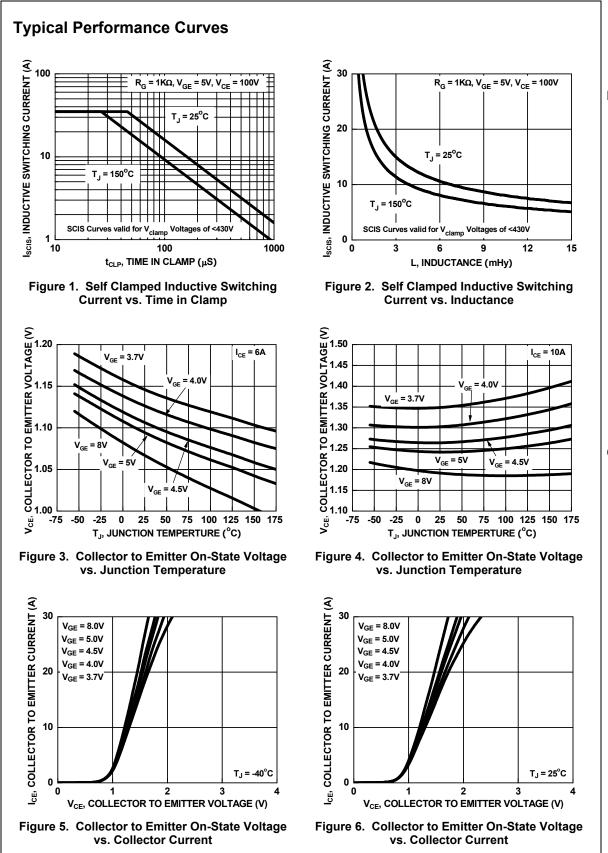
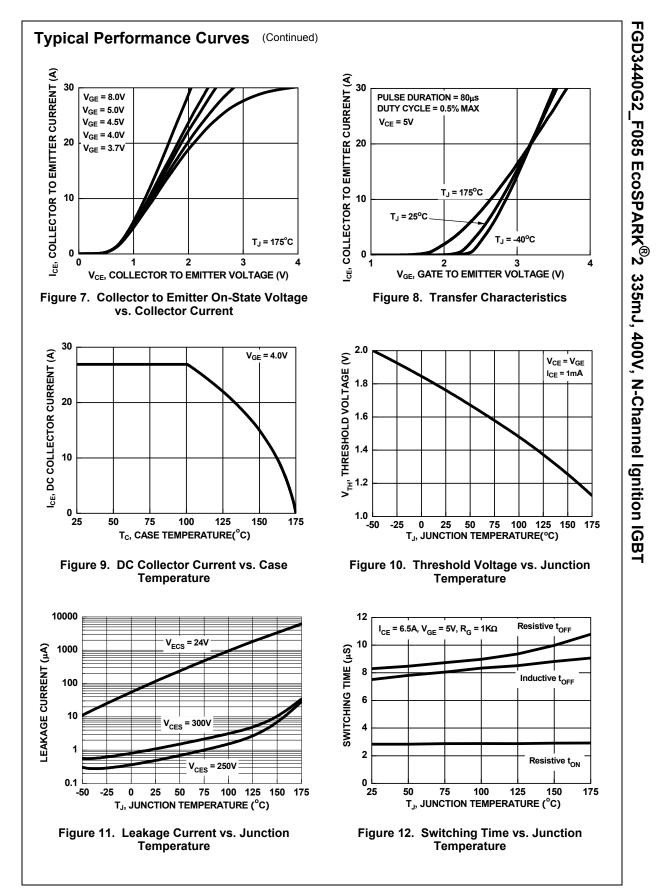
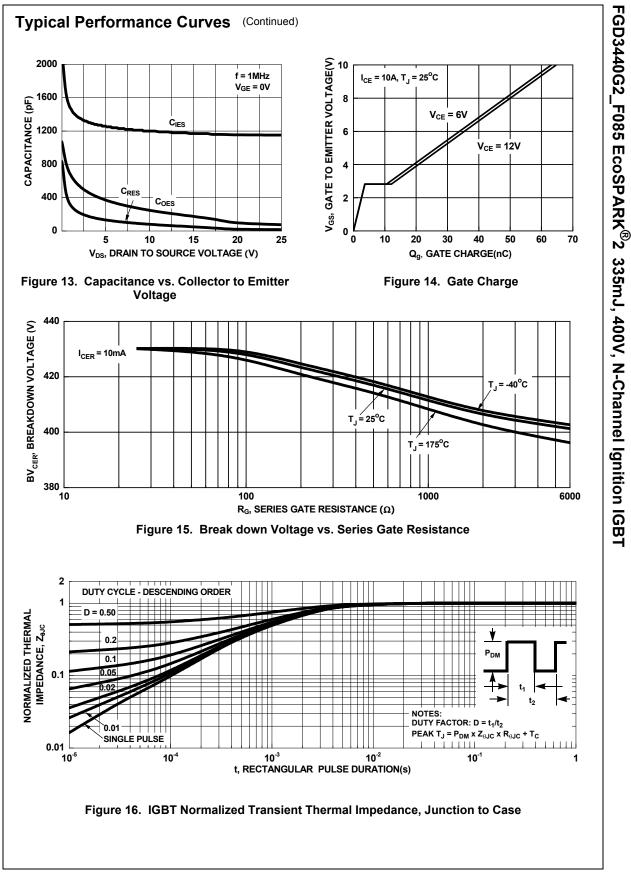


Symbol	Parameter					Ratings		s	Unit		
SV _{CER}	Collector to Emitter Breakdown Voltage			(I _C = 1mA)			400			V	
V _{ECS}	Emitter to Collector Voltage - Reverse Ba						28			V	
SCIS25	Self Clamping Inductive Switching Energy (Note 1)						335		mJ		
SCIS150	Self Clamping Inductive Switching Energy (Note 2)					195			mJ		
25	Collector Current Continuous, at V _{GE} = 4.0V, T _C = 25°C					26.9		Α			
:110	Collector Current Continuous, at V _{GE} = 4.0V, T _C = 110°C					25		Α			
GEM	Gate to Emitter Voltage Continuous					±10		V			
D	Power Dis	Power Dissipation Total, at $T_C = 25^{\circ}C$					166		W		
)	Power Dis	Power Dissipation Derating, for T _C > 25 ^o C				1.1			W/º(
J	Operating Junction Temperature Range					-40 to +1		75	°C		
STG	Storage Junction Temperature Range					-4	0 to +1	75	°C		
-	Max. Lead Temp. for Soldering (Leads at 1.6mm from case for 10s)						300		°C		
PKG	Max. Lead Temp. for Soldering (Package Body for 10s)					260			°C		
SD	Electrosta	tic Discharge Voltage	at100pl	-, 1500Ω					4		kV
acka	ge Mar	king and Ord	ering	Inform	nation						
Device	Marking	Device	Pa	ckage	Reel Size		Tape V	Vidth		Quant	itv
	3440G2	FGD3440G2 F085		D252	330mm		16m			2500 u	-
					1						
lectr	ical Ch	aracteristics [·]	T _A = 25°	°C unless o	otherwise noted						
-		Parameter cteristics		$I_{CF} = 2mA$	Test Conditi	ions		Min	Тур	Max	Unit
Symbol Off Stat ^{3V} CER	te Chara	Parameter	Voltage	R _{GE} = 1K T _J = -40 te	A, V _{GE} = 0, Ω, o 150°C	ions		Min 370	Тур 400	Max 430	Units V
Off Stat	te Chara	Parameter cteristics		$R_{GE} = 1K_{T_J} = -40 \text{ to}$ $I_{CE} = 10m_{GE} = 0,$	A, V _{GE} = 0, Ω, ο 150°C hA, V _{GE} = 0V,	ions					
off Stat SV _{CER} SV _{CES}	te Chara Collector t Collector t	Parameter cteristics o Emitter Breakdown	Voltage	$\label{eq:R_GE} \begin{array}{l} {\sf R}_{\rm GE} = 1{\sf K} \\ {\sf T}_{\rm J} = -40 \ {\sf tr} \\ {\sf I}_{\rm CE} = 10{\sf m} \\ {\sf R}_{\rm GE} = 0, \\ {\sf T}_{\rm J} = -40 \ {\sf tr} \end{array}$	A, $V_{GE} = 0$, Ω , o 150°C A, $V_{GE} = 0V$, o 150°C nA, $V_{GE} = 0V$,	ions		370	400	430	V
V _{CER} V _{CER} V _{CES}	te Chara Collector t Collector t Emitter to	Parameter cteristics o Emitter Breakdown o Emitter Breakdown	Voltage Voltage	$\begin{aligned} R_{GE} &= 1K\\ T_J &= -40 \text{ tr}\\ I_{CE} &= 10m\\ R_{GE} &= 0,\\ T_J &= -40 \text{ tr}\\ I_{CE} &= -20m \end{aligned}$	A, $V_{GE} = 0$, Ω , to 150°C A, $V_{GE} = 0V$, to 150°C mA, $V_{GE} = 0V$,			370 390	400	430	V V
W _{CER} W _{CES} W _{ECS}	te Chara Collector t Collector t Emitter to Gate to Er	Parameter cteristics o Emitter Breakdown o Emitter Breakdown Collector Breakdown nitter Breakdown Volt	Voltage Voltage age	$\begin{split} R_{GE} &= 1K\\ T_J &= -40 \text{ tr}\\ I_{CE} &= 10\text{m}\\ R_{GE} &= 0,\\ T_J &= -40 \text{ tr}\\ I_{CE} &= -20\text{r}\\ T_J &= 25^\circ\text{C}\\ I_{GES} &= \pm 2 \end{split}$	A, $V_{GE} = 0$, Ω , to 150°C A, $V_{GE} = 0V$, to 150°C mA, $V_{GE} = 0V$,	TJ = 2		370 390 28	400 420 -	430	v v v
Off Star BV _{CER} BV _{CES} BV _{ECS} BV _{GES}	te Chara Collector t Collector t Emitter to Gate to Er	Parameter cteristics o Emitter Breakdown o Emitter Breakdown Collector Breakdown	Voltage Voltage age	$\begin{split} R_{GE} &= 1K\\ T_J &= -40 \text{ tr}\\ I_{CE} &= 10\text{m}\\ R_{GE} &= 0,\\ T_J &= -40 \text{ tr}\\ I_{CE} &= -20\text{r}\\ T_J &= 25^\circ\text{C}\\ I_{GES} &= \pm 2 \end{split}$	A, $V_{GE} = 0$, Ω , to 150°C tA, $V_{GE} = 0V$, to 150°C mA, $V_{GE} = 0V$, the mA	$T_{J} = 2$ $T_{J} = 1$	50°C	370 390 28	400 420 - ±14	430 450 -	v v v
BV _{CER} BV _{CES} BV _{ECS} BV _{GES} CER	te Chara Collector t Collector t Emitter to Gate to Er Collector t	Parameter cteristics o Emitter Breakdown o Emitter Breakdown Collector Breakdown nitter Breakdown Volt o Emitter Leakage Cu	Voltage Voltage age urrent	$\begin{split} R_{GE} &= 1K\\ T_J &= -40 \text{ tr}\\ I_{CE} &= 10\text{m}\\ R_{GE} &= 0,\\ T_J &= -40 \text{ tr}\\ I_{CE} &= -20\text{r}\\ T_J &= 25^\circ\text{C}\\ I_{GES} &= \pm 2 \end{split}$	A, $V_{GE} = 0$, Ω , o 150°C A, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA DV, $R_{GE} = 1K\Omega$	$T_{J} = 2$ $T_{J} = 1$ $T_{J} = 2$	50°C 25°C	370 390 28 ±12 -	400 420 - ±14 -	430 450 - 25	V V V μΑ mA
Dff Stat BV _{CER} BV _{CES} BV _{ECS} BV _{GES} CER	te Chara Collector t Collector t Emitter to Gate to Er Collector t	Parameter cteristics o Emitter Breakdown o Emitter Breakdown Collector Breakdown nitter Breakdown Volt	Voltage Voltage age urrent	$R_{GE} = 1K$ $T_{J} = -40 \text{ to}$ $I_{CE} = 10m$ $R_{GE} = 0,$ $T_{J} = -40 \text{ to}$ $I_{CE} = -20r$ $T_{J} = 25^{\circ}C$ $I_{GES} = \pm 2$ $V_{CE} = 250$	A, $V_{GE} = 0$, Ω , o 150°C A, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA DV, $R_{GE} = 1K\Omega$	$T_{J} = 2$ $T_{J} = 1$ $T_{J} = 2$	50°C	370 390 28 ±12 -	400 420 - ±14 -	430 450 - - 25 1	ν ν ν μΑ
Dff Stat SV _{CER} SV _{CES} SV _{ECS} SV _{GES} CER ECS R1	te Chara Collector t Collector t Emitter to Gate to Er Collector t Emitter to Series Ga	Parameter cteristics o Emitter Breakdown o Emitter Breakdown Collector Breakdown Volt o Emitter Leakage Cu Collector Leakage Cu te Resistance	Voltage Voltage age urrent	$R_{GE} = 1K$ $T_{J} = -40 \text{ to}$ $I_{CE} = 10m$ $R_{GE} = 0,$ $T_{J} = -40 \text{ to}$ $I_{CE} = -20r$ $T_{J} = 25^{\circ}C$ $I_{GES} = \pm 2$ $V_{CE} = 250$	A, $V_{GE} = 0$, Ω , o 150°C A, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA DV, $R_{GE} = 1K\Omega$	$T_{J} = 2$ $T_{J} = 1$ $T_{J} = 2$	50°C 25°C	370 390 28 ±12 - - - - - -	400 420 - ±14 -	430 450 - 25 1 1 40 -	V V V μΑ mA
Off Stat	te Chara Collector t Collector t Emitter to Gate to Er Collector t Emitter to Series Ga	Parameter cteristics o Emitter Breakdown o Emitter Breakdown Collector Breakdown Volt nitter Breakdown Volt o Emitter Leakage Cu Collector Leakage Cu	Voltage Voltage age urrent	$R_{GE} = 1K$ $T_{J} = -40 \text{ to}$ $I_{CE} = 10m$ $R_{GE} = 0,$ $T_{J} = -40 \text{ to}$ $I_{CE} = -20r$ $T_{J} = 25^{\circ}C$ $I_{GES} = \pm 2$ $V_{CE} = 250$	A, $V_{GE} = 0$, Ω , o 150°C A, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA DV, $R_{GE} = 1K\Omega$	$T_{J} = 2$ $T_{J} = 1$ $T_{J} = 2$	50°C 25°C	370 390 28 ±12 - - - -	400 420 - ±14 - - -	430 450 - 25 1 1	V V V µA mA mA
Dff Stat SV _{CER} SV _{CES} SV _{ECS} SV _{GES} CER ECS R1 R2	te Chara Collector t Collector t Emitter to Gate to Er Collector t Emitter to Series Ga Gate to Er	Parameter cteristics o Emitter Breakdown o Emitter Breakdown Collector Breakdown Volt o Emitter Leakage Cu Collector Leakage Cu te Resistance nitter Resistance	Voltage Voltage age urrent	$R_{GE} = 1K$ $T_{J} = -40 \text{ to}$ $I_{CE} = 10m$ $R_{GE} = 0,$ $T_{J} = -40 \text{ to}$ $I_{CE} = -20r$ $T_{J} = 25^{\circ}C$ $I_{GES} = \pm 2$ $V_{CE} = 250$	A, $V_{GE} = 0$, Ω , o 150°C A, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA DV, $R_{GE} = 1K\Omega$	$T_{J} = 2$ $T_{J} = 1$ $T_{J} = 2$	50°C 25°C	370 390 28 ±12 - - - - - -	400 420 - ±14 - - - 120	430 450 - 25 1 1 40 -	V V V μΑ mA Ω
Pff Stat V _{CER} V _{CES} V _{ECS} V _{GES} CER ECS R 22 Pn Stat	te Chara Collector t Collector t Emitter to Gate to Er Collector t Emitter to Series Ga Gate to Er te Chara	Parameter cteristics o Emitter Breakdown o Emitter Breakdown Collector Breakdown Volt o Emitter Leakage Cu Collector Leakage Cu te Resistance nitter Resistance cteristics	Voltage Voltage age urrent urrent	$R_{GE} = 1K$ $T_{J} = -40 to$ $I_{CE} = 10m$ $R_{GE} = 0,$ $T_{J} = -40 to$ $I_{CE} = -20r$ $T_{J} = 25^{\circ}C$ $I_{GES} = \pm 2t$ $V_{CE} = 250$ $V_{EC} = 24V$	A, $V_{GE} = 0$, Ω , o 150°C A, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA DV, $R_{GE} = 1K\Omega$ V,	$T_{J} = 2$ $T_{J} = 1$ $T_{J} = 2$ $T_{J} = 1$	50°C 25°C 50°C	370 390 28 ±12 - - - - 10K	400 420 - ±14 - - 120 -	430 450 - 25 1 1 40 - 30K	V V V μΑ mA Ω Ω
ff Stat V _{CER} V _{CES} V _{ECS} V _{GES} ECS ECS ECS ECS ECS ECS ECS ECS ECS ECS	te Chara Collector t Collector t Emitter to Gate to Er Collector t Emitter to Series Ga Gate to Er te Chara Collector t	Parameter cteristics o Emitter Breakdown o Emitter Breakdown Collector Breakdown Volt o Emitter Leakage Cu Collector Leakage Cu Collector Leakage Cu te Resistance nitter Resistance cteristics o Emitter Saturation V	Voltage age urrent urrent	$R_{GE} = 1K T_{J} = -40 to T_{CE} = 10m R_{GE} = 0, T_{J} = -40 to T_{CE} = -20m T_{J} = 25^{\circ}C$ $I_{GES} = \pm 22 V_{CE} = 250 V_{CE} = 250 V_{CE} = 24 V_{CE} = $	A, $V_{GE} = 0$, Ω , o 150°C A, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA DV, $R_{GE} = 1K\Omega$ V, $V_{GE} = 4V$,	$\begin{array}{c} T_{J} = 2\\ T_{J} = 1\\ T_{J} = 2\\ T_{J} = 1\\ T_{J} = 2\\ T_{J} = 1\\ \end{array}$	50°C 25°C 50°C 25°C	370 390 28 ±12 - - - 10K	400 420 - ±14 - - 120 - 1.1	430 450 - 25 1 1 40 - 30K 1.2	V V V μA mA Ω Ω
off Stat V _{CER} V _{CES} V _{ECS} V _{GES} CER ECS 1 22	te Chara Collector t Collector t Emitter to Gate to Er Collector t Emitter to Series Ga Gate to Er te Chara Collector t	Parameter cteristics o Emitter Breakdown o Emitter Breakdown Collector Breakdown Volt o Emitter Leakage Cu Collector Leakage Cu te Resistance nitter Resistance cteristics	Voltage age urrent urrent /oltage /oltage	$R_{GE} = 1K T_{J} = -40 to T_{CE} = 10m R_{GE} = 0, T_{J} = -40 to T_{CE} = -20n T_{J} = 25^{\circ}C$ $I_{GES} = \pm 20 V_{CE} = 250 V_{CE} = 250 V_{CE} = 24 V_{CE} = 24 V_{CE} = 24 V_{CE} = 10A$	A, $V_{GE} = 0$, Ω , o 150°C A, $V_{GE} = 0V$, o 150°C mA, $V_{GE} = 0V$, mA DV, $R_{GE} = 1K\Omega$ V,	$T_{J} = 2$ $T_{J} = 1$ $T_{J} = 2$ $T_{J} = 1$ $T_{J} = 2$ $T_{J} = 1$	50°C 25°C 50°C	370 390 28 ±12 - - - - 10K	400 420 - ±14 - - 120 -	430 450 - 25 1 1 40 - 30K	V V V μΑ mA Ω

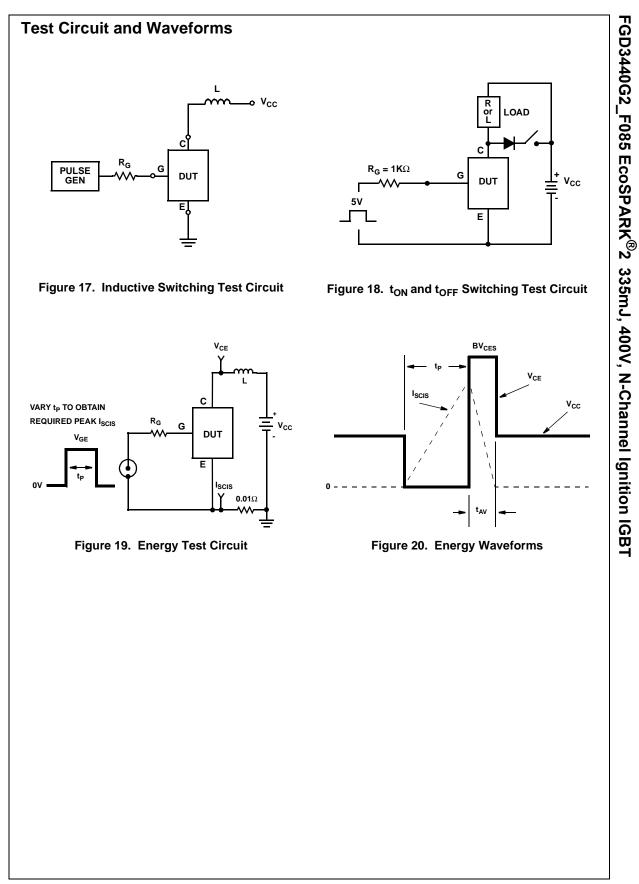

Symbol	Parameter	Test Condi	tions	Min	Тур	Мах	Units
Dynam	ic Characteristics						
Q _{G(ON)}	Gate Charge	I _{CE} = 10A, V _{CE} = 12V, V _{GE} = 5V		-	24	-	nC
1	Gate to Emitter Threshold Voltage	I_{CE} = 1mA, V_{CE} = V_{GE} ,	$T_J = 25^{\circ}C$	1.3	1.7	2.2	v
/ _{GE(TH)}	Gate to Enlitter Threshold Voltage		T _J = 150 ^o C	0.75	1.2	1.8	v
/ _{GEP}	Gate to Emitter Plateau Voltage	V _{CE} = 12V, I _{CE} = 10A		-	2.8	-	V
d(ON)R	ing Characteristics Current Turn-On Delay Time-Resistive	V _{CE} = 14V, R _L = 1Ω		-	1.0	4	μS
	Current Rise Time-Resistive	V _{GE} = 5V, R _G = 1KΩ T _J = 25 ^o C,		-	2.0	7	μS
R		0					
	Current Turn-Off Delay Time-Inductive	V _{CE} = 300V, L = 1mH,		-	5.3	15	μS
t _{rR} t _{d(OFF)L} t _{fL}	Current Turn-Off Delay Time-Inductive Current Fall Time-Inductive			-	5.3 2.3	15 15	μs μs
d(OFF)L	,	V _{CE} = 300V, L = 1mH, V _{GE} = 5V, R _G = 1KΩ				_	

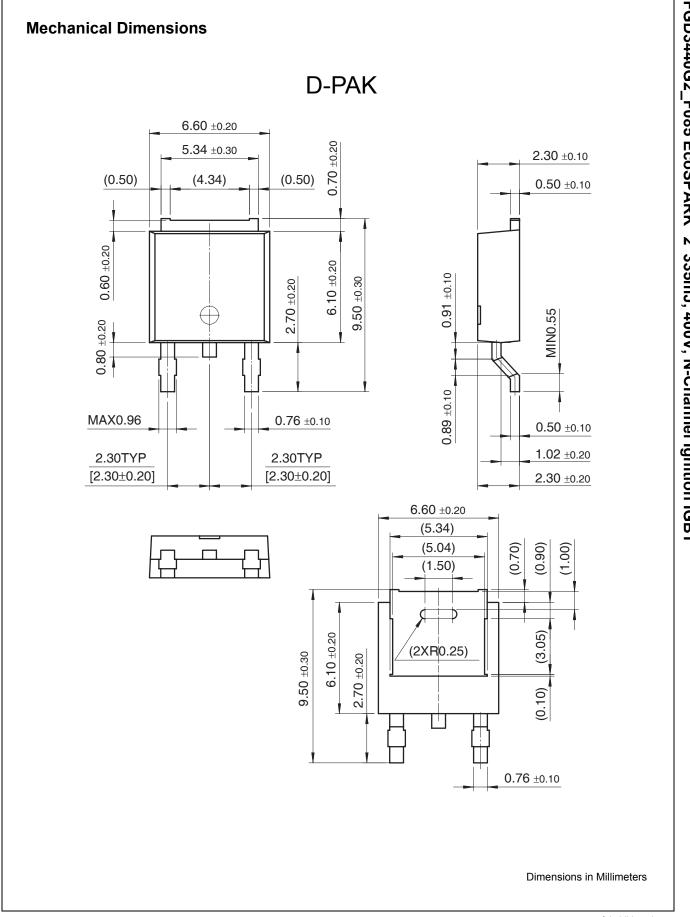
Notes:


1: Self Clamping Inductive Switching Energy(Escis25) of 335mJ is based on the test conditions that is starting T_J=25 °C; L=3mHy, I_{SCIS}=15A,V_{CC}=100V during inductor charging and V_{CC}=0V during the time in clamp


2: Self Clamping Inductive Switching Energy (Escis150) of 195mJ is based on the test conditions that is starting T_J =150 °C; L=3mHy, Iscis=11.4A,Vcc=100V during inductor charging and Vcc=0V during the time in clamp.

@2011 Fairchild Semiconductor Corporation FGD3440G2_F085 Rev. B




FGD3440G2_F085 EcoSPARK[®]2 335mJ, 400V, N-Channel Ignition IGBT

@2011 Fairchild Semiconductor Corporation FGD3440G2_F085 Rev. B

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ Auto-SPM™ AX-CAP™* BitSiC[®] Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED Dual Cool™ **EcoSPARK**[®] EfficentMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™

FlashWriter[®] * FPS™ F-PFS™ **FRFET**® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET[™] MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ mWSaver™ OptiHiT™ **OPTOLOGIC[®]**

PDP SPM™ Power-SPM™ PowerTrench[®] PowerXS™ Programmable Active Droop™ **QFĔT**[®] QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ SYSTEM ®* GENERAL

wer p. franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* µSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™

XS™

The Power Franchise®

The Right Technology for Your Success™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

OPTOPLANAR[®]

R

DISCI AIMER

Ŧ

FACT®

FAST®

FastvCore™

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.