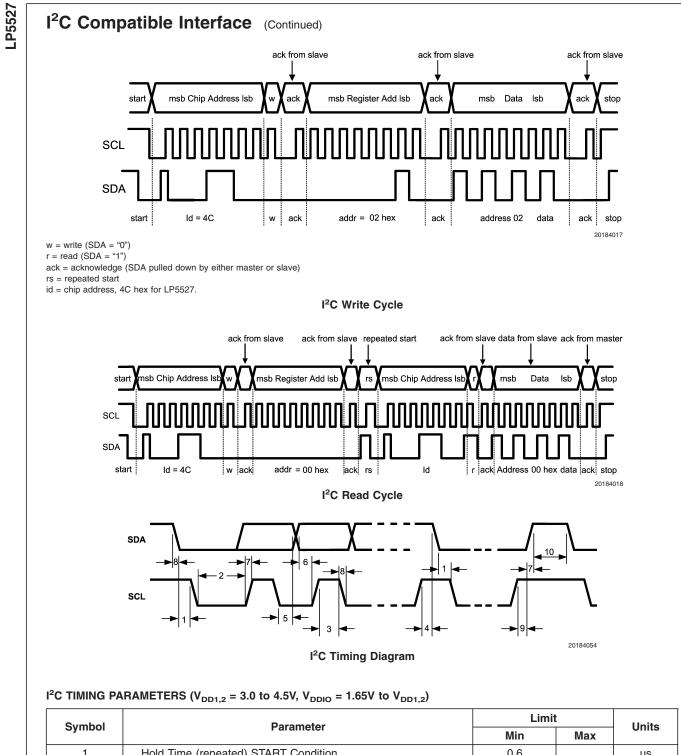
I²C START AND STOP CONDITIONS

START and STOP bits classify the beginning and the end of the I²C session. START condition is defined as SDA signal transitioning from HIGH to LOW while SCL line is HIGH. STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The I²C master always generates START and STOP bits. The I²C bus is considered to be busy after START condition and free after STOP condition. During data transmission, I²C master can generate repeated START conditions. First START and repeated START conditions are equivalent, function-wise.

I²C Start and Stop Conditions

TRANSFERRING DATA

Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first. Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA line during the 9th clock pulse, signifying an acknowledge. A receiver which has been addressed must generate an acknowledge after each byte has been received.


After the START condition, the I²C master sends a chip address. This address is seven bits long followed by an eighth bit which is a data direction bit (R/W). The LP5527 address is 4C hex. For the eighth bit, a "0" indicates a WRITE and a "1" indicates a READ. The second byte selects the register to which the data will be written. The third byte contains data to write to the selected register.

When a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in the I^2C Read Cycle waveform.

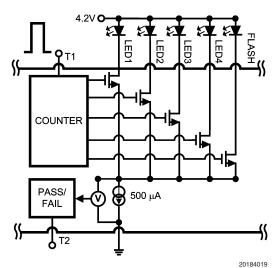
MSB							LSB
ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	R/W
Bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0

I²C Chip Address 4C hex for LP5527

20184051

		IVIIII	IVIAX	
1	Hold Time (repeated) START Condition	0.6		μs
2	Clock Low Time	1.3		μs
3	Clock High Time	600		ns
4	Setup Time for a Repeated START Condition	600		ns
5	Data Hold Time (Output direction, delay generated by LP5527)	300	900	ns
5	Data Hold Time (Input direction)	0	900	ns
6	Data Setup Time	100		ns
7	Rise Time of SDA and SCL	20+0.1C _b	300	ns
8	Fall Time of SDA and SCL	15+0.1C _b	300	ns
9	Set-up Time for STOP condition	600		ns

I²C Compatible Interface (Continued)

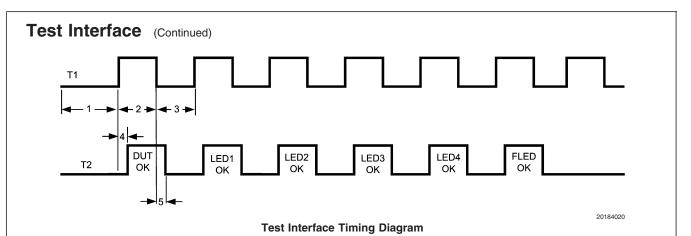

10	Bus Free Time between a STOP and a START Condition	1.3		μs
C _b	Capacitive Load for Each Bus Line	10	200	pF

NOTE: Data guaranteed by design

Test Interface

The test bus can be controlled externally or internally. For the external control, the LP5527 pins $V_{DD1,2}$ only need to be powered. External control is independent on status of NRST and V_{DDI0} pins. T1 is an input and it has an internal 6 k Ω

pull-down resistor. T2 is an output line for the test result with an internal 200 k Ω pull-down resistor. When T1 is low, T2 is always pulled down; when T1 is high, T2 is indicating the result of the test.


High Level Schematic Representation of the Test Interface

The device is capable of detecting a defective unit in three cases:

- **Production test 1:** The LP5527 is assembled on a printed wiring board (PWB), but there is no LEDs connected on current sink outputs. An external 4.2V test voltage is supplied on the V_{DD1} and V_{DD2} pins, from which follows that the reset operating mode is entered with POR. Test pin T1 is pulled high. The chip will send an acknowledge "1" onto the T2 pin if the chip is in working order; otherwise T2 stays low (0). Refer to Test Interface Timing Diagram.
- Production test 2: The LP5527 is assembled on a PWB with the external components shown in LP5527 Block Diagram. 4.2V voltage is connected to V_{DD1}, V_{DD2} and FB pins (see the figure above), from which follows that the reset operating mode is entered with POR. Test pin T1 is pulled high. The chip will send an acknowledge "1"

onto the T2 pin if the chip is in working order; otherwise T2 stays low (0). If the ACK is "1", a repetitive test pattern "0-1-0-1-0-1-0-1-0-1" is applied to T1 pin and if the LED corresponding the pattern (see Test Interface Timing Diagram) is connected properly T2 gives "1", otherwise T2 stays low. The last "1" disengages the test.

Field test: Build-in self-test through the I²C compatible control interface. The LP5527 is enabled (NSTBY(bit) = 1, EN_BOOST(bit) = 1) and external test pins T1 and T2 are disconnected. The result can be read through the I²C compatible control interface. LED test is enabled by writing to address 0Ch hex data 01h. Result can be read from the same address during the next I²C cycle. Note: I²C compatible interface clock signal controls the timing of the test procedure. For that reason the clock signal frequency should be 50 kHz or less during the build-in self-test.

Test Interface Timing Parameters

			Limit		
Symbol	Condition	Parameter	Min	Max	Units
1	$V_{DD1,2} = 4.2V$	Setup Time after V _{DD1,2} = 4.2V	1		ms
2		Clock High Time	200		μs
3		Clock Low Time	200		μs
4		Test Result Settling Time		10	μs
5		Data Hold Time	0	10	ns

NOTE: Data guaranteed by design

Test Interface Characteristics

Limits in standard typeface are for $T_J = 25^{\circ}C$.

Symbol	Parameter	Condition	Min	Тур	Max	Units
Logic Inp	ut T1		L		•	
V _{IL}	Input Low Level	V _{DD1,2} = 4.2V			0.5	V
V _{IH}	Input High Level		1.2			V
Logic Out	put T2		·		•	
V _{OL}	Output Low Level	$V_{DD1,2} = 4.2V, I_{OUT} = 3 \text{ mA}$ (pull-up current)		0.3	0.5	V
V _{OH}	Output High Level	V _{DD1,2} =4.2V, I _{OUT} = -3 mA (pull-down current)	V _{DD1,2} - 0,5	3.9		V
Internal C	urrent Sink					
I _{sink}	Sink Current	$V_{DD1,2} = 4.2V$		500		μA
	ity Test Pass Range		L			
V _{PASS1}	Voltage Over the Internal	Production test cases	0.05	0.10	0.16	V
	Current Sink; Low Level	$V_{DD1,2} = 4.2V$	-50		+60	%
V _{PASS2}	Voltage Over the Internal	V _{OUT} = 3.9V to 4.2V	2.03	2.90	3.77	V
	Current Sink; High Level		-30		+30	%
V _{PASS3}	Voltage Over the Internal	Field test cases	-30%	0.40	+30%	V
	Current Sink; Low Level	V _{DD1,2} = 3.0V4.2V				
V _{PASS4}	Voltage Over the Internal Current Sink; High Level	$V_{OUT} = 5.0V \pm 5\%$	-10%	3.95	+10%	V

NOTE: Data guaranteed by design

Recommended External Components

OUTPUT CAPACITOR, COUT1, COUT2

The output capacitors C_{OUT1} , C_{OUT2} directly affect the magnitude of the output ripple voltage. In general, the higher the value of C_{OUT} , the lower the output ripple magnitude. Multi-layer ceramic capacitors with low ESR are the best choice. At the lighter loads, the low ESR ceramics offer a much lower V_{OUT} ripple that the higher ESR tantalums of the same value. At the higher loads, the ceramics offer a slightly lower V_{OUT} ripple magnitude than the tantalums of the same value. However, the dv/dt of the V_{OUT} ripple with the ceramics is much lower that the tantalums under all load conditions. Capacitor voltage rating must be sufficient, 10V is recommended

Some ceramic capacitors, especially those in small packages, exhibit a strong capacitance reduction with the increased applied voltage. The capacitance value can fall to below half of the nominal capacitance. Too low output capacitance can make the boost converter unstable.

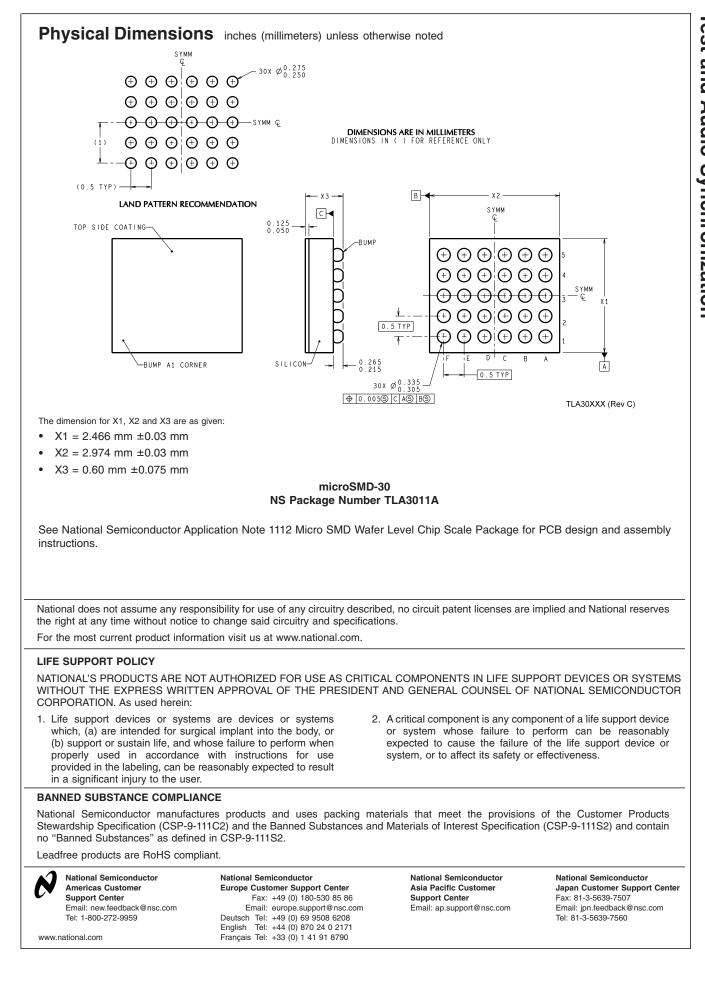
INPUT CAPACITOR, CIN

The input capacitor $C_{\rm IN}$ directly affects the magnitude of the input ripple voltage and to a lesser degree the $V_{\rm OUT}$ ripple. A higher value $C_{\rm IN}$ will give a lower $V_{\rm IN}$ ripple. Capacitor voltage rating must be sufficient, 10V or greater is recommended.

OUTPUT DIODE, D₁

The output diode for a boost converter must be chosen correctly depending on the output voltage and the output current. The diode must be rated for a reverse voltage

Table List of Recommended External Components


greater than the output voltage used. The average current rating must be greater than the maximum load current expected, and the peak current rating must be greater than the peak inductor current (~1.6A at maximum load). A Schottky diode should be used for the output diode. Schottky diodes with a low forward voltage drop (V_F) and fast switching speeds are ideal for increasing efficiency in portable applications. Do not use ordinary rectifier diodes, since slow switching speeds and long recovery times cause the efficiency and the load regulation to suffer. In Schottky barrier diodes reverse leakage current increases guickly with the junction temperature. Therefore, reverse power dissipation and the possibility of thermal runaway has to be considered when operating under high temperature conditions. Examples of suitable diodes are Diodes Incorporated type DFLS220L, ON Semiconductor type MBRA210LT3 and Philips type PMEG1020.

INDUCTOR, L₁

The LP5527 high switching frequency enables the use of the small surface mount inductor. A 4.7 μ H shielded inductor is suggested for 2 MHz switching frequency. The inductor should have a saturation current rating higher than the peak current it will experience during circuit operation (~1.7A at maximum load). Less than 300 m Ω ESR is suggested for high efficiency. Open core inductors cause flux linkage with circuit components and interfere with the normal operation of the circuit. This should be avoided. For high efficiency, choose an inductor with a high frequency core material such as ferrite to reduce the core losses. To minimize radiated noise, use a toroid, pot core or shielded core inductor. The inductor should be connected to the SW1 and SW2 pins as close to the I_C as possible. Example of a suitable inductor is TDK type VLCF5020T-4R7N1R7-1.

Symbol	Symbol Explanation	Value	Unit	Туре
C _{VDD1}	V _{DD1} Bypass Capacitor	100	nF	Ceramic, X5R
C _{VDD2}	V _{DD2} Bypass Capacitor	100	nF	Ceramic, X5R
C _{OUT1,2}	Output Capacitors from FB to GND	2 x 10 µF ± 10%	μF	Ceramic, X5R, 10V
CIN	Input Capacitor from Battery Voltage to GND	10 ± 10%	μF	Ceramic, X5R, 10V
C _{VDDIO}	V _{DD_IO} Bypass Capacitor	100	nF	Ceramic, X5R
C _{VDDA}	V _{DDA} Bypass Capacitor	4.7	μF	Ceramic, X5R, 6.3V
C _{1,2}	Audio Input Capacitors	47	nF	Ceramic, X5R
RT	Oscillator Frequency Bias Resistor	82	kΩ	1%
RF	Flash Current Set Resistor for 400 mA Sink Current	1200	Ω	1%
C _{VREF}	Reference Voltage Capacitor, between V _{REF} and GND	100	nF	Ceramic, X5R
L ₁	Boost Converter Inductor	4.7	μH	Shielded, low ESR, I _{SAT} ~1.7A
D ₁	Rectifying Diode, V _F @ maxload	0.35	V	Schottky diode
	Flash LED	User defined		
	LED1 to LED4	1		

ADDR (HEX)									
	REGISTER	D7	D6	D5	D4	D3	D2	5	DO
00	LED Control Register	safety_time	flash_sync	en_flash	en_torch	en_led1	en_led2	en_led3	en_led4
		0	0	0	0	0	0	0	0
01	LED1	led1[7]	led1[6]	led1[5]	led1[4]	led1[3]	led1[2]	led1[1]	led1[0]
		0	0	0	0	0	0	0	0
02	LED2	led2[7]	led2[6]	led2[5]	led2[4]	led2[3]	led2[2]	led2[1]	led2[0]
		0	0	0	0	0	0	0	0
03	LED3	led3[7]	led3[6]	led3[5]	led3[4]	led3[3]	led3[2]	led3[1]	led3[0]
		0	0	0	0	0	0	0	0
64	LED4	led4[7]	led4[6]	led4[5]	led4[4]	led4[3]	led4[2]	led4[1]	led4[0]
		0	0	0	0	0	0	0	0
0B	ENABLES		nstby	en_boost		en_autoload	freq_sel		
			0	0		-	0		
S	LED Test Control		led1_ok	led2_ok	led3_ok	led4_ok	flashled_ok		en_test
			r/o	r/o	r/o	r/o	r/o		0
Q	Boost Output					boost[3]	boost[2]	boost[1]	boost[0]
						0	-	ŀ	۱.
2A	Audio Sync Control1	gain_sel[2]	gain_sel[1]	gain_sel[0]	dc_freq	en_agc	en_sync	speed_ctrl[1]	speed_ctrl[2]
		0	0	0	0	0	0	0	0
2B	Audio Sync Control2	threshold[3]	threshold[2]	threshold[1]	threshold[0]				
		0	0	Ļ	Ŧ				

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated