DATA SHEET

74LVC163

Presettable synchronous 4-bit binary counter; synchronous reset

Presettable synchronous 4-bit binary counter; synchronous reset

FEATURES

- Wide supply voltage range from 1.2 V to 3.6 V
- Complies with JEDEC standard JESD8-B/JESD36
- Inputs accept voltages up to 5.5 V
- CMOS low power consumption
- Direct interface with TTL levels
- Synchronous reset
- Synchronous counting and loading
- Two count enable inputs for n-bit cascading
- Positive edge-triggered clock.
- ESD protection:
- HBM EIA/JESD22-A114-B exceeds 2000 V
- MM EIA/JESD22-A115-A exceeds 200 V.
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

DESCRIPTION

The 74LVC163 is a high-performance, low-power, low-voltage, Si-gate CMOS device and superior to most advanced CMOS compatible TTL families.

The 74LVC163 is a synchronous presettable binary counter which features an internal look-head carry and can be used for high-speed counting. Synchronous operation is provided by having all flip-flops clocked simultaneously on the positive-going edge of the clock (pin CP). The outputs (pins Q0 to Q3) of the counters may be preset to a

HIGH-level or LOW-level. A LOW-level at the parallel enable input (pin $\overline{\mathrm{PE}}$) disables the counting action and causes the data at the data inputs (pins D0 to D3) to be loaded into the counter on the positive-going edge of the clock (provided that the set-up and hold time requirements for PE are met). Preset takes place regardless of the levels at count enable inputs (pins CEP and CET). A LOW-level at the master reset input (pin $\overline{\mathrm{MR}}$) sets all four outputs of the flip-flops (pins Q0 to Q3) to LOW-level after the next positive-going transition on the clock input (pin CP) (provided that the set-up and hold time requirements for PE are met). This action occurs regardless of the levels at input pins $\overline{P E}$, CET and CEP. This synchronous reset feature enables the designer to modify the maximum count with only one external NAND gate.
The look-ahead carry simplifies serial cascading of the counters. Both count enable inputs (pins CEP and CET) must be HIGH to count. The CET input is fed forward to enable the terminal count output (pin TC). The TC output thus enabled will produce a HIGH output pulse of a duration approximately equal to a HIGH-level output of Q0. This pulse can be used to enable the next cascaded stage.

The maximum clock frequency for the cascaded counters is determined by $\mathrm{t}_{\text {PHL }}$ (propagation delay CP to TC) and $\mathrm{t}_{\text {su }}$ (set-up time CEP to CP) according to the
formula: $f_{\max }=\frac{1}{\mathrm{t}_{\mathrm{PHL}(\max)}+\mathrm{t}_{\text {su }}}$.

Presettable synchronous 4-bit binary counter; synchronous reset

QUICK REFERENCE DATA
GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t $_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay:			
	CP to Qn			
	CP to TC			
	CET to TC		4.0	ns
			3.6	ns
$\mathrm{f}_{\text {clk }(\max)}$	maximum clock frequency		200	$\mathrm{pF} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
C_{l}	input capacitance		5.0	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per gate	notes 1 and 2	17	pF

Notes

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in Volts;
$\mathrm{N}=$ total load switching outputs;
$\Sigma\left(C_{L} \times V_{C C}^{2} \times f_{0}\right)=$ sum of the outputs.
2. The condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.

ORDERING INFORMATION

TYPE NUMBER	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE
74 LVC 163 D	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16	SO16	plastic	SOT109-1
74LVC163DB	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16	SSOP16	plastic	SOT338-1
$74 \mathrm{LVC} 163 P W$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16	TSSOP16	plastic	SOT403-1
74 LVC 163 BQ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16	DHVQFN16	plastic	SOT763-1

Presettable synchronous 4-bit binary counter; synchronous reset

FUNCTION TABLE

See note 1.

OPERATING MODES	INPUT						OUTPUT	
	$\overline{M R}$	CP	CEP	CET	PE	Dn	Qn	TC
Reset (clear)	I	\uparrow	X	X	X	X	L	L
Parallel load	h	\uparrow	X	X	1	1	L	L
	h	\uparrow	X	X	I	h	H	*
Count	h	\uparrow	h	h	h	X	count	*
Hold (do nothing)	h	X	1	X	h	X	q_{n}	*
	h	X	X	I	h	X	q_{n}	L

Note

1. * = the TC output is HIGH when CET is HIGH and the counter is at terminal count (HHHH).
$\mathrm{H}=\mathrm{HIGH}$ voltage level.
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition.
L = LOW voltage level.
I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition.
$\mathrm{q}=$ lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH clock transition.

X = don't care.
$\uparrow=$ LOW-to-HIGH clock transition.

PINNING

PIN	SYMBOL	
1	$\overline{\text { MR }}$	DESCRIPTION
2	CP	clock input (LOW-to-HIGH, edge-triggered)
3	D0	data input
4	D1	data input
5	D2	data input
6	D3	data input
7	CEP	count enable input
8	GND	ground (0 V)
9	$\overline{\text { PE }}$	parallel enable input (active LOW)
10	CET	count enable carry input
11	Q3	flip-flop output
12	Q2	flip-flop output
13	Q1	flip-flop output
14	Q0	flip-flop output
15	TC	terminal count output
16	VCC	supply voltage

Presettable synchronous 4-bit binary

 counter; synchronous reset

Fig. 1 Pin configuration SO16 and (T)SSOP16.

Fig. 3 Logic symbol.

Transparent top view
(1) The die substrate is attached to the exposed die pad using conductive die attach material. It can not be used as a supply pin or input.

Fig. 2 Pin configuration DHVQFN16

Fig. 4 Logic symbol (IEEE/IEC).

Presettable synchronous 4-bit binary counter; synchronous reset

Fig. 5 Functional diagram.

Fig. 6 State diagram.

SO KEW tOOZ

Fig． 8 Logic diagram．

と910ヘ7ヶL	

Presettable synchronous 4-bit binary counter; synchronous reset

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage	for maximum speed performance	2.7	3.6	V
		for low-voltage applications	1.2	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	5.5	V
$\mathrm{~V}_{\mathrm{O}}$	output voltage		0	$\mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature	in free air	-40	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ to 2.7 V	0	20	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	0	10	$\mathrm{~ns} / \mathrm{V}$

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage		-0.5	+6.5	V
I_{IK}	input diode current	$\mathrm{V}_{\mathrm{I}}<0 \mathrm{~V}$	-	-50	mA
$\mathrm{~V}_{\mathrm{I}}$	input voltage	note 1	-0.5	+6.5	V
I_{OK}	output diode current	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-	± 50	mA
$\mathrm{~V}_{\mathrm{O}}$	output voltage	note 1	-0.5	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
I_{O}	output source or sink current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to V_{CC}	-	± 50	mA
$\mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{GND}}$	$\mathrm{V}_{\text {CC }}$ or GND current		-	± 100	mA
$\mathrm{~T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} ;$ note 2	-	500	mW

Notes

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. For SO16 packages: above $70^{\circ} \mathrm{C}$ the value of $P_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$.

For SSOP16 and TSSOP16 packages: above $60^{\circ} \mathrm{C}$ the value of $P_{\text {tot }}$ derates linearly with $5.5 \mathrm{~mW} / \mathrm{K}$.
For DHVQFN16 packages: above $60^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $4.5 \mathrm{~mW} / \mathrm{K}$.

Presettable synchronous 4-bit binary counter; synchronous reset

DC CHARACTERISTICS

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP. ${ }^{(1)}$	MAX.	UNIT
		OTHER	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$							
V_{IH}	HIGH-level input voltage		1.2	V_{CC}	-	-	V
			2.7 to 3.6	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		1.2	-	-	GND	V
			2.7 to 3.6	-	-	0.8	V
V_{OH}	HIGH-level output voltage	$\begin{gathered} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}}=-18 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 2.7 \text { to } 3.6 \\ & 2.7 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-0.2 \\ & \mathrm{~V}_{\mathrm{CC}}-0.5 \\ & \mathrm{~V}_{\mathrm{CC}}-0.6 \\ & \mathrm{~V}_{\mathrm{CC}}-0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & - \\ & - \\ & - \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
V_{OL}	LOW-level output voltage	$\begin{aligned} \mathrm{V}_{\mathrm{I}} & =\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}} & =100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =24 \mathrm{~mA} \end{aligned}$	$\begin{array}{\|l} \hline 2.7 \text { to } 3.6 \\ 2.7 \\ 3.0 \\ \hline \end{array}$	$\left.\right\|_{-} ^{-}$		$\begin{array}{\|l\|} \hline 0.2 \\ 0.4 \\ 0.55 \\ \hline \end{array}$	$\begin{array}{\|l} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \hline \end{array}$
ILI^{\prime}	input leakage current	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND	3.6	-	± 0.1	± 5	$\mu \mathrm{A}$
I_{CC}	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \\ & \hline \end{aligned}$	3.6	-	0.1	10	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current per input pin	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \\ & \mathrm{l}=0 \mathrm{~A} \end{aligned}$	2.7 to 3.6	-	5	500	$\mu \mathrm{A}$

Presettable synchronous 4-bit binary counter; synchronous reset

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP. ${ }^{(1)}$	MAX.	UNIT
		OTHER	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$							
V_{IH}	HIGH-level input voltage		1.2	V_{CC}	-	-	V
			2.7 to 3.6	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		1.2	-	-	GND	V
			2.7 to 3.6	-	-	0.8	V
V_{OH}	HIGH-level output voltage	$\begin{aligned} \mathrm{V}_{\mathrm{I}} & =\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}} & =-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =-12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =-18 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =-24 \mathrm{a} \end{aligned}$	$\begin{aligned} & 2.7 \text { to } 3.6 \\ & 2.7 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{array}{\|l} V_{C C}-0.3 \\ V_{C C}-0.65 \\ V_{C C}-0.75 \\ V_{C C}-1 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OL}	LOW-level output voltage	$\begin{aligned} \mathrm{V}_{\mathrm{I}} & =\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}} & =100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =24 \mathrm{~mA} \end{aligned}$	$\begin{array}{\|l} \hline 2.7 \text { to } 3.6 \\ 2.7 \\ 3.0 \\ \hline \end{array}$		$\left.\right\|_{-} ^{-}$	$\begin{array}{\|l\|} \hline 0.3 \\ 0.6 \\ 0.8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \hline \end{array}$
I_{LI}	input leakage current	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND	3.6	-	-	± 20	$\mu \mathrm{A}$
I_{CC}	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \\ & \hline \end{aligned}$	3.6	-	-	40	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current per input pin	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \end{aligned}$	2.7 to 3.6	-	-	5000	$\mu \mathrm{A}$

Note

1. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Presettable synchronous 4-bit binary counter; synchronous reset

AC CHARACTERISTICS

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$.

SYMBOL	PARAMETER	CONDITIONS		MIN.	TYP.	MAX.	UNIT
		WAVEFORMS	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; note 1							
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay CP to Qn	see Figs 9 and 14	1.2	-	18	-	ns
			2.7	1.5	-	7.3	ns
			3.0 to 3.6	1.5	$4.0^{(2)}$	7.3	ns
	propagation delay CP to TC	see Figs 9 and 14	1.2	-	23	-	ns
			2.7	1.5	-	8.1	ns
			3.0 to 3.6	1.5	$4.6{ }^{(2)}$	7.9	ns
	propagation delay CET to TC	see Figs 10 and 14	1.2	-	16	-	ns
			2.7	1.5	-	6.9	ns
			3.0 to 3.6	1.5	$3.5{ }^{(2)}$	6.4	ns
tw	clock pulse width HIGH or LOW	see Fig. 9	2.7	5.0	-	-	ns
			3.0 to 3.6	4.0	$1.2^{(2)}$	-	ns
$\mathrm{t}_{\text {su }}$	set-up time Dn to CP	see Fig. 12	2.7	3.0	-	-	ns
			3.0 to 3.6	2.5	$1.0^{(2)}$	-	ns
	set-up time $\overline{\mathrm{MR}}, \overline{\mathrm{PE}}$ to CP	see Fig. 12	2.7	3.5	-	-	ns
			3.0 to 3.6	3.0	$1.2^{(2)}$	-	ns
	set-up time CEP, CET to CP	see Fig. 13	2.7	5.5	-	-	ns
			3.0 to 3.6	5.0	$2.1{ }^{(2)}$	-	ns
th_{h}	hold time Dn, PE, CEP, CET to CP	see Figs 12 and 13	2.7	0.0	-	-	ns
			3.0 to 3.6	0.5	$0.0{ }^{(2)}$	-	ns
$f_{\max }$	maximum clock pulse frequency	see Fig. 9	2.7	150	-	-	MHz
			3.0 to 3.6	150	200 ${ }^{(2)}$	-	MHz
$\mathrm{t}_{\text {sk(0) }}$	skew	note 3	3.0 to 3.6	-	-	1.0	ns

Presettable synchronous 4-bit binary counter; synchronous reset

SYMBOL	PARAMETER	CONDITIONS		MIN.	TYP.	MAX.	UNIT
		WAVEFORMS	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$							
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay CP to Qn	see Figs 9 and 14	1.2	-	-	-	ns
			2.7	1.5	-	9.5	ns
			3.0 to 3.6	1.5	-	9.5	ns
	propagation delay CP to TC	see Figs 9 and 14	1.2	-	-	-	ns
			2.7	1.5	-	10.5	ns
			3.0 to 3.6	1.5	-	10.0	ns
	propagation delay CET to TC	see Figs 10 and 14	1.2	-	-	-	ns
			2.7	1.5	-	9.0	ns
			3.0 to 3.6	1.5	-	8.0	ns
tw	clock pulse width HIGH or LOW	see Fig. 9	2.7	5.0	-	-	ns
			3.0 to 3.6	4.0	-	-	ns
$\mathrm{t}_{\text {su }}$	set-up time Dn to CP	see Fig. 12	2.7	3.0	-	-	ns
			3.0 to 3.6	2.5	-	-	ns
	set-up time $\overline{\mathrm{MR}}, \overline{\mathrm{PE}}$ to CP	see Fig. 12	2.7	3.5	-	-	ns
			3.0 to 3.6	3.0	-	-	ns
	set-up time CEP, CET to CP	see Fig. 13	2.7	5.5	-	-	ns
			3.0 to 3.6	5.0	-	-	ns
$t_{\text {h }}$	hold time Dn, PE, CEP, CET to CP	see Figs 12 and 13	2.7	0.0	-	-	ns
			3.0 to 3.6	0.5	-	-	ns
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency	see Fig. 9	2.7	150	-	-	MHz
			3.0 to 3.6	150	-	-	MHz
$\mathrm{t}_{\text {sk(0) }}$	skew	note 3	3.0 to 3.6	-	-	1.5	ns

Notes

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.
3. Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.

Presettable synchronous 4-bit binary counter; synchronous reset

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$.
$\mathrm{V}_{\mathrm{M}}=0.5 \mathrm{~V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$.
V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.

Fig. 9 Clock (CP) to outputs (Qn, TC) propagation delays, the clock pulse width and the maximum clock frequency.

$V_{M}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$.
$\mathrm{V}_{\mathrm{M}}=0.5 \mathrm{~V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$.
V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.
Fig. 10 Input (CET) to output (TC) propagation delays.

Presettable synchronous 4-bit binary counter; synchronous reset

The shaded areas indicate when the input is permitted to change for predictable output performance.

Fig. 11 Master reset (MR) pulse width, the master reset to output (Qn, TC) propagation delays and the master reset to clock (CP) removal times.

The shaded areas indicate when the input is permitted to change for predictable output performance.
Fig. 12 Set-up and hold times for the input (Dn) and parallel enable input ($\overline{\mathrm{PE}}$).

Presettable synchronous 4-bit binary counter; synchronous reset

The shaded areas indicate when the input is permitted to change for predictable output performance.
Fig. 13 CEP and CET set-up and hold times.

$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{C}_{\mathbf{L}}$		$\mathbf{R}_{\mathbf{L}}$	$\mathbf{V}_{\mathbf{E X T}}$		
					$\mathbf{t}_{\mathbf{P Z H}} / \mathbf{t}_{\mathbf{P H Z}}$	$\mathbf{t}_{\mathbf{P Z L}} / \mathbf{t}_{\mathbf{P L Z}}$	
1.2 V	$\mathrm{~V}_{\mathrm{CC}}$	50 pF	$500 \Omega^{(1)}$	open	GND	$2 \times \mathrm{V}_{\mathrm{CC}}$	
2.7 V	2.7 V	50 pF	500Ω	open	GND	$2 \times \mathrm{V}_{\mathrm{CC}}$	
3.0 V to 3.6 V	2.7 V	50 pF	500Ω	open	GND	$2 \times \mathrm{V}_{\mathrm{CC}}$	

Note

1. The circuit performs better when $R_{L}=1000 \Omega$.

Definitions for test circuits:
$\mathrm{R}_{\mathrm{L}}=$ Load resistor.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{T}=$ Termination resistance should be equal to the output impedance Z_{0} of the pulse generator.

Fig. 14 Load circuitry for switching times.

Presettable synchronous 4-bit binary counter; synchronous reset

PACKAGE OUTLINES

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} \hline 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	8^{0}
inches	0.069	$\begin{array}{\|l\|} \hline 0.010 \\ 0.004 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.057 \\ 0.049 \\ \hline \end{array}$	0.01	$\begin{array}{\|l\|} \hline 0.019 \\ 0.014 \end{array}$	$\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{array}{\|l\|} \hline 0.244 \\ 0.228 \\ \hline \end{array}$	0.041	$\begin{aligned} & \hline 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	0°

Note

1. Plastic or metal protrusions of $0.15 \mathrm{~mm}(0.006 \mathrm{inch})$ maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT109-1	$076 E 07$	MS-012			-	

Presettable synchronous 4-bit binary counter; synchronous reset

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	C	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	W	y	$Z^{(1)}$	θ
mm	2	$\begin{aligned} & 0.21 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.65 \end{aligned}$	0.25	$\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.2 \end{aligned}$	0.65	$\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$	1.25	$\begin{aligned} & 1.03 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 1.00 \\ & 0.55 \end{aligned}$	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			$-99-12-27$
SOT338-1		MO-150			$03-02-19$	

Presettable synchronous 4-bit binary counter; synchronous reset

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	D ${ }^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.1	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.80 \end{aligned}$	0.25	$\begin{aligned} & 0.30 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$	0.65	$\begin{aligned} & \hline 6.6 \\ & 6.2 \end{aligned}$	1	$\begin{aligned} & 0.75 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.40 \\ & 0.06 \end{aligned}$	8 0°

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT403-1		MO-153		\bigcirc	$\begin{aligned} & \hline-9-12-27 \\ & 03-02-18 \end{aligned}$

Presettable synchronous 4-bit binary counter; synchronous reset

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$

1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT763-1	---	MO-241	-- -		$\begin{aligned} & \hline 02-10-17 \\ & 03-01-27 \end{aligned}$

Presettable synchronous 4-bit binary counter; synchronous reset

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS ${ }^{(2)(3)}$	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition-Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

