TOSHIBA BiCD Digital Integrated Circuit Silicon Monolithic

TB62737FUG

Step Up Type DC/DC Converter for White LED

Features

The TB62737FUG is a high efficient Step-Up Type DC/DC Converter specially designed for constant current driving of White LED
This IC can drive 2-6 white LEDs connected series using a Li-ion battery.
This IC contains N-ch MOS-FET Transistor for Coil-Switching, and LED Current (IF_{F}) is set with an external resistor.
This IC is especially for driving back light white LEDs in LCD of PDA, Cellular Phone, or Handy Terminal Equipment.

Characteristics

Weight: 0.016 g (Typ.)

- Brightness Control Function with changing drive current :

LED Current $\mathrm{I}_{\mathrm{F}}=25 \%$ to 100% (Analog Input to $\overline{\text { SHDN }}$ terminal)
For the control in range of 25% or less, refer 7-page.

- Maximum output voltage : $\mathrm{V}_{\mathrm{O}}=24 \mathrm{~V}$

Can drive 2-6 white LEDs connected series (Typ. 4LEDs)

- Variable LED Current IF is set with a external resistor :

20 mA (Typ.) @RSENS = 16Ω

- Output Power : Available for 480mW LED loading
- High Efficiency : 87\% @Maximum (Using recommended external parts: Typ. 4LEDs)
- Output Over Voltage Shutdown Function :

Switching Operation is shut downed when OVD terminal Voltage is over 19 V (typ.).

- IC Package : SOT23-6
- Switching Frequency : 1.1 MHz (Typ.)

Pin Assignment (Top view)

Caution 1: This IC could be destroyed in some case if amounted in 180° inverse direction.
Please be careful about IC direction in mounting.

Block Diagram

Pin Function

Pin No.	Symbol	\quad Function Description
1	SHDN	Voltage-Input Terminal for IC-Enable / Setting LED-IF. OV to 0.5V : Shutdown (PS) Mode, IC operation is disabled. 1.0 V to $2.5 \mathrm{~V}: \mathrm{I}_{\mathrm{F}}=25 \%$ to 100% Over 2.5V : IF $=100 \%$ IF adjustment with PWM input signal is also available.
2	OVD	Over Voltage Detection Terminal. IC Switching Operation is disabled with detection over voltage. If the voltage returns to detection level or less, Operation is enabled again.
3	VIN	Supply Voltage Input Terminal. (2.8V to 5.5V)
4	SW	Switch Terminal for DC/DC Converter. Nch MOSFET Built-In.
5	GND	Ground Terminal.
6	FB	LED IF Setting Resister Connecting Terminal.

Absolute Maximum Ratings (Topr $=25^{\circ} \mathrm{C}$ if without notice)

Characteristics	Symbol	Ratings	Unit
Power Supply Voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to +6.0	V
Input Voltage	$V_{\text {SHDN }}$	-0.3 to $+\mathrm{V}_{\text {IN }}+0.3$	V
Switching Terminal Voltage	Vo (SW)	-0.3 to 24	V
Switching Terminal Current	Io (SW)	380	mA
Power Dissipation	$P_{\text {D }}$	0.41 (Device)	W
		0.47 (on PCB) Caution 2	
Thermal Resistance	$\mathrm{R}_{\text {th (}}(\mathrm{za})$	300 (Device)	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		260 (on PCB)	
Operation Temperature Range	$\mathrm{T}_{\text {opr }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	T	150	${ }^{\circ} \mathrm{C}$

Caution 2: \quad Power Dissipation must be calculated with subtraction of $3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from Maximum Rating with every $1^{\circ} \mathrm{C}$ if $\mathrm{T}_{\text {opr }}$ is upper $25^{\circ} \mathrm{C}$. (on PCB)

Recommended Operating Condition ($\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ if without notice)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Typ	Max	Unit
Power Supply Voltage	V IN	-		2.8	-	5.5	V
SHDN terminal 'H' level input voltage	$\mathrm{V}_{\text {SHINH }}$	-		2.5	-	V_{IN}	V
SHDN terminal 'L' level input voltage	$\mathrm{V}_{\underline{\text { SHDNL }}}$	-		0	-	0.5	V
$\overline{\text { SHDN }}$ terminal input Pulse Width	tpw	-	ON duty width OFF duty width	33	-	-	$\mu \mathrm{S}$
LED Current (Average Value)	l_{01}	-	$\begin{aligned} & \mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{R}_{\text {sens }}=16 \Omega \\ & 4 \mathrm{LEDS}, \mathrm{~T}_{\text {opr }}=25^{\circ} \mathrm{C} \end{aligned}$	-	20	-	mA

Electrical Characteristics ($\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ if without notice)

Characteristics	Symbol	Test Condition	Min	Typ	Max	Unit
Input Voltage Range	$\mathrm{V}_{\text {IN }}$		2.8	-	5.5	V
Operating Consumption Current	IIN (On)	$\mathrm{VIN}=3.6 \mathrm{~V}$, RSENS $=16 \Omega$	-	0.9	1.5	mA
Quiescent Consumption Current	IIN (Off)	$\mathrm{VIN}=3.6 \mathrm{~V}, \mathrm{~V}$ SHDN $=0 \mathrm{~V}$	-	0.5	1.0	$\mu \mathrm{A}$
SHDN Terminal Current	ISHDN	$\mathrm{VIN}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=3.6 \mathrm{~V}$	-10	0	10	$\mu \mathrm{A}$
Integrated MOS-Tr Switching Frequency	fosc	$\mathrm{VIN}=3.6 \mathrm{~V}, \widehat{\mathrm{SHDN}}=3.6 \mathrm{~V}$	0.77	1.1	1.43	MHz
SW Terminal Protection Voltage	$V_{0}(S W)$	-	-	25	-	V
Switching Terminal Current	loz (SW)	-	-	400	-	mA
Switching Terminal Leakage Current	$\mathrm{I}_{\text {oz }}(\mathrm{SW})$	-	-	0.5	1	$\mu \mathrm{A}$
FB Terminal Feedback Voltage (VFB)	$V_{\text {FB }}$	$\begin{gathered} \mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{RSENS}=16 \Omega \\ \mathrm{~T}_{\text {opr }}=25^{\circ} \mathrm{C}, \mathrm{~L}=6.8 \mu \mathrm{H} \end{gathered}$	308	325	342	mV
FB Terminal Line Regulation	$\Delta \mathrm{V}_{\text {FB }}$	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$ center $\mathrm{V}_{\mathrm{IN}}=3.0 \text { to } 5.0 \mathrm{~V}$	-5	-	5	\%
OVD Terminal Voltage	Vovd	-	19	22	23.5	V
OVD Terminal Leakage Current	lovdz	Vovd $=16 \mathrm{~V}$	-	0.5	1	$\mu \mathrm{A}$

Application Note

Protection in LED opened condition

The operation with OVD terminal is available for the protection in case LED Circuit opened.
Please see the example of application circuit.
If load of LED is detached, Nch MOS switching operation is disabled with detection of boost circuit voltage.

Setting of external Capacitor

In case not using PWM signal to $\overline{\text { SHDN }}$ terminal for brightness control, recommended values are $\mathrm{C}_{1}=$ Over $2.2(\mu \mathrm{~F}), \mathrm{C}_{2}=$ Over $1.0(\mu \mathrm{~F})$

In case with PWM signal to $\overline{\text { SHDN }}$ terminal for brightness control, recommended values are $\mathrm{C}_{1}=$ Over $4.7(\mu \mathrm{~F}), \mathrm{C}_{2}=$ Under $0.1(\mu \mathrm{~F})$ to reduce fluctuation of input current and up accuracy of brightness.

The recommended capacitor values depend on the Brightness Control Method.
<Please see after page-8>
The capacitor value must be considered for gain enough accuracy of brightness with reduction of noise from Input current changing.

Setting of external Inductor size

Please select the inductor size with referring this table corresponding to each number of LEDs.

Recommendation for the case that LED current $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$

LEDs	Indictor size	Note
2	$4.7 \mu \mathrm{H}$	
3	$6.8 \mu \mathrm{H}$	
4	$8.1 \mu \mathrm{H}$	
5	$10 \mu \mathrm{H}$	
6		

Setting of I_{0}

Resistance connects between RSENS pin and GND.
The average current is set by this RSENS value and average current are obtained by the following equation.

$$
\mathrm{I}_{\mathrm{F}}[\mathrm{~mA}]=\frac{325[\mathrm{mV}]}{\operatorname{RSENS}[\Omega]}
$$

Current Value error is within $\pm 5 \%$.

Current Dimming Control

Recommended Brightness Control Circuits are 5 types.

1) Input analog voltage to SHDN terminal

IF can be adjusted in range of 25% to 100% after set with external resistor connected RSENS terminal.
Linearity error in V-A Conversion is within +/-10\%.

$\overline{\text { SHDN }}$ Voltage	$\mathrm{V}_{\overline{\text { SHDN }}}=0 \mathrm{~V} \sim 0.5 \mathrm{~V}$	$\mathrm{~V}_{\text {SHDN }}=1 \mathrm{~V} \sim 2.5 \mathrm{~V}$	$\mathrm{~V}_{\overline{\text { SHDN }}}>2.5 \mathrm{~V}$	Note
lo Valuable Rate	0	$25 \sim 100$	100	Unit $: \%$

2）Input PWM signal to SHDN terminal
I_{F} can be adjusted with PWM signal by inputting it to $\overline{S H D N}$ terminal．

【Notice】

《Minimum ON－time of PWM signal input》
－Set the minimum ON－time or OFF－time 33μ s or more in inputting the PWM signal．
－Set the Duty ratio satisfying the condition above．

Ex）In case PWM Frequency is 1 kHz ，
1 kHz is 1 ms （PWM Width $=100 \%$ ）and it takes $10 \mu \mathrm{~s}$ per 1% ．
To set the pulse width 33us or more，necessary ON－or－OFF－time is calculated below．
$33 \mu \mathrm{~s} \div 10 \mu \mathrm{~s}=3.3 \% \quad$（ Under the condition that $10 \mu \mathrm{~s}$ equals 1% ．）

Finally，the Duty Ratio can be set in range of 3.3% to 96.7% ．

《PWM signal frequency 》

－The recommended PWM signal frequency is from 100 Hz to 10 kHz ．There is a possibility to arise the audible frequency in mounting to the board because it is within the auditory area．

《Constant number of external condenser》

－To reduce the fluctuation of input current and increase the accuracy of brightness，the values that $\mathrm{C}_{1}=4.7$ $(\mu \mathrm{F})$ or more ， $\mathrm{C}_{2}=0.1(\mu \mathrm{~F})$ or less are recommended．
－When the PWM signal is off，the time to drain C_{2} of charge depends on the constant number．And so，the actual value is little different from the theoretical value．

《PWM input signal》

－Set the amplitude of PWM signal within the range of $\overline{\text { SHDN }}$ terminal specification．

《Rush current in inputting 》

－In case dimming by inputting the PWM signal to the SHDN terminal，this IC turns on and off repeatedly． And the rush current，which provides the charge to C_{2} ，arises in turning on．Take care in selecting the condenser．

《Current value in Control with PWM ：Ideal Equation》

<Reference Data>
Condition: Vin=3.6V, L=6.8 $\mu \mathrm{H}, 4 \mathrm{LEDs}$, RSENS=16m $@ \mathrm{lo}=20 \mathrm{~mA}$
(1) $\mathrm{C} 1=4.7 \mu \mathrm{~F}, \mathrm{C} 2=0.1 \mu \mathrm{~F}$

(2) $\mathrm{C} 1=4.7 \mu \mathrm{~F}, \mathrm{C} 2=0.47 \mu \mathrm{~F}$

(3) $\mathrm{C} 1=4.7 \mu \mathrm{~F}, \mathrm{C} 2=1.0 \mu \mathrm{~F}$

(4) $\mathrm{C} 1=2.2 \mu \mathrm{~F}, \mathrm{C} 2=1.0 \mu \mathrm{~F}$

《Recommended application》

3）Input analog voltage to FB terminal
IF can be adjusted with Analog voltage input to FB terminal．
This method is without repeating IC ON／OFF，and no need to consider holding rash current．

＜＜Notice＞＞

－LED current value goes over 100% of the current set with RSENS， if the input analog voltage is between 0 V to 325 mV （TYP．）．
for ref．）Analog voltage $=0$ to 2.2 V
About external parts value，please see recommended circuit．

Supply Voltage［V］	Ratio with Setting Current
No Connect（OFF）	100%
0	116.0%
0.2	106.5%
0.4	95.4%
0.6	84.5%
0.8	73.6%
1	59.9%
1.2	48.4%
1.4	37.4%
1.6	26.6%
1.8	15.9%
2	5.8%
2.2	0.0%

《Recommended application》

4) Input PWM signal with filtering to FB terminal

IF can be adjusted with filtering PWM signal using RC filter indicated in recommended circuit, because the PWM signal can be regard as analog voltage after filtering.
This method is without repeating IC ON/OFF, and no need to consider holding rash current.
<< Notice >>

- LED current value goes over 100\% of the current set with RSENS, if the input voltage after filtering is between 0 V to 325 mV (TYP.).
for ref.) Voltage during PWM Signal-ON = 2V
About external parts value, please see recommended circuit.

Supply Voltage[V]	Ratio with Setting Current
No Connect(OFF)	100%
0	116.1%
10%	105.3%
20%	95.1%
30%	84.8%
40%	74.6%
50%	64.0%
60%	53.8%
70%	43.7%
80%	34.0%
90%	24.2%
100%	13.3%

《Recommended application》

5) Input Logic signal

IF can be adjusted with Logic signal input as indicated in recommended circuit. The Resistor connected the ON-State Nch MOS Drain and RSENS determines IF.

Average of Setting Current lo(mA) is next, approximately.

$$
\left.I_{F}=(325[\mathrm{mV}] / \text { Sum of Resistor Value[} \Omega]\right)
$$

《Recommended application》

M1	M2	LED Current
OFF	OFF	$\frac{325[\mathrm{mV}]}{\operatorname{RSENS}[\Omega]}$
ON	OFF	$325[\mathrm{mV}] \times \frac{\operatorname{RSENS}[\Omega] \times R 1[\Omega]}{\operatorname{RSENS}[\Omega]+R 1[\Omega]}$
OFF	ON	$325[\mathrm{mV}] \times \frac{\operatorname{RSENS}[\Omega] \times R 2[\Omega]}{\operatorname{RSENS}[\Omega]+R 2[\Omega]}$
ON	ON	$325[\mathrm{mV}] \times \ldots \times R 2$

I/O Equivalent Pin Circuits

1. SHDN Terminal

2. VIN terminal to GND terminal

3. FB Terminal

4. Application Circuit Example and Measurement Data (Reference data)

- Evaluation conditions

L : CXLD120 series (NEO MAX CO.,Ltd.)
$\mathrm{u} \quad($ Size $2.5 \times 3.0 \times 1.2 \mathrm{~mm})$

S-Di : CUS02 1 A/30 V (TOSHIBA Corp.) NSCW215T (NICHIA Corp.)
C2012JB1E105K (TDK Corp.)
C2012JB1E105K (TDK Corp.)

[^0]

<Measurement Data>
Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency $(\%)$
2 LED	82.60 to 88.46	86.29
3 LED	82.69 to 87.78	85.95
4 LED	80.73 to 86.22	83.05
5 LED	80.73 to 87.28	83.45
6 LED	79.78 to 85.55	81.15

Output current in the range of $\mathrm{V}_{\mathbb{I}}=3.0$ to 5.0 V

	Output Current (mA) $\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$ center	Tolerance (\%)	
		-3.50	1.77
2 LED	213	MAX	
3 LED	20.60	-1.95	1.38
4 LED	20.87	-1.75	1.11
5 LED	20.06	-1.81	1.15
6 LED	19.90	-1.95	1.28

2. Application Circuit Example and Measurement Data (Reference data)

<Measurement Data>
Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency $(\%)$
2 LED	83.10 to 88.60	86.55
3 LED	81.32 to 86.47	84.54
4 LED	79.15 to 84.63	81.30
5 LED	79.72 to 86.39	82.87
6 LED	78.91 to 85.10	80.47

Output current in the range of $\mathrm{V}_{\mathrm{IN}}=3.0$ to 5.0 V

	Output Current (mA)	Tolerance (\%)	
	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$ center		

3. Application Circuit Example and Measurement Data (Reference data)

<Measurement Data>

Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency $(\%)$
2 LED	82.37 to 88.70	86.38
3 LED	80.19 to 86.55	84.12
4 LED	78.11 to 84.54	80.16
5 LED	74.79 to 84.94	79.94
6 LED	74.14 to 83.47	77.17

Output current in the range of $\mathrm{V}_{\text {IN }}=3.0$ to 5.0 V

	Output Current (mA) $\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$ center	Tolerance (\%)	
		MIN	MAX
2 LED	21.19	- 3.26	1.69
3 LED	20.90	- 1.87	2.17
4 LED	20.63	- 1.78	1.01
5 LED	20.09	- 1.88	1.25
6 LED	19.93	-1.99	1.07

4. Application Circuit Example and Measurement Data (Reference data)

Efficiency in range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency $(\%)$
2 LED	$79.85 \sim 86.97$	84.02
3 LED	$80.19 \sim 85.32$	83.39
4 LED	$78.77 \sim 83.60$	80.69
5 LED	$79.72 \sim 86.39$	82.87
6 LED	$78.91 \sim 85.10$	80.49

Output current in range of $\mathrm{V}_{\mathrm{IN}}=3.0$ to 5.0 V

	Output Current (mA)	Tolerance (\%)	
	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$ center	MIN	MAX
2 LED	21.19	-3.08	1.67
3 LED	20.89	-1.86	1.33
4 LED	20.64	-1.68	1.11
5 LED	20.10	-1.82	1.22
6 LED	19.95	-1.94	1.26

5. Application Circuit Example and Measurement Data (Reference data)

<Measurement Data>

Efficiency in the range of $\mathrm{V}_{\mathrm{IN}}=2.8$ to 5.5 V

	Efficiency (\%)	Average Efficiency $(\%)$
2 LED	$83.08 \sim 89.23$	86.73
3 LED	$79.02 \sim 86.30$	83.52
4 LED	$75.75 \sim 83.83$	80.78

Output current in the range of $\mathrm{V}_{\text {IN }}=3.0$ to 5.0 V

	Output Current (mA)	Tolerance (\%)	
	VIN $=3.6 \mathrm{~V}$ center	MIN	MAX
2 LED	21.06	-2.46	4.02
3 LED	20.57	-2.39	2.94
4 LED	20.22	-2.28	2.65

Package Dimensions

SSOP6-P-0.95B
Unit: mm

Weight : 0.016 g (Typcal)

Regarding solder ability

Regarding solder ability, the following conditions have been confirmed.

- Solder ability
(1) Use of Sn -63Pb solder bath
- solder bath temperature $=230^{\circ} \mathrm{C}$, dipping time $=5$ seconds, number of times $=$ once, use of R -type flux
(2) Use of $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder bath
- solder bath temperature $=245^{\circ} \mathrm{C}$, dipping time $=5$ seconds, number of times $=$ once, use of R-type flux

NOTES

- Utmost care is necessary in the design of the output line, VCC, COMMON and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.
- Do not insert devices in the wrong orientation. Make sure that the positive and negative terminals of power supplies are connected correctly. Otherwise, the rated maximum current of power dissipation may be exceeded and the device may break down or undergo performance degradation, causing it to catch fire or explode and resulting in injury.
- Please take care that IC might be destroyed in case external components were destroyed or not connected exactly.

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

[^0]: * Vout voltage in driving 5 or 6 LEDs must be lower than OVD detection level. ($\mathrm{V}_{\text {OUT }}<19 \mathrm{~V}$)

