

VK162-12 Technical Manual

Revision: 3.1

Contents

Contents	S

Co	Contents ii				
1	Getting Started 1.1 Accessories 1.2 Features 1.3 Connecting to a PC 1.4 Installing the Software 1.4.1 uProject	1 2 3 4 5 5			
2	Hardware Information2.1DB-9 Connector .2.1.1Power Through DB-9 Jumper2.2Power/Data Connector .2.3Protocol Select Jumpers .2.4General Purpose Outputs .2.5Dallas 1-Wire Bridge .2.6Manual Override .2.7Keypad Interface Connector .	6 7 7 8 9 10 10 12			
3	Troubleshooting 3.1 The display does not turn on when power is applied. 3.2 The display module is not communicating. 3.3 The display module is communicating, however text cannot be displayed.	13 13 13 13			
4	Communications 4.1 Introduction 4.1.1 I ² C Communication Summary 4.1.2 I ² C Transaction Example 4.1.3 Serial Communication 4.2 Changing the I ² C Slave Address 4.3 Changing the Baud Rate 4.4 Setting a Non-Standard Baud Rate	14 14 15 15 15 16 17			
5	Text5.1Introduction5.1.1Character Set5.1.2Control Characters5.2Auto Scroll On5.3Auto Scroll Off5.4Clear Screen5.5Changing the Startup Screen5.6Set Auto Line Wrap On5.7Set Auto Line Wrap Off5.8Set Cursor Position	 18 19 19 20 20 20 21 21 			

5.1 5.1 5.1	O Go Home 2 0 Move Cursor Back 2 1 Move Cursor Forward 2 2 Underline Cursor On 2 3 Underline Cursor Off 2	22 22 23
5.1	4 Blinking Block Cursor On 2 5 Blinking Block Cursor Off 2	
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.1 6.1	2 Creating a Custom Character 2 3 Saving Custom Characters 2 4 Loading Custom Characters 2 5 Save Startup Screen Custom Characters 2 6 Initialize Medium Number 2 7 Place Medium Numbers 2 8 Initialize Horizontal Bar 2	445667788889
7.1 7.2 7.3 7.4 7.5 8 Da	P. Toggle Keypad/GPO mode 3 General Purpose Output Off 3 General Purpose Output On 3 Set Startup GPO state 3 Illas 1-Wire 3	00000000000000000000000000000000000000
8.1 8.2 8.3	2 Search for a 1-Wire Device	2
 9 Ke 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 	9.1.1I²C Interface39.1.2RS232 Interface32Auto Transmit Key Presses On33Auto Transmit Key Presses Off34Poll Key Press35Clear Key Buffer36Clear Key Buffer37Set Auto Repeat Mode38Auto Repeat Mode Off3	4 5 5 5 5 6 6 7 7 8

10	Display Functions	39
	10.1 Introduction	39
	10.2 Display On	39
	10.3 Display Off	39
	10.4 Set VFD Brightness	40
	10.5 Set and Save VFD Brightness	40
11	Data Security	41
	•	41
		41
		42
		43
		44
		44
12		44
		44
		44
	12.3 Read Module Type	45
13	Command Summary	47
	•	47
		47
		48
		49
	13.5 Dallas 1-Wire	49
		49
		50
		50
		51
	13.10Command By Number	51
14		53
		53
		53
		53
		54
		54
		56
	6	56
	14.6 Revision History	56

1 Getting Started

Figure 1: VK162-12

The VK162-12 is an intelligent LCD display designed to decrease development time by providing an instant solution to any project. With the ability to communicate via serial RS-232/TTL and I²C protocols, the versatile VK162-12 can be used with virtually any controller. The ease of use is further enhanced by an intuitive command structure to allow display settings such as backlight brightness, contrast and baud rate to be software controlled. Additionally, up to thirty-two custom characters such as character sets for bar graphs, medium and large numbers may be stored in the non-volatile memory to be easily recalled and displayed at any time. Extended voltage, and temperature options are also available, to allow you to select the display which will best fit your project needs.

1.1 Accessories

NOTE Matrix Orbital provides all the interface accessories needed to get your display up and running. You will find these accessories and others on our e-commerce website at http://www.matrixorbital.com. To contact a sales associate see Section 14.5 on page 56 for contact information.

Figure 2: 5V Power Cable Adapter

Figure 3: 12V Power Cable Adapter (V/VPT Models)

Figure 4: Breadboard Cable

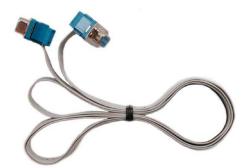


Figure 5: Serial Cable 4FT

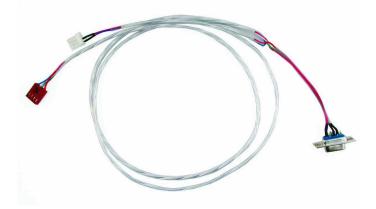
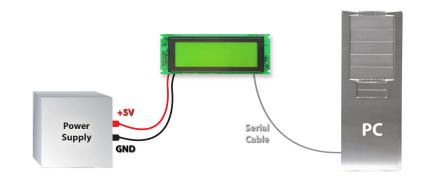


Figure 6: Communication and 5V Power Cable

1.2 Features

- 16 column by 2 line alphanumeric liquid crystal display
- Selectable communication protocol, RS-232 or I^2C
- Seven, 5V -20mA, general purpose outputs for a variety of applications
- Lightning fast communication speeds, up to 57.6 kbps for RS-232 and 400 kbps for I^2C
- Default 19.2 kbps serial communication speed
- Extended temperature available for extreme environments of -20C to 70C
- Extended voltage and efficient power supply available
- Built in font with provision for up to 8 user defined characters
- Up to 127 modules adressable on the I^2C interface.
- Optional Dallas 1-wire bus that is capable of communicating with up to 32 devices
- Fully buffered so that no delays in transmission are ever necessary
- Ability to add a customized splash / startup screen
- Software controlled contrast and brightness with configurable time-out setting up to 90 minutes
- Use of up to a 25 key keypad with a 10 key buffer

Matrix Orbital


- Horizontal or vertical bar graphs
- Fits Matrix Orbital's mountings without any modifications

1.3 Connecting to a PC

The VK162-12 connects seamlessly to a PC and it is an excellent means of testing the functionality. To connect your display to a PC, you will require a standard RS-232 9-pin serial cable such as the one pictured in *figure 5 on the previous page*, as well as a modified 5V power adapter such as the one pictured in *figure 2 on page 2*.

In order to connect your display to a personal computer follow these easy instructions:

- 1. Plug the serial cable into the com port you wish to use.
- 2. Connect the modified 5V power adapter to a power lead from your PC power supply (you will have to open your computer case).
- 3. Connect the serial cable to the DB-9 connector on the back of the display.
- 4. Connect the 5V power adapter to the 4-pin connector on the back of the display.

WARNING DO NOT use the standard floppy drive power connector, as this will not provide you with the correct voltage and will damage the display module.

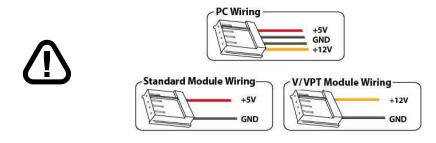


Figure 7: PC vs Matrix Orbital Display Module Wiring

1.4 Installing the Software

1.4.1 uProject

uProject was designed by Matrix Orbital to provide a simple and easy to use interface that will allow you to test all of the features of our alpha numeric displays.

To install uProject from the Matrix Orbital CD, follow the following steps:

- 1. Insert the Matrix Orbital CD-ROM into the CD drive
- 2. Locate the file, *uProject.exe*, which should be in the "CD-drive:\Download" directory.
- 3. Copy *uProject.exe* to a directory that you wish to run it from.
- 4. Double click on "uProject.exe"

Be sure to check the information selected in the COM Setup the first time uProject is run. Once this information is entered correctly the program can be used to control all functions of the graphic display.

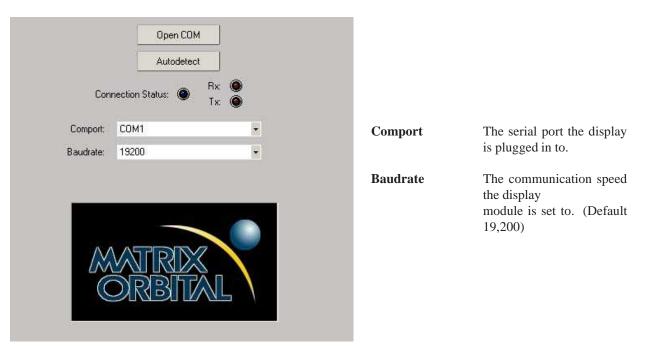


Figure 8: uProject Settings

NOTES

• uProject and other alphanumeric software may also be downloaded from Matrix Orbital's support site at http://www.matrixorbital.ca/software/software_alpha/

Matrix Orbital

2 Hardware Information

Refer to the following diagram for this chapter:

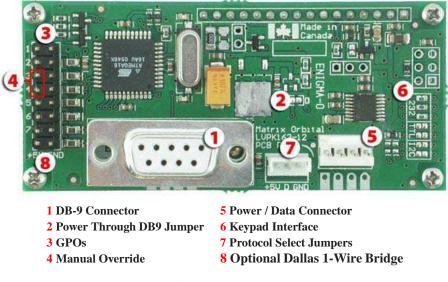
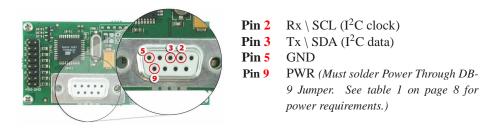



Figure 9: VK162-12

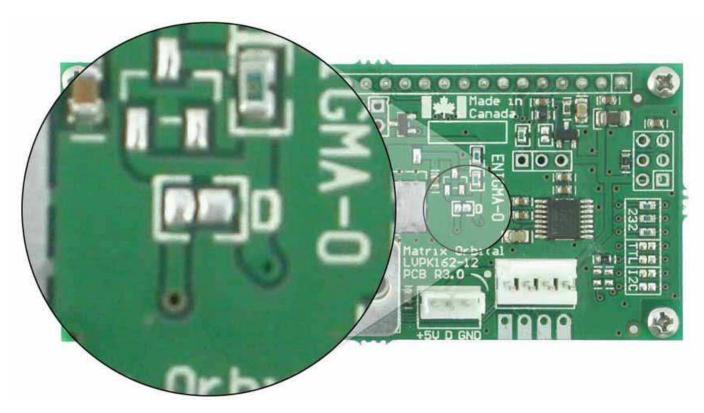
2.1 DB-9 Connector

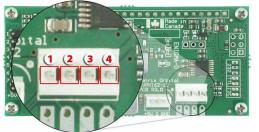
The VK162-12 provides a *DB-9 Connector* to readily interface with serial devices which use the EIA232 standard signal levels of ± 12 V to ± 12 V. It is also possible to communicate at TTL levels of 0 to ± 5 V by setting the *Protocol Select Jumpers* to TTL. As an added feature it is also possible to apply power through pin 9 of the *DB-9 Connector* in order to reduce cable clutter. However, in order to accomplish this you must set the *Power Through DB-9 Jumper*.

Matrix Orbital

2.1.1 Power Through DB-9 Jumper

In order to provide power through pin 9 of the *DB-9 Connector* you must place a solder jumper on the *Power through DB-9 Jumper* pictured in *figure 11* below. The VK162-12 allows all voltage models to use the power through DB-9 option, see table 1 on the following page for display module voltage requirements.




Figure 11: Power Through DB-9 Jumper

WARNING Do not apply voltage through pin 9 of the DB-9 connector AND through the Power/Data Connector at the same time.

2.2 Power/Data Connector

The *Power/Data Connector* provides a standard connector for powering the display module. The VK162-12 requires five volts for the standard display module, between nine to fifteen for the wide voltage (V) and between nine to thirty-five volts for the wide voltage with efficient power supply module (VPT). The voltage is applied through pins one and four of the four pin *Power/Data connector*. Pins two and three are reserved for serial transmission, using either the RS-232/TTL or the I²C protocol, depending on what has

been selected by the *Protocol Select Jumpers*. Pins two and three may be reversed by changing the *Legacy Connector Jumpers* in order to be compatible with previous PCB revisions.

Pin 1

Pin 2

Pin 3 Pin 4 PWR (See table 1) Rx \setminus SCL (I²C clock)

GND

 $Tx \setminus SDA (I^2C data)$

Figure 12: Power Connector and Pin out

Table 1. I ower Requirements			
	Standard	-V	
Supply Voltage	$+5$ Vdc ± 0.25 V	+9V to +15V	
Supply	250 mA		
Inrush	390 mA		

Table 1: Power Requirements

WARNINGS

• Do not apply any power with reversed polarization.

• Do not apply any voltage other than the specified voltage.

2.3 Protocol Select Jumpers

The *Protocol Select Jumpers*, pictured below in *figure 13*, provide the means necessary to toggle the display module between RS-232, TTL and I²C protocols. As a default, the jumpers are set to RS-232 mode with solder jumps on the 232 jumpers. In order to place the display module in I²C mode you must first remove the solder jumps from the 232 jumpers and then place them on the I2C jumpers. The display will now be in I²C mode and have a default slave address of 0x50 unless it has been changed. Similarly, in order to change the display to TTL mode, simply remove the zero ohm resistors from the 232 or I²C jumpers and solder them to the TTL jumpers.

Matrix Orbital

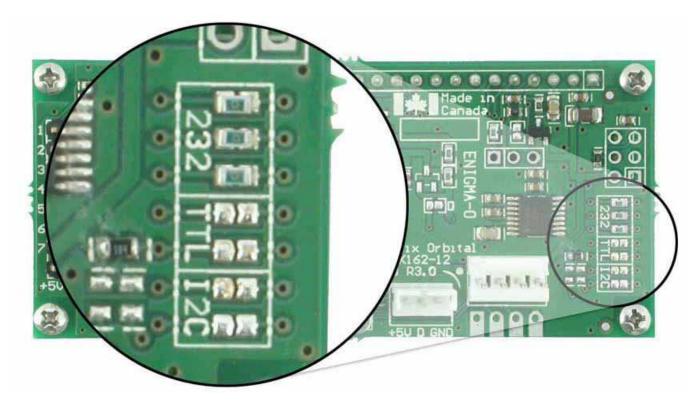


Figure 13: Protocol Select Jumpers

2.4 General Purpose Outputs

A unique feature of the VK162-12 is the ability to control relays and other external devices using a *General Purpose Output*, which can provide up to 20 mA of current and +5Vdc from the positive side of the GPO. This is limited by a 240 ohm resistor as pictured below in *figure 17*. If the device, which is being driven by a GPO, requires a relatively high current (such as a relay) and has an internal resistance of its own greater than 250 ohms, then the 240 ohm resistor may be removed and replaced with a Jumper.

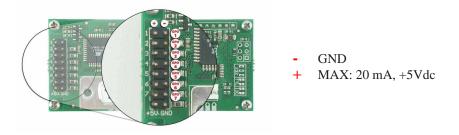
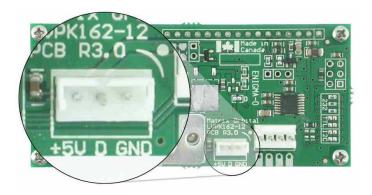


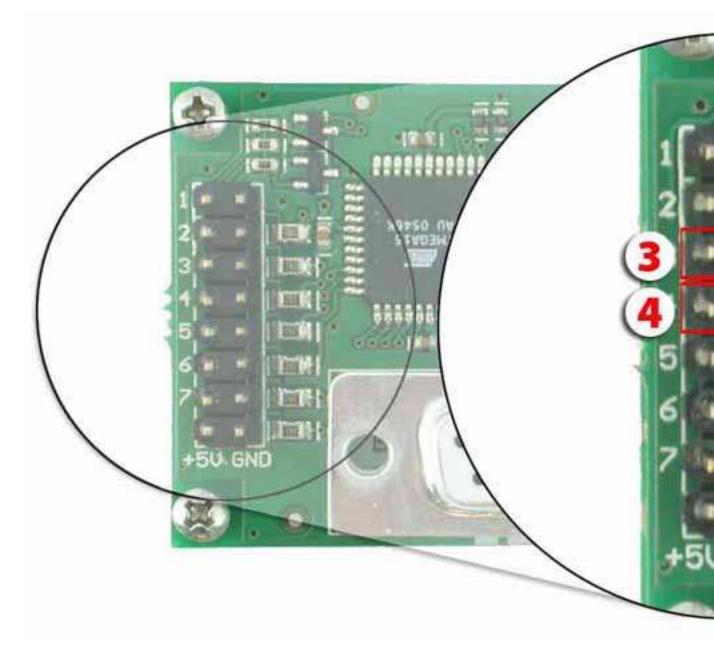
Figure 14: General Purpose Output

WARNING If connecting a relay, be sure that it is fully clamped using a diode and capacitor in order to absorb any electro-motive force (EMF) which will be generated.

2.5 Dallas 1-Wire Bridge

In addition to the seven general purpose outputs the VK162-12 offers a optional Dallas 1-wire bridge, to allow for an additional thirty two 1-wire devices to be connected to the display. See *Section 8 on page 32*.




Figure 15: Dallas 1-Wire Bridge

2.6 Manual Override

The *Manual Override* is provided to allow the VK162-12 to be reset to factory defaults. This can be particularly helpful if the display module has been set to an unknown baud rate or I²C Slave Address and you are no longer able to communicate with it. If you wish to return the module to its default settings you must:

- 1. Power off the display module.
- 2. Place a Jumper on the Manual Override pins.
- 3. Power up the display module.
- 4. The display module is now set to its default values listed below in *table 2*.
- 5. Edit and save settings.

Matrix Orbital

Table 2: Default Values		
Brightness	255	
Baud Rate	19.2 kbps	
I ² C Slave Address	0x50	
Data Lock	False	
RS232AutoTransmitData	True	

NOTE The display module will revert back to the old settings once turned off, unless the settings are saved.

2.7 Keypad Interface Connector

The VK162-12 provides a *Keypad Interface Connector* which allows for up to a five by five matrix style keypad to be directly connected to the display module. Key presses are generated when a short is detected between a row and a column. When a key press is generated a character, which is associated with the particular key press, is automatically sent on the Tx communication line. If the display module is running in I^2C mode, the "Auto Transmit Keypress" function may be turned off, to allow the key presses to remain in the buffer so that they may be polled. The character that is associated with each key press may also be altered using the "Assign Key Codes" command, for more detailed information see the *Keypad Section, on page 34*.

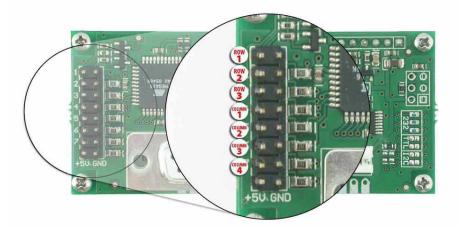


Figure 17: Keypad Interface Connector

3 Troubleshooting

3.1 The display does not turn on when power is applied.

- First, you will want to make sure that you are using the correct power connector. Standard floppy drive power cables from your PC power supply may fit on the Power/Data Connector however they do not have the correct pin out as can be seen in *figure 7 on page 4*. Matrix Orbital supplies power cable adapters for connecting to a PC, which can be found in the *Accessories Section on page 2*.
- The next step is to check the power cable which you are using for continuity. If you don't have an ohm meter, try using a different power cable, if this does not help try using a different power supply.
- The last step will be to check the *Power / Data Connector* on the VK162-12. If the *Power / Data Connector* has become loose, or you are unable to resolve the issue, please contact Matrix Orbital, see *14.5 on page 56* for contact information.

3.2 The display module is not communicating.

- First, check the communication cable for continuity. If you don't have an ohm meter, try using a different communication cable. If you are using a PC try using a different Com Port.
- Second, please ensure that the display module is set to communicate on the protocol that you are using, by checking the *Protocol Select Jumpers*. To change the protocol used by the display module see *Section 2.3 on page 8*.
- Third, ensure that the host system and display module are both communicating on the same baud rate. The default baud rate for the display module is 19200 bps.
- If you are communicating to the display via I²C please ensure that the data is being sent to the correct address. The default slave address for the display module is 0x50.

NOTE I²C communication will always require pull up resistors.

• Finally, you may reset the display to it's default settings using the *Manual Override Jumper*, see *Section 2.6 on page 10*.

3.3 The display module is communicating, however text cannot be displayed.

• A common cause may be that the contrast settings have been set to low. The solution to this problem is to adjust the contrast settings. The default setting that will work in most environments is 128.

NOTE Optimal contrast settings may vary according to factors such as temperature, viewing angle and lighting conditions.

If you are unable to resolve any issue please contact Matrix Orbital. See *14.5 on page 56* for contact information.

4 Communications

4.1 Introduction

The commands listed in this chapter describe how to configure data flow on the VK162-12.

4.1.1 I²C Communication Summary

The VK162-12 is capable of communicating at 100 KHz in I²C mode, with 127 units addressable on a single I²C communication line. However, in order to communicate via I²C you must first ensure that pull up resistors, with a nominal value of 1K to 10K, are placed on the SCL and SDA communication lines coming from pins two and three of the Data / Power Connector respectively. Data responses by the module are automatically output via RS232, in case the host will be querying the module, it is necessary for the host to inform the module that its responses are to be output via I²C. This can be done by sending command 254 /160 / 0 to turn off auto transmission of data in RS232. This will keep the data in the buffer until the master clocks a read of the slave. The I²C data lines operate at 5V. The VK162-12 uses 8-bit addressing, with the 8th or Least Significant Bit (LSB) bit designated as the read/write bit, a 0 designates a write address and a 1 designates a read address. The default read address of the display module will be 0x51, whereas the write address is 0x50 by default. This address may be changed by using cmd 254 / 51 / <address). The VK162-12 should only be sent addresses that are even (LSB is 0). When the I²C master wishes to write to the display, the effective address is \$50 (0101 0000), since the LSB has to be 0 for an I²C master write. When the I²C master wishes to read the VK162-12, the effective address is \$51 (0101 0001), since the LSB has to be 1 for an I²C master read.

If we take a standard Phillips 7 bit address of \$45 (100 0101), Matrix Orbital's VK162-12 would describe this Phillips I²C address as \$8A (1000 1010). The read address would be \$8B (1000 1011).

The unit does not respond to general call address (\$00).

When communicating in I^2C the VK162-12 will send an ACK on the 9th clock cycle when addressed. When writing to the display module, the display will respond with a ACK when the write has successfully been completed. However if the buffer has been filled, or the module is too busy processing data it will respond with a NAK. When performing a multiple byte read within one I^2C transaction, each byte read from the slave should be followed by an ACK to indicate that the master still needs data, and a NAK to indicate that the transmission is over.

The VK162-12 has some speed limitations, especially when run in I^2C mode. Here are some considerations when writing I^2C code:

* to be able to read the replies of query commands (eg. cmds 54, 55) the following command must be sent (only needs to be sent once, so this can be done somewhere in init): 254 / 160 / 0 this command puts the reply data in the I²C output buffer instead of the RS232 output buffer. Please note that due to a 16 byte output buffer, query commands that reply with more than 16 bytes cannot be read (eg cmd Get FileSystem Directory)

- * 3ms delay between the read commands
- * 625us delay in between data bytes within a transaction is necessary
- * 375us between transactions is necessary

NOTE These delays are consrevative, and may be decreased based on performance

4.1.2 I²C Transaction Example

The typical I²C transaction contains four parts: the start sequence, addressing, information, and stop sequence. To begin a transaction the data line, SDA, must toggle from high to low while the clock line, SCL, is high. Next, the display must be addressed using a one byte hexadecimal value, the default to write to the unit is 0x50, while read is 0x51. Then information can be sent to the unit; even when reading, a command must first be sent to let the unit know what type of information it is required to return. After each bit is sent, the display will issue an ACK or NACK as described above. Finally, when communication is complete, the transaction is ended by toggling the data line from low to high while the clock line is high. An example of the use of this algorithm to write a simple "HELLO" message can be seen in 3.

Table 3: I²C Transaction AlgorithmSTARTToggle SDA high to lowAddress0x50Information0x48 0x45 0x4C 0x4C 0x4FSTOPToggle SDA low to high

4.1.3 Serial Communication

In addition to being able to communicate via I²C the VK162-12 communicates natively through the RS-232 protocol at at a default baud rate of 19,200 bps and is capable of standard baud rates from 9600 to 115,200 bps. Furthermore the VK162-12 is also capable of reproducing any non-standard baud rate in between using values entered into our baud rate generation algorithm and set through command 164 (0xA4). The display module communicates at standard voltage levels of -30V to +30V or at TTL levels of 0 to +5V by setting the *Protocol Select Jumpers* to TTL.

4.2 Changing the I²C Slave Address

Decimal	254 51 [adr]]
Parameter	Length	Description
adr	1	The new I^2C write address (0x00 - 0xFF).
	Decimal ASCII Parameter	Decimal254 51 [adr]ASCII254 "3" [adr]ParameterLength

Description This command sets the I^2C write address of the module between 0x00 and 0xFF. The I^2C write address must be an even number and the read address is automatically set to one higher. For example if the I^2C write address is set to 0x50, then the read address is 0x51.

NOTE The change in address is immediate.

Remembered	Always
Default	0x50

4.3 Changing the Baud Rate

Syntax	Hexadecima	1 0xFE 0x39	[speed]
	Decimal	254 57 [spe	- 1 -
	ASCII	254 "9" [sp	-
Parameters	Parameter	Length	Description
	speed	1	Hex value corresponding to a baud
			rate.
Description	This command	d sets the RS-23	32 port to the specified [speed]. The change
	-	• - •	eed] is a single byte specifying the desired
	* *	-	e shown in the table below. The display
		•	et to 19,200 baud in the event of an error
	-		g transmitting a value not listed below, by
	-	•	Imper during power up. However, it should
			will be ignored until the manual override
	jumper is rem	oved again.	
	Hex Value	Baud Rate	
	53	1200	
	29	2400	
	CF	4800	
	67	9600	
	33	19200	
	22	28800	
	19	38400	
	10	57600	

NOTE This command is not available in I^2C mode.

115200

Remembered Default Always 19,200 bps

8

4.4 Setting a Non-Standard Baud Rate

Syntax	Hexadecimal Decimal	0xFE 0xA4 [speced	-
Demonstration		254 164 [speed]	-
Parameters	Parameter	Length	Description
	speed	2	Inputed LSB MSB from baud rate
			formula (12-2047).
Description	This command s	ets the RS-232 p	ort to a non-standard baud rate. The
	This command sets the RS-232 port to a non-standard baud rate. The command accepts a two byte parameter that goes directly into the modules baud generator. Use the formula, $speed = \frac{CrystalSpeed}{8 \times DesiredBaud} - 1$ to calculate the [speed] for any baud rate setting. The speed can be anywhere from 12 to 2047 which corresponds to a baud range of 977 to 153,800 baud. Setting the baud rate out of this range could cause the display to stop working properly and require the Manual Override jumper to be set.		formula, $speed = \frac{CrystalSpeed}{8 \times DesiredBaud} - 1$ to I rate setting. The speed can be corresponds to a baud range of 977 to ate out of this range could cause the
Remembered	Always		

Examples

Crystal Speed 16 Mhz

Desired BAUD 13,500

$$speed = \frac{crystalspeed}{8 * DesiredBaud} - 1$$
 $speed = \frac{16,000,000}{8 * 13,500} - 1$
 $speed = 148.15 - 1$ $speed = 147.15$
LSB = 0x93 (rounded)
MSB = 0x90

- $\mathbf{MSB} = 0 \ge 0$
- Intended Baud Rate: 13,500 baud Actual Baud Rate: $\frac{16,000,000}{8(147+1)} = 13,514$ Percent Difference: 0.1%

NOTES

- Results from the formula are rounded down to the nearest whole number (i.e 73.07 = 73).
- This formula becomes less acurate as baud rates increase, due to rounding.
- Place the speed result backwards into the formula to receive the actual baud rate. $(Baud = \frac{CrystalSpeed}{8(speed+1)})$
- The actual baud rate must be within 3% of the intended baud rate for the device to communicate.

NOTES

• This command is not available in I²C mode.

5 Text

5.1 Introduction

The VK162-12 is an intelligent display module, designed to reduce the amount of code necessary to begin displaying data. This means that it is able to display all ASCII formated characters and strings that are sent to it, which are defined in the current character set. The display module will begin displaying text at the top left corner of the display area, known as home, and continue to print to the display as if it was a page on a typewriter. When the text reaches the bottom right row, it is able to automatically scroll all of the lines up and continue to display text, with the auto scroll option set to on.

5.1.1 Character Set

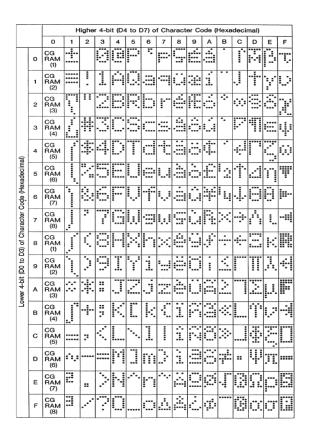


Figure 18: Character Set

5.1.2 Control Characters

In addition to a full text set, the VK162-12 display supports the following ASCII Control characters:

0x08 Backspace

0x0C Clear screen / New page

0x0D Carriage return

 $\mathbf{0x0A}\$ Line feed / New line

5.2 Auto Scroll On

Syntax	Hexadecimal Decimal ASCII	0xFE 0x51 254 81 254 "O"
Description	When auto scrolling is on, it causes the display to shift the entire display's contents up to make room for a new line of text when the text reaches the end of the last row.	
Remembered Default	Yes On	

5.3 Auto Scroll Off

Syntax	Hexadecimal Decimal ASCII	0xFE 0x52 254 82 254 "R"
Description	When auto scrolling is disabled the text will wrap to the top left corner of the display area when the text reaches the end of last row.	
Remembered	Yes	

5.4 Clear Screen

Syntax	Hexadecimal	0xFE 0x58
-	Decimal	254 88
	ASCII	254 "X"
Description	This command	will immediately clear all of the contents of the display.
Remembered	No	

5.5 Changing the Startup Screen

Syntax	Hexadecimal	0xFE 0x40	
	Decimal	254 64	
	ASCII	254 "@"	
Description	In order to change the text that is displayed by the VK162-12 when it		
	starts up simply send the command bytes 254 64 followed by the		
	characters that you wish to display, starting from the top left. This		
	command will a	utomatically line wrap the characters that are sent to it.	
Remembered	Yes		

5.6 Set Auto Line Wrap On

Syntax	Hexadecimal	0xFE 0x43
•	Decimal	254 67
	ASCII	254 "C"
Description	U	ine Wrap will allow the cursor to automatically wrap line when the current line is full.

NOTE Line wraps may occur in the middle of a word.

Remembered Yes

5.7 Set Auto Line Wrap Off

Syntax	Hexadecimal Decimal ASCII	0xFE 0x44 254 68 254 "D"
Description	configuration. T alternating patte will write from I row's worth of c after the second	Line Wrap will allow you to change the line he normally sequentional progression becomes an rn. Rather than moving from line 1 to 2 to 3, the display line 1 to 3 to 2. For a two line display, this means that a haracters written between the first and second lines or will not be displayed on the screen or wrapped. The swill see only an alteration in line flow.

Remembered Yes

5.8 Set Cursor Position

Syntax	Hexadecimal Decimal	0xFE 0x47 [co 254 71 [col] [ro	JL J
	ASCII	254 "G" [col] [[row]
Parameters	Parameter	Length	Description
	col	1	Column
	row	1	Row

Description This command will allow you to manually set the cursor position, which controls the text insertion point, by specifying the [col] and [row] of the new proposed cursor position.

NOTE If the cursor position is set past the end of a line it will wrap to the beginning of the next line.

Remembered

No

5.9 Go Home

Syntax	Hexadecimal	0xFE 0x48
	Decimal	254 72
	ASCII	254 "H"
Description	This command will return the cursor to the top left corner of the display area, identified as row one, column one.	
Remembered	No	

5.10 Move Cursor Back

Syntax	Hexadecimal	0xFE 0x4C
	Decimal	254 76
	ASCII	254 "L"
Description	This command will move the cursor back one space. If this command is sent when the cursor is at the home position the cursor will wrap to the last row / column position if line wrap is on. Sending this command will not effect the text displayed on the module, however any characters that	
		or write the current characters that are being displayed.

Remembered No

5.11 Move Cursor Forward

Syntax	Hexadecimal	0xFE 0x4D
	Decimal	254 77
	ASCII	254 "M"

Description	This command will move the cursor forward one space. If this command is sent when the cursor is at the bottom right position the
	cursor will wrap back to the home position if line wrap is on. Sending
	this command will not effect the text displayed on the module, however
	any characters that are sent will over write the current characters that are
	being displayed.

Remembered No

5.12 Underline Cursor On

Syntax	Hexadecimal	0xFE 0x4A
•	Decimal	254 74
	ASCII	254 "J"
Description	This command will cause the VK162-12 to display an underline cursor at the current text insertion point.	

Remembered Yes

5.13 Underline Cursor Off

Syntax	Hexadecimal	0xFE 0x4B
-	Decimal	254 75
	ASCII	254 "K"
Description	This command	will turn the the underline cursor off.

Remembered Yes

5.14 Blinking Block Cursor On

Syntax Description	Hexadecimal Decimal ASCII This command v current text inse	254 83 254 "S" will cause the VK162-12 to display a block cursor at the
Remembered	Yes	-

5.15 Blinking Block Cursor Off

Syntax	Hexadecimal	0xFE 0x54
-	Decimal	254 84
	ASCII	254 "T"
Description	This command	will turn the block cursor off.
Remembered	Yes	

6 Special Characters

6.1 Introduction

The VK162-12 has the ability to create four different sets of eight custom characters and save them to internal banks of memory. Each set of eight can be recalled from memory at any time, and selected characters can be written to the display screen. Characters and sets can be created at any time, saved for later use, and displayed to the screen through the intuitive command structure described below.

6.2 Creating a Custom Character

Syntax	Hexadecimal	0xFE 0x4E [refID] [data]		
-	Decimal	254 78 [refID] [data]		
	ASCII	254 "N" [refID]] [data]	
Parameters	Parameter	Length	Description	
	refID	1	Character reference ID (0-7).	
	data	8	Character data.	

Description The VK162-12 allows for up to eight custom defined characters to be added onto the the character set. A custom character is a five by seven, plus underline, pixel matrix with each row represented by a byte value. Eg.:

Custom Character 'h'			Decimal	Hex		
1	0	0	0	0	16	0x10
1	0	0	0	0	16	0x10
1	0	0	0	0	16	0x10
1	0	1	1	0	22	0x16
1	1	0	0	1	25	0x19
1	0	0	0	1	17	0x11
1	0	0	0	1	17	0x11
0			0	0x00		

Each bit value of one, in the table, represents an on pixel, whereas a value of zero represents a pixel that is turned off. Therefore in order to define custom character 'h' you would send the command byte prefix 254 followed by the command 78. Next, you will have to select the memory location in which you wish to save the character in. The available memory locations for this command are zero through to seven. After sending the memory location, or [refID], you may then send the eight byte custom character data in sequence from the top to the bottom.

Once you have defined a custom character you may display it by sending the display module the [refID]. For example if a custom character was saved in position one, the command to display the custom character, at the current cursor position, would be simply to send the number one to the display module without quotes. No

Remembered

6.3 Saving Custom Characters

Syntax	Hexadecimal	0xFE 0xC1 [Bank] [ID] [Data]	
	Decimal	254 193 [Bank]	[ID] [Data]
Parameters	Parameter	Length	Description
-	Bank	1	Memory bank to save to (0-4).
	ID	1	Character ID (0-7)
	Data	8	Character Definition

Description New to the VK162-12 has added five non-volatile memory banks for custom character storage. This is intended to allow you to create your own custom bar graphs, medium/large numbers and startup screen. However, each memory bank may be used to store a set of any eight custom characters; with the only provision being that memory bank zero contains the characters that will be used in the startup screen. By default the memory banks will be loaded as follows:

[Bank]	Description
0	Startup screen characters.
1	Horizontal bars
2	Vertical bars
3	Medium numbers

In order to save new custom characters into a memory bank, follow the same process as you would for creating a custom character, see Section 6.2 on page 24, only use 254 193 [Bank Number] before sending the [ID] and character [Data]. Yes

Remembered

6.4 Loading Custom Characters

Syntax	Hexadecimal	0xFE 0xC0 [Ba	nk]
•	Decimal	254 192 [Bank]	
Parameters	Parameter	Length	Description
	Bank	1	Memory bank to save to (0-4).
Description	This command i	is used to load the	e custom characters into the volatile
	memory so that	they may be used	l. If custom bar graph or number
	characters are st	ored in the memo	bry banks, this command may be used
	instead of initializing the bar graph / number. To use this command set		
	the command bytes followed by the [Bank] that contains the custom		
	character data th	nat you want to re	etrieve.

Remembered No

6.5 Save Startup Screen Custom Characters

Syntax	Hexadecimal	0xFE 0xC2 [refID] [data]		
	Decimal	254 194 [refID]	[data]	
Parameters	Parameter	Length	Description	
	refID	1	Character reference ID (0-7).	
	data	8	Character data.	

DescriptionUsing this command you may create the custom characters. that will be
stored in memory bank zero, which will be used in the startup screen.
For more information about creating custom characters see Section 6.2
on page 24.

NOTES

- Changes only take place once the power has been cycled.
- This command is the same as sending CMD 254 / 193 / 0 / [ID] / [DATA]

Remembered Yes

6.6 Initialize Medium Number

Syntax	Hexadecimal	0xFE 0x6D
	Decimal	254 109
	ASCII	254 "m"
Description	This command	will load the default medium number characters into the
	volatile memory	. If you have stored your own custom medium numbers,
	use the 'Load C	ustom Characters' command to load your custom
	character data ir	to the volatile memory. This command will allow you
	to use the 'Place	e Medium Numbers' command.

Remembered No

6.7 Place Medium Numbers

Syntax	Hexadecimal	0xFE 0x6F [F	Row] [Col] [Digit]
	Decimal	254 111 [Rov	v] [Col] [Digit]
	ASCII	254 "o" [Row] [Col] [Digit]
Parameters	Parameter	Length	Description
	Row	1	The row number.
	Col	1	The column number.
	Digit	1	Medium number to place (0-9).
Description	This command	will place a mee	lium number (two columns high) at the
	[row] and [col]	specified.	
	NOTE Mediu	m Numbers mu	st be initialized before this command is executed.
Remembered	No		

6.8 Initialize Horizontal Bar

Hexadecimal	0xFE 0x68
Decimal	254 104
ASCII	254 "h"
This command	will load the default horizontal bar characters into the
volatile memory	7. If you have stored your own custom horizontal bar
data, use the 'Lo	bad Custom Characters' command instead to load your
custom bar data	into the volatile memory. This command will allow you
to use the 'Place	e Horizontal Bar' command.
	Decimal ASCII This command volatile memory data, use the 'Le custom bar data

Remembered No

6.9 Place Horizontal Bar Graph

Syntax	Hexadecimal	0xFE 0x7C [Col] [Row] [Dir] [Length]	
	Decimal	254 124 [Col] [Row] [Dir] [Length]	
	ASCII	254 " " [Col] [Row] [Dir] [Length]
Parameters	Parameter	Length	Description
	Col	1	The column number.
	Row	1	The row number.
	Dir	1	The direction of the bar data (0 or
			1).
	Length	1	The length of the bar data.
Description	This command	will place a bar	graph at [row], [column]. A [Dir] value
-	of zero will cau	se the bar to go	right, and one will cause the bar to go
	left. The [Lengt	h] is the size in	pixels of the bar graph.

NOTES

- Horizontal Bars must be initialized before this command is executed.
- Bar graphs may be one directional only.

Remembered No

6.10 Initialize Narrow Vertical Bar

Syntax	Hexadecimal	0xFE 0x73
	Decimal	254 115
	ASCII	254 "s"

Description This command will load the narrow vertical bar characters into the volatile memory. If you have stored your own custom vertical bar data, use the 'Load Custom Characters' command instead to load your custom bar data into the volatile memory. This command will allow you to use the 'Place Vertical Bar' command.

NOTE Narrow bars have a width of two pixels.

Remembered

6.11 Initialize Wide Vertical Bar

No

No

Syntax	Hexadecimal	0xFE 0x76	
-	Decimal	254 118	
	ASCII	254 "v"	
Description	This command will load the wide vertical bar characters into the volatile		
	memory. If you have stored your own custom vertical bar data, use the		
	'Load Custom Characters' command instead to load your custom bar		
	data into the volatile memory. This command will allow you to use the		
	'Place Vertical Bar' command.		

NOTE Wide bars have a width of five pixels.

Remembered

6.12 Place Vertical Bar

Syntax	Hexadecimal	0xFE 0x3D [Column] [Length]	
	Decimal	254 61 [Colur	nn] [Length]
	ASCII	254 "=" [Colu	ımn] [Length]
Parameters	Parameter	Length	Description
	Column	1	The column number.
	Length	1	The length of the bar data.

Description This command will place a bar graph at the specified [Column] with the specified [Length]. The [Length] is the size in pixels of the bar graph.

NOTES

- A Vertical Bar style must be initialized before this command is executed.
- Bar graphs may be one directional only.

Remembered

7 General Purpose Output

No

7.1 Introduction

General purpose outputs allow you to connect devices, such as LEDs, to the VK162-12 and supply them with up to 20mA of current at 5V. The VK162-12 has 7 GPOs which are software controlled, with functions to turn them on/off and set the power state for the next startup.

7.2 Toggle Keypad/GPO mode

Syntax	Hexadecimal Decimal	0xFE 0x25 [Mode] 254 37 [Mode]	
	ASCII	254 "%" [Mod	
Parameters	Parameter	Length	Description
	Mode	1	0: Keypad, 1: GPO
Description	The 162-12 uses the same port for keypad and GPO. This command will allow you to toggle the display between GPO or Keypad mode. To use the GPO's send cmd $254/37/1$. To go to keypad mode, cmd $254/37/0$ must be sent.		
~			

Remembered Yes

7.3 General Purpose Output Off

Syntax	Hexadecimal	0xFE 0x56 [Num]	
•	Decimal	254 86 [Num]	
	ASCII	254 "V" [Num]	
Parameters	Parameter	Length	Description
	Num	1	GPO number.

Description This command turns OFF general purpose output [num].

NOTE OFF means that the output is pulled LOW.

Remembered Yes

7.4 General Purpose Output On

Syntax	Hexadecimal Decimal ASCII	0xFE 0x57 [Nun 254 87 [Num] 254 "W" [Num]	-
Parameters	Parameter	Length	Description
	Num	1	GPO number.
Description	This command t	urns ON general	purpose output [num]. The standard
	GPO's on the V	K162-12 output 2	0mA of current at 5V.

NOTE ON means the output is pulled HIGH.

Remembered Yes

7.5 Set Startup GPO state

Syntax	Hexadecimal	0xFE 0xC3 [N	Jum] [state]
	Decimal	254 195 [Num	n] [state]
Parameters	Parameter	Length	Description
	Num	1	GPO number.
	state	1	Startup state (0: Off, 1: On)
Description	This command will set the startup state for the GPO on the next power up. A value of one will cause the GPO to be off on the next startup while a value of one will cause the GPO to be on.		
	NOTE This command does not affect the current state of the GPO.		
Remembered	Always		

8 Dallas 1-Wire

8.1 Introduction

Another convenient feature of the VK162-12 is that it provides a Dallas 1-wire interface in order to readily communicate with up to thirty two 1-wire devices on a single bus. 1-wire communication is begun by discovering the address of the device that you wish to communicate with. To do this you must send the "Search for a 1-Wire Device' command. After you have established the address of the device that you wish to communicate with, you may begin a transaction with the device

8.2 Search for a 1-Wire Device

Syntax

Hexadecimal 0xFE 0xC8 0x2

Description

Decimal 254 200 2 This command will allow you to begin communicating with the devices

on the 1-wire bus by returning a packet containing device information for each 1-wire device on the bus in the form of:

Search Return Packet

Offset	Offset	Description
(Bytes)	(Bytes)	
0	2	
		0x232A Preamble
2	1	
		0x8A Packet is 10 bytes long, an- other address will follow
		0x0A Packet is 10 bytes long, this is the last address
3	1	0x31 - 1-Wire Packet Type
4	1	Error Code (0x00 for success)
5	8	1-Wire Address
13	1	
		CRC8 0x00 means the last address was valid

Remembered

No

8.3 Dallas 1-Wire Transaction

Syntax	Hexadecimal Decimal		[flags] [SndBits] [RcvBits] [Data] s] [SndBits] [RcvBits] [Data]
Parameters	Parameter	Length	Description
	flags	1	Flags to control optional components of the transaction.
	SndBits	1	The number of bits you will be transmitting on the bus.
	RcvBits	1	The number of bits you will be reading on the bus.
	Data	variable	Data to be transmitted, LSB to MSB.

Description This command will perform a single transaction on the 1-wire bus in this order:

- 1. Bus Reset.
- 2. Transmit data onto the bus.
- 3. Receive data from the bus.

The number of bits to be transmitted and read must be specified for this command to be successful.

NOTE To determine what functions the device will respond to, consult the devices' data sheet.

1-Wire	Flags
--------	-------

Bit	Description
7	
6	Unused
5	(0 for future compatibility)
4	
3	Add a CRC8 to the end of the transmitted data
2	(0 for future compatibility)
1	Assume last received byte is a CRC8 and validate it
0	Reset bus before transaction

1-Wire Error Codes

Code	Description
0x00	Success
0x01	Unknown 1-Wire Command
0x02	No devices on the bus
0x03	Fatal search error

Remembered No

9 Keypad

9.1 Introduction

The VK162-12 supports up to a 12 key, matrix style, keypad and may be configured to allow key presses to be automatically transmitted via RS-232 or polled through I²C. The VK162-12 also allows for autorepeating key presses, and remapping of all keypad character codes.

The connector is not keyed so the keypad will probably plug in either of two ways. The display will not be damaged by reversing the connector. However, the keypad will generate a different ASCII character mapping for each position. If the connector has fewer than 10 pins it should be centered on the display

connector. The keypad is scanned whenever a key is pressed; there is no continuous key scan. This means that key presses are dealt with immediately without any appreciable latency. This also prevents electrical noise which is often caused by continuous key scans.

9.1.1 I²C Interface

The keypad is read by I^2C master read. In short, this means that a read of the module will always return the first unread key press. A read is initiated by writing to the module with its base address plus 1, then clocking the module's return byte after the module releases the SDA line. Much more detail on this basic I^2C function can be found in the I^2C specification by Phillips.

9.1.2 RS232 Interface

By default on any press of a key, the module will immediately send out the key code at the selected baud rate. This behavior can be modified using commands found in the next section.

9.2 Auto Transmit Key Presses On

Syntax	Hexadecimal Decimal ASCII	0xFE 0x41 254 65 254 "A"
Description	In this mode, all	key presses are sent immediately to the host system of the poll keypad command. This is the default mode

NOTE This command is not available in I^2C .

Remembered	Yes
Default	On

9.3 Auto Transmit Key Presses Off

Syntax	Hexadecimal	0xFE 0x4F
	Decimal	254 79
	ASCII	254 "O"

Description In this mode, up to 10 key presses are buffered until the unit is polled by the host system, via the poll keypad command 254 38. Issuing this command places the unit in polled mode.

NOTE This command is not available in I^2C .

Remembered Yes

9.4 Poll Key Press

Syntax	Hexadecimal Decimal	0xFE 0x26 254 38
	ASCII	254 "&"
Description	This command r	returns any buffered key presses via the serial interface.
	The host system	must be set up to receive key codes. When the display
	receives this con	nmand, it will immediately return any buffered key
	presses which m	ay have not been read already. If there is more than one
	key press buffer	ed, then the high order bit (MSB) of the returned key
	code will be set	(1). If this is the only buffered key press, then the MSB
	will be cleared (0). If there are no buffered key presses, then the
	returned code w	ill be 0x00. Please note that to make use of this
	command, the "A	Auto Transmit Key Presses" mode should be off.

NOTE This command is not available in I^2C . To read keys in I^2C mode, one just needs to address the module and read a byte. No preceding commands are necessary. If there are no keys pressed the read will result in a 0x00.

Remembered

No

9.5 Clear Key Buffer

Syntax	Hexadecimal Decimal	0xFE 0x45 254 69
	ASCII	254 "E"
Description	the user presses key presses may between menu c	clears any unread key presses. In a menu application, if a key which changes the menu context, any following be inaccurate and can be cleared out of the buffer changes to prevent jumping around the menu tree. It may effect, to reset the keypad in case the host application ver reason.

Remembered No

9.6 Set Debounce Time

Syntax	Hexadecimal	0xFE 0x55 [tim	le]
	Decimal	254 85 [time]	
	ASCII	254 "U" [time]	
Parameters	Parameter	Length	Description
	time	1	Debounce time in increments of
			6.554ms (0 - 255).
Description	types with the ex varying time, de value is in incre	xception of latche epending on their ments of 6.554ms	een key press and key read. All key ed piezo switches will 'bounce' for a physical characteristics. The [time] s. The default debounce time for the is adequate for most membrane
Remembered	Yes		
Default	8		

9.7 Set Auto Repeat Mode

Syntax	Hexadecimal Decimal	0xFE 0x7E [mo 254 126 [mode]	-
	ASCII	254 "~" [mode]	
Parameters	Parameter	Length	Description
	mode	1	Auto Repeat Mode (0: Resend Key
			, 1: Key Up/Down)

Description	Two auto repeat modes are available and are set via the same command:		
	 Resend Key Mode: 0x00 Key Up/Down Mode: 0x01 		
	Resend Key Mode This mode is similar to the action of a keyboard on a PC. In this mode, when a key is held down, the key code is transmitted immediately followed by a $1/2$ second delay. After this delay, key codes will be sent via the RS-232 interface at a rate of about 5 codes per second. This mode has no effect if polling or if using the I ² C interface.		
	Key Up/Down Mode This mode may be used when the typematic parameters of the "Resend Key Code" mode are unacceptable or if the unit is being operated in polled mode. The host system detects the press of a key and simulates an auto repeat inside the host system until the key release is detected. In this mode, when a key is held down, the key code is transmitted immediately and no other codes will be sent until the key is released. On the release of the key, the key release code transmitted will be a value equal to the key down code plus 20 hex.		
Remembered Examples	Yes When the key code associated with key 'P' (0x50) is pressed, the release code is 'p' (0x70). In RS-232 polled mode or via the I^2C , the "Key Down / Key Up" codes are used; however, the user should be careful of timing details. If the poll rate is slower than the simulated auto-repeat it is possible that polling for a key up code will be delayed long enough for an unwanted key repeat to be generated.		

9.8 Auto Repeat Mode Off

Syntax	Hexadecimal	0xFE 0x60	
-	Decimal	254 96	
	ASCII	254 "'''	
Description	This command turns auto repeat mode off. See Set Auto Repeat Mode.		
Remembered	No		

9.9 Assign Keypad Codes

Syntax	Hexadecimal	0xFE 0xD5 [KDown] [KUp]	
	Decimal	254 213 [KDown] [KUp]	

Parameters	Parame	eter		Le	ng	gth		Des	cript	ion	
	KDow	n			12	,		Key	dow	n co	odes
	KUp				12	,		Key	up c	code	S
Description	This con	nman	d wil	l allo	w	you	to re	eassi	gn tl	he ke	ey codes that correspond
	to the ke	y pre	sses	on the	e n	natri	x st	yle k	ey p	ad. 7	The first 12 bytes that are
	transmit	ted w	ill be	used	fo	or th	e ke	y do	wn c	odes	s and the next 12 bytes
	that are transmitted will be used for the key up codes.			codes.							
	K	Key Down					K	ley U	Jp		
	1	2	3	4			1	2	3	4	
	1 A	В	С	D		1	а	b	с	d	
	2 E	F	G	Н		2	e	f	g	h	
	3 I	J	Κ	L		3	i	j	k	1	
Damanhanal	A 1										-

Remembered Always

10 Display Functions

10.1 Introduction

The VK162-12 employs software controlled display settings, which allow for control over, clearing the screen, changing the brightness and contrast or setting timers for turning it on or off. The combination of these allow you complete software control over your display's appearance.

10.2 Display On

Syntax	Hexadecimal	0xFE 0x42 [min]		
-	Decimal	254 66 [min]		
	ASCII	254 "B" [min]		
Parameters	Parameter	Length	Description	
	min	1	Minutes before turning the display	
			on (0 to 90).	
Description	This command t	turns the backligh	nt on after the [minutes] timer has	
	expired, with a ninety minute maximum timer. A time of 0 specifies that			
	the backlight should turn on immediately and stay on. When this command is sent while the remember function is on, the timer will reset			
	and begin after	power up.		
Remembered	Yes			
Default	0			

10.3 Display Off

Syntax	Hexadecimal Decimal	0xFE 0x46 254 70	
	ASCII	254 'F'	
Description	This command turns the backlight off immediately. The backlight will remain off until a 'Display On' command has been received.		
Remembered	Yes		

10.4 Set VFD Brightness

Syntax	Hexadecimal	0xFE 0x59 [t	orightness]
•	Decimal	254 89 [brigh	itness]
	ASCII	254 "Y" [brig	ghtness]
Parameters	Parameter	Length	Description
	brightness	1	Brightness setting (0 to 3).
Description	This command	sets and saves	the display's brightness to [brightness],
	where [brightne	ess] is a value b	etween 0x00
	and 0x03 (betw	veen 0 and 3) ac	cording to the table below:
	Value Brig	htness	
	0x03 2	5%	
	0x02 5	0%	
	0x01 7	5%	
	0x00 10	00%	
	If the remembe	r function is on	, this command acts the same as 'Set and
	Save VFD Brig	htness'.	
Remembered	Yes		

Remembered Default

10.5 Set and Save VFD Brightness

255

Syntax	Hexadecimal	0xFE 0x91 [brightness]		
-	Decimal	254 145 [brigh	ntness]	
Parameters	Parameter	Length	Description	
	brightness	1	Brightness setting (0 to 3).	

Description This command sets and saves the display's brightness to [brightness], where [brightness] is a value between 0x00 and 0x03 (between 0 and 3) according to the table below:

25%
50%
75%
100%

Remembered

11 Data Security

11.1 Introduction

Ensuring that your VK162-12 display's exactly what you want it to can be the difference between a projects success and failure. This is why we incorporate features such as Data Lock into the VK162-12 With this new feature you now are in control over of how and when settings will be changed so there is no need to worry about the module acting exactly like you expected it to because all the settings may be locked and remembered for the next power up.

11.2 Set Remember

Syntax	Hexadecimal	0xFE 0x93 [switch]	
-	Decimal	254 147 [swite	ch]
Parameters	Parameter	Length	Description
	switch	1	0: Do not remember, 1: Remember

Description	This command allows you to switch the remember function on and off. To use the remember function, set remember to on, then set all of the settings that you wish to save, settings that are listed as 'Remember: Yes' support being saved into the non-volatile memory. After you have set all of the commands that you wish to save, you may then cycle the power and check the display settings to ensure that all the settings have been saved. If you wish to use remember again after cycling the power,
	you must set it to on again.

NOTES

- Writing to non-volatile memory is time consuming and slows down the operation of the display.
- Non-volatile memory has a 'write limit' and may only be changed approximately 100,000 times.

Remembered Default No Do not remember

11.3 Data Lock

Syntax	Hexadecimal	0xFE 0xCA 0xF5 0xA0 [level]		
-	Decimal	254 202 245 16	60 [level]	
Parameters	Parameter	Length	Description	
	level	1	Sets the data lock level	

Description

Paranoia allows you to lock the module from displaying information, as well as enables the protection of the filesystem and module settings. Each bit corresponds corresponds to a different lock level, while sending a zero will unlock your display as the following tables explains:

Bit	Data Lock Level	Description
0-2	Reserved	Should be left 0
3	Communication	When this bit is set (1) the
	Speed Lock	Baud Rate and I ² C Slave
		address are locked
4	Setting Lock	When this bit is set (1)
		the display settings such
		as backlight, contrast and
		GPO settings are locked.
		(Internal EEPROM)
5	Reserved	Should be left 0
6	Command Lock	When this bit is set (1) all
		commands but commands
		202/203 are locked. (cmd
		lock)
7	Display Lock	When this bit is set (1) the
		module is locked from dis-
		playing any new informa-
		tion. (text lock)

NOTES

- Sending a new data lock level will override the previous data lock level.
- Data lock levels may be combined.

Remembered Default Examples

Always 0

Hex	Dec	Binary	Description
0x00	0	0	Unlock
0x50	80	01010000	Setting and Command Lock

11.4 Set and Save Data Lock

Syntax

Hexadecimal 0xFE 0xCB 0xF5 0xA0 [level] Decimal 254 203 245 160 [level]

Parameters	Parameter	Length	Description
	level	1	Sets the data lock level
Description	This command wi section for more i		e the data lock level. See the Data Lock
Remembered Default	Always 0		

11.5 Write Customer Data

Syntax	Hexadecimal	0xFE 0x34 [dat	a]
-	Decimal	254 52 [data]	
	ASCII	254 "4" [data]	
Parameters	Parameter	Length	Description
	data	16	Writes the customer data
Description	Writes the custo	mer Data. 16 By	tes of data can be saved in non-volatile
	memory.		

Remembered No

11.6 Read Customer Data

Syntax	Hexadecimal	0xFE 0x35
•	Decimal	254 53
	ASCII	254 "5"
Description	Reads whatever	was written by Write Customer Data.

Remembered No

12 Miscellaneous

12.1 Introduction

This chapter covers the 'Report Version Number' and 'Read Module Type' commands. These commands can be particularly useful to find out more information about the display module before contacting technical support.

12.2 Read Version Number

Syntax	Hexadecimal	0xFE 0x36
-	Decimal	254 54
	ASCII	254 "6"
Description		will return a byte representing the version of the module, g table as an example:

Hex Value	Version Number
0x19	Version 1.9
0x57	Version 5.7

Remembered No

12.3 Read Module Type

Syntax	Hexadecimal	0xFE 0x37
-	Decimal	254 55
	ASCII	254 "7"

Description This command will return a hex value corresponding to the model number of the module see the following table:

Hex	Product ID	Hex	Product ID
1	LCD0821	2	LCD2021
5	LCD2041	6	LCD4021
7	LCD4041	8	LK202-25
9	LK204-25	Α	LK404-55
В	VFD2021	С	VFD2041
D	VFD4021	Е	VK202-25
F	VK204-25	10	GLC12232
13	GLC24064	14	Unused
15	GLK24064-25	16	Unused
21	Unused	22	GLK12232-25
23	Unused	24	GLK12232-25-SM
25	GLK24064-16-1U-USB	26	GLK24064-16-1U
27	GLK19264-7T-1U-USB	28	GLK12232-16
29	GLK12232-16-SM	2A	GLK19264-7T-1U
2B	LK204-7T-1U	2C	LK204-7T-1U-USB
31	LK404-AT	32	MOS-AV-162A
33	LK402-12	34	LK162-12
35	LK204-25PC	36	LK202-24-USB
37	VK202-24-USB	38	LK204-24-USB
39	VK204-24-USB	3A	PK162-12
3B	VK162-12	3 C	MOS-AP-162A
3D	PK202-25	3E	MOS-AL-162A
3F	MOS-AL-202A	40	MOS-AV-202A
41	MOS-AP-202A	42	PK202-24-USB
43	MOS-AL-082	44	MOS-AL-204
45	MOS-AV-204	46	MOS-AL-402
47	MOS-AV-402	48	LK082-12
49	VK402-12	4 A	VK404-55
4B	LK402-25	4 C	VK402-25
4D	PK204-25	4 E	Unused
4 F	MOS	50	MOI
51	XBoard-S	52	XBoard-I
53	MOU	54	XBoard-U
55	LK202-25-USB	56	VK202-25-USB
57	LK204-25-USB	58	VK204-25-USB
5B	LK162-12-TC	5C	Unused
71	Unused	72	GLK240128-25
73	LK404-25	74	VK404-25
77	Unused	78	GLT320240
79	GLT480282	7A	GLT240128

Remembered

13 Command Summary

13.1 Communications

Description	Syntax		Page
Changing the I ² C Slave	Hexadecimal	0xFE 0x33 [adr]	15
Address	Decimal	254 51 [adr]	
	ASCII	254 "3" [adr]	
Changing the Baud Rate	Hexadecimal	0xFE 0x39 [speed]	16
	Decimal	254 57 [speed]	
	ASCII	254 "9" [speed]	
Setting a Non-Standard	Hexadecimal	0xFE 0xA4 [speed]	17
Baud Rate	Decimal	254 164 [speed]	

13.2 Text

Description	Syntax		Page
Auto Scroll On	Hexadecimal	0xFE 0x51	19
	Decimal	254 81	
	ASCII	254 "Q"	
Auto Scroll Off	Hexadecimal	0xFE 0x52	20
	Decimal	254 82	
	ASCII	254 "R"	
Clear Screen	Hexadecimal	0xFE 0x58	20
	Decimal	254 88	
	ASCII	254 "X"	
Changing the Startup	Hexadecimal	0xFE 0x40	20
Screen	Decimal	254 64	
	ASCII	254 "@"	
Set Auto Line Wrap On	Hexadecimal	0xFE 0x43	21
	Decimal	254 67	
	ASCII	254 "C"	
Set Auto Line Wrap Off	Hexadecimal	0xFE 0x44	21
	Decimal	254 68	
	ASCII	254 "D"	
Set Cursor Position	Hexadecimal	0xFE 0x47 [col] [row]	21
	Decimal	254 71 [col] [row]	
	ASCII	254 "G" [col] [row]	
Go Home	Hexadecimal	0xFE 0x48	22
	Decimal	254 72	
	ASCII	254 "H"	

Move Cursor BackHexadecimal0xFE 0x4CDecimal254 76ASCII254 "L"Move Cursor ForwardHexadecimal0xFE 0x4DDecimal254 77ASCII254 "M"Underline Cursor OnHexadecimal0xFE 0x4ADecimal254 74ASCII254 "J"Underline Cursor OffHexadecimal0xFE 0x4BDecimal254 75ASCII254 75ASCII254 75	22
ASCII 254 "L" Move Cursor Forward Hexadecimal 0xFE 0x4D Decimal 254 77 ASCII 254 "M" Underline Cursor On Hexadecimal 0xFE 0x4A Decimal 254 74 ASCII 254 "J" Underline Cursor Off Hexadecimal 0xFE 0x4B Decimal 254 75	
Move Cursor ForwardHexadecimal0xFE 0x4DDecimal254 77ASCII254 "M"Underline Cursor OnHexadecimal0xFE 0x4ADecimal254 74ASCII254 "J"Underline Cursor OffHexadecimal0xFE 0x4BDecimal254 75	
Decimal254 77ASCII254 "M"Underline Cursor OnHexadecimal0xFE 0x4ADecimal254 74ASCII254 "J"Underline Cursor OffHexadecimal0xFE 0x4BDecimal254 75	
ASCII254 "M"Underline Cursor OnHexadecimal0xFE 0x4ADecimal254 74ASCII254 74ASCII254 "J"Underline Cursor OffHexadecimal0xFE 0x4BDecimal254 75	22
Underline Cursor OnHexadecimal0xFE 0x4ADecimal254 74ASCII254 "J"Underline Cursor OffHexadecimal0xFE 0x4BDecimal254 75	
Decimal254 74ASCII254 "J"Underline Cursor OffHexadecimal0xFE 0x4BDecimal254 75	
Underline Cursor OffASCII254 "J"Hexadecimal0xFE 0x4BDecimal254 75	23
Underline Cursor OffHexadecimal0xFE 0x4BDecimal254 75	
Decimal 25475	
	23
ASCII 254 "K"	
Blinking Block Cursor Hexadecimal 0xFE 0x53	23
On Decimal 254 83	
ASCII 254 "S"	
Blinking Block Cursor Hexadecimal 0xFE 0x54	23
Off Decimal 254 84	
ASCII 254 "T"	

13.3 Special Characters

Description	Syntax		Page
Creating a Custom	Hexadecimal	0xFE 0x4E [refID] [data]	24
Character	Decimal	254 78 [refID] [data]	
	ASCII	254 "N" [refID] [data]	
Saving Custom	Hexadecimal	0xFE 0xC1 [Bank] [ID] [Data]	25
Characters	Decimal	254 193 [Bank] [ID] [Data]	
Loading Custom	Hexadecimal	0xFE 0xC0 [Bank]	26
Characters	Decimal	254 192 [Bank]	
Save Startup Screen	Hexadecimal	0xFE 0xC2 [refID] [data]	26
Custom Characters	Decimal	254 194 [refID] [data]	
Initialize Medium	Hexadecimal	0xFE 0x6D	27
Number	Decimal	254 109	
	ASCII	254 "m"	
Place Medium Numbers	Hexadecimal	0xFE 0x6F [Row] [Col] [Digit]	27
	Decimal	254 111 [Row] [Col] [Digit]	
	ASCII	254 "o" [Row] [Col] [Digit]	
Initialize Horizontal Bar	Hexadecimal	0xFE 0x68	28
	Decimal	254 104	
	ASCII	254 "h"	
Place Horizontal Bar	Hexadecimal	0xFE 0x7C [Col] [Row] [Dir] [Length]	28
Graph	Decimal	254 124 [Col] [Row] [Dir] [Length]	
-	ASCII	254 " " [Col] [Row] [Dir] [Length]	

Description	Syntax		Page
Initialize Narrow Vertical	Hexadecimal	0xFE 0x73	28
Bar	Decimal	254 115	
	ASCII	254 "s"	
Initialize Wide Vertical	Hexadecimal	0xFE 0x76	29
Bar	Decimal	254 118	
	ASCII	254 "v"	
Place Vertical Bar	Hexadecimal	0xFE 0x3D [Column] [Length]	29
	Decimal	254 61 [Column] [Length]	
	ASCII	254 "=" [Column] [Length]	

13.4 General Purpose Output

Description	Syntax		Page	
Toggle Keypad/GPO	Hexadecimal	0xFE 0x25 [Mode]	30	
mode	Decimal	254 37 [Mode]		
	ASCII	254 "%" [Mode]		
General Purpose Output	Hexadecimal	0xFE 0x56 [Num]	30	
Off	Decimal	254 86 [Num]		
	ASCII	254 "V" [Num]		
General Purpose Output	Hexadecimal	0xFE 0x57 [Num]	31	
On	Decimal	254 87 [Num]		
	ASCII	254 "W" [Num]		
Set Startup GPO state	Hexadecimal	0xFE 0xC3 [Num] [state]	31	
-	Decimal	254 195 [Num] [state]		

13.5 Dallas 1-Wire

Description	Syntax	Page
Search for a 1-Wire	Hexadecimal	0xFE 0xC8 0x2 32
Device	Decimal	254 200 2
Dallas 1-Wire	Hexadecimal	0xFE 0xC8 0x1 [flags] [SndBits] [RcvBits] [Data]
Transaction	Decimal	254 200 1 [flags] [SndBits] [RcvBits] [Data]

13.6 Keypad

Description	Syntax		Page
Auto Transmit Key	Hexadecimal	0xFE 0x41	35
Presses On	Decimal	254 65	
	ASCII	254 "A"	

Description	Syntax		Page
Auto Transmit Key	Hexadecimal	0xFE 0x4F	35
Presses Off	Decimal	254 79	
	ASCII	254 "O"	
Poll Key Press	Hexadecimal	0xFE 0x26	36
	Decimal	254 38	
	ASCII	254 "&"	
Clear Key Buffer	Hexadecimal	0xFE 0x45	36
	Decimal	254 69	
	ASCII	254 "E"	
Set Debounce Time	Hexadecimal	0xFE 0x55 [time]	37
	Decimal	254 85 [time]	
	ASCII	254 "U" [time]	
Set Auto Repeat Mode	Hexadecimal	0xFE 0x7E [mode]	37
	Decimal	254 126 [mode]	
	ASCII	254 "~" [mode]	
Auto Repeat Mode Off	Hexadecimal	0xFE 0x60	38
	Decimal	254 96	
	ASCII	254 "'"	
Assign Keypad Codes	Hexadecimal	0xFE 0xD5 [KDown] [KUp]	38
	Decimal	254 213 [KDown] [KUp]	

13.7 Display Functions

Description	Syntax		Page	
Display On	Hexadecimal	0xFE 0x42 [min]	39	
	Decimal	254 66 [min]		
	ASCII	254 "B" [min]		
Display Off	Hexadecimal	0xFE 0x46	39	
1 .	Decimal	254 70		
	ASCII	254 "F"		
Set VFD Brightness	Hexadecimal	0xFE 0x59 [brightness]	40	
C	Decimal	254 89 [brightness]		
	ASCII	254 "Y" [brightness]		
Set and Save VFD	Hexadecimal	0xFE 0x91 [brightness]	40	
Brightness	Decimal	254 145 [brightness]		

13.8 Data Security

Description	Syntax		Page
Set Remember	Hexadecimal	0xFE 0x93 [switch]	41
	Decimal	254 147 [switch]	
Data Lock	Hexadecimal	0xFE 0xCA 0xF5 0xA0 [level]	42
	Decimal	254 202 245 160 [level]	
rix Orbital	VK162-12		

Description	Syntax		Page
Set and Save Data Lock	Hexadecimal	0xFE 0xCB 0xF5 0xA0 [level]	43
	Decimal	254 203 245 160 [level]	
Write Customer Data	Hexadecimal	0xFE 0x34 [data]	44
	Decimal	254 52 [data]	
	ASCII	254 "4" [data]	
Read Customer Data	Hexadecimal	0xFE 0x35	44
	Decimal	254 53	
	ASCII	254 "5"	

13.9 Miscellaneous

Description	Syntax		Page
Read Version Number	Hexadecimal	0xFE 0x36	44
	Decimal	254 54	
	ASCII	254 "6"	
Read Module Type	Hexadecimal	0xFE 0x37	45
	Decimal	254 55	
	ASCII	254 "7"	

13.10 Command By Number

Commar	nd Descrip	tion Page		
Hex	Dec	ASCII		
0x25	37	"%"	Toggle Keypad/GPO mode	30
0x26	38	"&"	Poll Key Press	36
0x33	51	"3"	Changing the I ² C Slave Address	15
0x34	52	"4"	Write Customer Data	44
0x35	53	"5"	Read Customer Data	44
0x36	54	"6"	Read Version Number	44
0x37	55	"7"	Read Module Type	45
0x39	57	"9"	Changing the Baud Rate	16
0x3D	61	··="	Place Vertical Bar	29
0x40	64	"@"	Changing the Startup Screen	20
0x41	65	"A"	Auto Transmit Key Presses On	35
0x42	66	"В"	Display On	39
0x43	67	"C"	Set Auto Line Wrap On	21
0x44	68	"D"	Set Auto Line Wrap Off	21
0x45	69	"Е"	Clear Key Buffer	36
0x46	70	"F"	Display Off	39
0x47	71	"G"	Set Cursor Position	21
0x48	72	"H"	Go Home	22
0x4A	74	"J"	Underline Cursor On	23

Commai	nd Descrip	tion Page		
Hex	Dec	ASCII		
0x4B	75	"К"	Underline Cursor Off	23
0x4C	76	"L"	Move Cursor Back	22
0x4D	77	"М"	Move Cursor Forward	22
0x4E	78	"N"	Creating a Custom Character	24
0x4F	79	"O"	Auto Transmit Key Presses Off	35
0x51	81	"Q"	Auto Scroll On	19
0x52	82	"R"	Auto Scroll Off	20
0x53	83	"S"	Blinking Block Cursor On	23
0x54	84	"T"	Blinking Block Cursor Off	23
0x55	85	"U"	Set Debounce Time	37
0x56	86	"V"	General Purpose Output Off	30
0x57	87	"W"	General Purpose Output On	31
0x58	88	"X"	Clear Screen	20
0x59	89	"Y"	Set VFD Brightness	40
0x60	96	,	Auto Repeat Mode Off	38
0x68	104	"h"	Initialize Horizontal Bar	28
0x6D	109	"m"	Initialize Medium Number	27
0x6F	111	"o"	Place Medium Numbers	27
0x73	115	"s"	Initialize Narrow Vertical Bar	28
0x76	118	"v"	Initialize Wide Vertical Bar	29
0x7C	124	""	Place Horizontal Bar Graph	28
0x7E	126	"~"	Set Auto Repeat Mode	37
0x91	145		Set and Save VFD Brightness	40
0x93	147		Set Remember	41
0xA4	164		Setting a Non-Standard Baud Rate	17
0xC0	192		Loading Custom Characters	26
0xC1	193		Saving Custom Characters	25
0xC2	194		Save Startup Screen Custom	26
			Characters	
0xC3	195		Set Startup GPO state	31
0xC8	200		Dallas 1-Wire Transaction	33
0xCA	202		Data Lock	42

14 Appendix

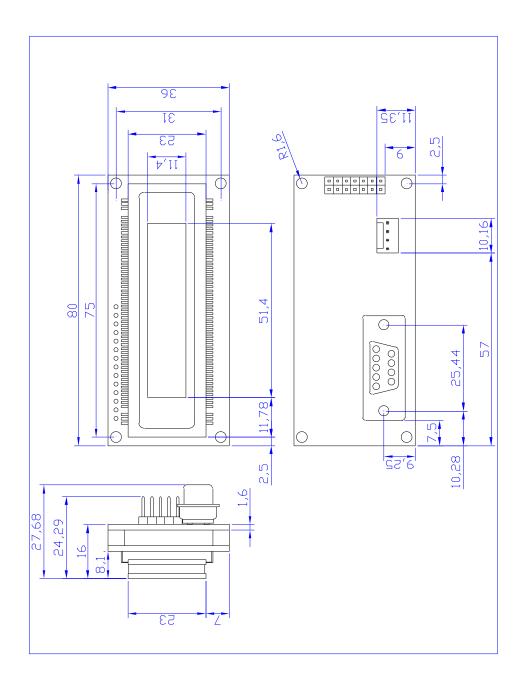
14.1 Specifications

14.1.1 Environmental

100	ie 07. Environmental Speen	
	Standard Temperature	Extended Temperature
Operating Temperature	-20° C to $+50^{\circ}$ C	-40° C to $+85^{\circ}$ C
Storage Temperature	-30° C to $+70^{\circ}$ C	-50° C to $+85^{\circ}$ C
Operating Relative Humidity	90% max non-condensing	
Vibration (Operating)	4.9 m/s ² XYZ directions	
Vibration (Non-Operating)	19.6 m/s ² XYZ directions	
Shock (Operating)	29.4 m/s ² XYZ directions	
Shock (Non-Operating)	490 m/s ² XYZ directions	

Table 67: Environmental Specifications

14.1.2 Electrical


Table 08. Electrical Specifications				
	Standard Wide Voltage (V)			
Supply Voltage	+5Vdc ±0.25V	+9V to +15V		
Supply	250 mA			
Inrush	390 mA			

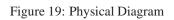

14.2 Optical Characteristics

Table 69: Optical Characteristics		
Module Size	80.00 mm x 36.00 mm x 27.67 mm	
Number of Characters	32 (16 characters by 2 lines)	
Matrix Format	5 x 7 with underline	
Display Area	51.40 x 11.40 mm	
Character Size	2.275 x 4.759 mm (XxY)*	
Character Pitch	3.275 mm	
Line Pitch	5.991 mm	
Dot Size	0.359 x 0.577 mm (XxY)	
Dot Pitch	0.479 x 0.697 mm (XxY)	
Luminance	$350 cd/m^2$ (100 fL) min	
Color of Illumination	Blueish Green	
* Not including underline		

* Not including underline.

14.3 Physical Layout

14.4 Definitions

E Extended Temperature (-40C to 85C)

V Wide Voltage (+9 to +15Vdc)

MSB Most Significant Byte

LSB Least Significant Byte

14.5 Contacting Matrix Orbital

Telephone

Sales: 1(403)229-2737 Support: 1(403)204-3750

On The Web

Sales: http://www.MatrixOrbital.com Support: http://www.MatrixOrbital.ca Forums: http://www.lcdforums.com

14.6 Revision History

Revision Number	Description	Author
3.0	Initial Manual	Matrix Orbital
3.1	Update for PCN 2009-04-16-01	Clark

Table 70: Revision History