DECADE UP/DOWN COUNTER/DECODER/LATCH/DRIVER

- SEPARATE CLOCK-UP AND CLOCK-DOWN LINES
- CAPABLE OF DRIVING COMMON CATHODE LEDS AND OTHER DISPLAYS DIRECTLY
- ALLOWS CASCADING WITHOUT ANY EXTERNAL CIRCUITRY
- MAXIMUM INPUT CURRENT OF $1 \mu A$ AT 18 V (full package-temperature range)
- QUIESCENT CURRENT SPECIFIED UP TO 20V
- STANDARDIZED, SYMMETRICAL OUTPUT CHARACTERISTCS
- 5V, 10V AND 15 V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT
$I_{I}=100 \mathrm{nA}(\mathrm{MAX}) A T \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B "STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

DESCRIPTION

HCF40110B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP package.
HCF40110B is a dual-clocked up/down counter with a special preconditioning circuit that allows the counter to be clocked, via positive going inputs, up or down regardless of the states or

ORDER CODES

PACKAGE	TUBE	T \& R
DIP	HCF40110BEY	

timing (within 100 ns typ.) of the other clock line. The clock signal is fed into the control logic and Johnson counter after it is preconditioned. The outputs of the Johnson counter (which include anti-lock gating to avoid being locked at an illegal state) are fed into a latch. This data can be fed directly to the decoder through the latch or can be strobed to hold a particular count while the Johnson counter continues to be clocked. The decoder feeds a seven-segment bipolar output driver which can source up to 25 mA to drive LEDs and other displays such as low-voltage fluorescent and incandescent lamps. A short duration negative-going pulse appears on the BORROW output when the count changes from 0

PIN CONNECTION

to 9 or the CARRY output when the count changes from 9 to 0 . At other times the BORROW and BORROW outputs can be tied directly to the

INPUT EQUIVALENT CIRCUIT

clock-up and clock-down lines, respectively, of another HCF40110B for easy cascading of several counters.

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
$1,15,14,13$, $12,3,2$	a, b, c, d, e, f, g	7 Segment Outputs
4	$\frac{\text { Toggle }}{\text { Enable }}$	Enable Johnson Counter
5	Reset	Reset Input
6	Latch Enable	Latch Enable
7	Clock Down	Clock Down
9	Clock Up	Clock Up
10	Carry	Carry Output
11	Borrow	Borrow Output
8	$\mathrm{~V}_{\mathrm{SS}}$	Negative Supply Voltage
16	$\mathrm{~V}_{\mathrm{DD}}$	Positive Supply Voltage

FUNCTIONAL DIAGRAM (One Half)

TRUTH TABLES

CLOCK UP*	CLOCK DOWN*	LATCH ENABLE	$\overline{\text { TOGGLE }}$	RESET	COUNTER	DISPLAY
ऽ	X	L	L	L	Increments by 1	Follows Counter
X	\checkmark	L	L	L	Decrements by 1	Follows Counter
乙	乙	X	X	L	No Change	No Change
X	X	X	X	H	Goes to 00000	Follow Counter (Display = 0)
X	X	X	H	L	Inhibited	Remains Fixed
,	X	H	L	L	Increments by 1	Remains Fixed
X	\checkmark	H	L	L	Decrements by 1	Remains Fixed

x : Don't Care

* : Typically 100 ns between clock-up and clock-down positive transitions are required to ensure proper counting

LOGIC DIAGRAM

LOGIC DIAGRAM

DISPLAY SEGMENTS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
I_{I}	DC Input Current	± 10	mA
P_{D}	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
$\mathrm{~T}_{\mathrm{op}}$	Operating Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.
All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to V_{DD}	V
$\mathrm{T}_{\text {op }}$	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$

HCF40110B

DC SPECIFICATIONS

Symbol	Parameter	Test Condition				Value							Unit
		$\begin{gathered} V_{1} \\ \text { (V) } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}} \\ & \text { (V) } \end{aligned}$	$\begin{gathered} \left\lvert\, \begin{array}{c} \|0\| \\ (\mu \mathrm{A}) \end{array}\right. \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
						Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
IL	Quiescent Current	0/5			5		0.04	5		150		150	$\mu \mathrm{A}$
		0/10			10		0.04	10		300		300	
		0/15			15		0.04	20		600		600	
		0/20			20		0.08	100		3000		3000	
V_{OH}	High Level Output Voltage	0/5		<1	5	4.95			4.95		4.95		V
		0/10		<1	10	9.95			9.95		9.95		
		0/15		<1	15	14.95			14.95		14.95		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	5/0		<1	5		0.05			0.05		0.05	V
		10/0		<1	10		0.05			0.05		0.05	
		15/0		<1	15		0.05			0.05		0.05	
V_{IH}	High Level Input Voltage		0.5/4.5	<1	5	3.5			3.5		3.5		V
			1/9	<1	10	7			7		7		
			1.5/13.5	<1	15	11			11		11		
V_{IL}	Low Level Input Voltage		4.5/0.5	<1	5			1.5		1.5		1.5	V
			9/1	<1	10			3		3		3	
			13.5/1.5	<1	15			4		4		4	
${ }^{\text {IOH }}$	Output Drive Current	0/5	2.5	<1	5	-1.36	-3.2		-1.1		-1.1		mA
		0/5	4.6	<1	5	-0.44	-1		-0.36		-0.36		
		0/10	9.5	<1	10	-1.1	-2.6		-0.9		-0.9		
		0/15	13.5	<1	15	-3.0	-6.8		-2.4		-2.4		
${ }_{\text {IOL }}$	Output Sink Current Q	0/5	0.4	<1	5	1.74	4		1.43		1.43		mA
		0/10	0.5	<1	10	4.42	10.4		3.74		3.74		
		0/15	1.5	<1	15	11.56	27.2		9.52		9.52		
$\mathrm{IOL}^{\text {a }}$	Output Sink Current	0/5	0.4	<1	5	0.44	1		0.36		0.36		mA
		0/10	0.5	<1	10	1.1	2.6		0.9		0.9		
		0/15	1.5	<1	15	3.0	6.8		2.4		2.4		
1	Input Leakage Current	0/18	Any Input		18		$\pm 10^{-5}$	± 0.1		± 1		± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OZ }}$	3-State Output Leakage Current	0/18	Any Input		18		$\pm 10^{-4}$	± 0.4		± 12		± 12	$\mu \mathrm{A}$
C_{1}	Input Capacitance		Any In				5	7.5					pF

The Noise Margin for both " 1 " and " 0 " level is: 1 V min. with $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, 2 \mathrm{~V}$ min. with $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, 2.5 \mathrm{~V}$ min. with $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$

DYNAMIC ELECTRICAL CHARACTERISTICS $\left(T_{a m b}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K} \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\right)$

$\left(^{*}\right)$ Typical temperature coefficient for all V_{DD} value is $0.3 \% /{ }^{\circ} \mathrm{C}$.
NOTE : Measured at the point of 10% change in output load of $50 \mathrm{pF}, R_{L}=1 \mathrm{~K} \Omega$ to $V_{D D}$ for $t_{P Z L}, t_{P L Z}$ and $R_{L}=1 K \Omega$ to $V_{S S}$ for $t_{P H Z}$

TEST CIRCUIT

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=200 \mathrm{~K} \Omega$
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)

WAVEFORM : PROPAGATION DELAY TIMES ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20		0.335	
E		2.54			0.100	
e		17.78			0.700	
e3			7.1			0.280
F			5.1		0.130	
I		3.3				0.201
L			1.27			
Z						

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com

