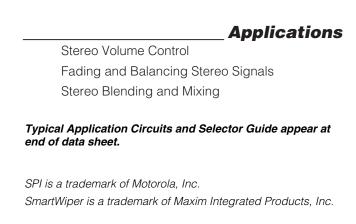
General Description

The MAX5456/MAX5457 dual, logarithmic taper digital potentiometers feature a simple pushbutton interface that controls volume and balance in audio applications. Each potentiometer has 32 tap points and replaces mechanical potentiometers. Refer to the MAX5408–MAX5411 data sheet for SPI™ versions of the MAX5456/MAX5457.


Use the MAX5456/MAX5457 digital inputs with momentary contact single-pole/single-throw (SPST) pushbutton switches. Each input includes internal debounce circuitry and a 50k Ω pullup resistor.

The MAX5456/MAX5457 advance the wiper setting once per button push. Maxim's proprietary SmartWiper™ control eliminates the need for a microcomputer to increase the wiper transition rate. Holding the control input low for more than 1s advances the wiper at a rate of 4Hz for 4s and 16Hz per second thereafter.

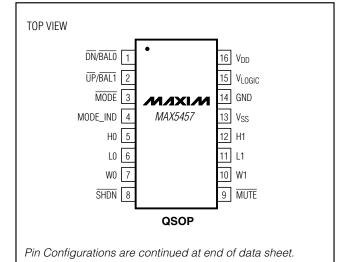
The MAX5456/MAX5457 provide temperature coefficients of 50ppm/°C end-to-end and 5ppm/°C ratiometric and a nominal resistance of $10k\Omega$ per potentiometer. An integrated click/pop suppression feature minimizes the audible noise generated by wiper transitions. The typical total harmonic distortion plus noise (THD+N) for these devices is 0.01%.

The MAX5457 features a 3-button interface with a MODE input that toggles between volume- and balancecontrol modes. An LED output indicates volume or balance mode. The MAX5456 features a 4-button interface with separate inputs for up and down volume controls and left and right balance controls.

The MAX5456/MAX5457 are available in 16-pin QSOP and 16-pin TQFN packages and are specified over the extended (-40°C to +85°C) temperature range.

Features

 SmartWiper Control Provides Accelerated Wiper Motion


- Debounced Pushbutton Interface with Internal Pullup Resistors
- Logarithmic Taper with 2dB Steps Between Taps
- Single +2.7V to +5.5V or Dual ±2.7V Supply Operation
- Low 0.5µA Standby Supply Current
- Clickless Switching
- 10kΩ End-to-End Fixed Resistance Value
- Mute Function to -90dB (typ)
- Power-On Reset to -12dB Wiper Position
- ♦ 32 Tap Positions for Each Wiper
- Small 16-Pin QSOP/TQFN Packages

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX5456EEE	-40°C to +85°C	16 QSOP	E16-1
MAX5456ETE*	-40°C to +85°C	16 TQFN	T1644-4
MAX5457EEE	-40°C to +85°C	16 QSOP	E16-1
MAX5457ETE*	-40°C to +85°C	16 TQFN	T1644-4

*Future product—contact factory for availability.

_Pin Configurations

Ordering Information

M /X / M

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

(MAX5456) SHDN, MUTE, VOLUP, VOLDN

	I, VOLDIN,
BAL_ to GND	0.3V to (V _{LOGIC} + 0.3V)
(MAX5457) SHDN, MUTE, UP/BA	AL1, DN/BALO, MODE,
MODE_IND to GND	0.3V to (V _{LOGIC} + 0.3V)
H_, L_, and W_ to V _{SS}	0.3V to (V _{DD} + 0.3 V)
V _{DD} to GND	-0.3V to +6V
V _{DD} to V _{SS}	0.3V to +6V
VLOGIC to GND	0.3V to +6V
VLOGIC to VSS	0.3V to +6V
Vss to GND	3.0V to +0.3V

Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = V_{LOGIC} = +2.7V \text{ to } +5.5V, V_{SS} = 0V, \text{GND} = 0V, V_{H_{-}} = V_{DD}, V_{L_{-}} = V_{SS}, T_A = T_{MIN} \text{ to } T_{MAX}$. Typical values are at $T_A = +25^{\circ}C$, unless otherwise specified.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
End-to-End Resistance	R	Figures 1, 2	7	10	13	kΩ
Maximum Bandwidth	f CUTOFF	From H_ to W_, $C_{LOAD} = 10 pF$		100		kHz
Absolute Ratio Tolerance		No load at the output of the wiper, $W_{-} = -6dB$		±0.25		dB
Tap-to-Tap Tolerance				±0.1		dB
		$V_{DD} = 5V, V_{H_{-}} = (V_{DD} / 2) + 1V_{RMS},$ f = 1kHz, tap = -6dB, V _{L_} = V_{DD} / 2, R _L = ∞		0.01		
Total Harmonic Distortion Plus Noise	THD+N	$ \begin{array}{l} V_{DD}=3V,V_{SS}=0V,V_{L}=1.5V,\\ V_{H}_=1.5V+1V_{RMS},f=1kHz,R_{L}=10k\Omega \text{ to}\\ (V_{DD}/2),C_{L}=5pF,tap=-6dB \end{array} $		0.23		%
Channel-to-Channel Isolation				-100		dB
Interchannel Matching		f = 20Hz to $20kHz$, tap = $-6dB$		±0.5		dB
Mute Attenuation				-90		dB
Power-Supply Rejection Ratio	PSRR			-80		dB
Wiper Resistance	Rw			1000	1700	Ω
Wiper Capacitance	Cw			10		pF
H Terminal Capacitance	C _H			5		pF
L Terminal Capacitance	CL			7		pF
End-to-End Resistance Temperature Coefficient				50		ppm/°C
Ratiometric Resistance Temperature Coefficient				5		ppm/°C
Output Noise	en	20Hz to 20kHz		0.95		μVRMS
PUSHBUTTON CONTACT INPUT	S (UP/BAL1,	DN/BAL0, MUTE, VOLUP, VOLDN, BAL0, BAL	1, MOD	Ē)		
Internal Pullup Resistor	Rpullup		32	50	65	kΩ
Single Pulse-Width Input	tipw	Figure 5	22.5			ms
Repetitive Input Pulse High Time	thpw	Figure 5	40			ms
Timeout Period	tws	Click/pop suppression inactive		32		ms

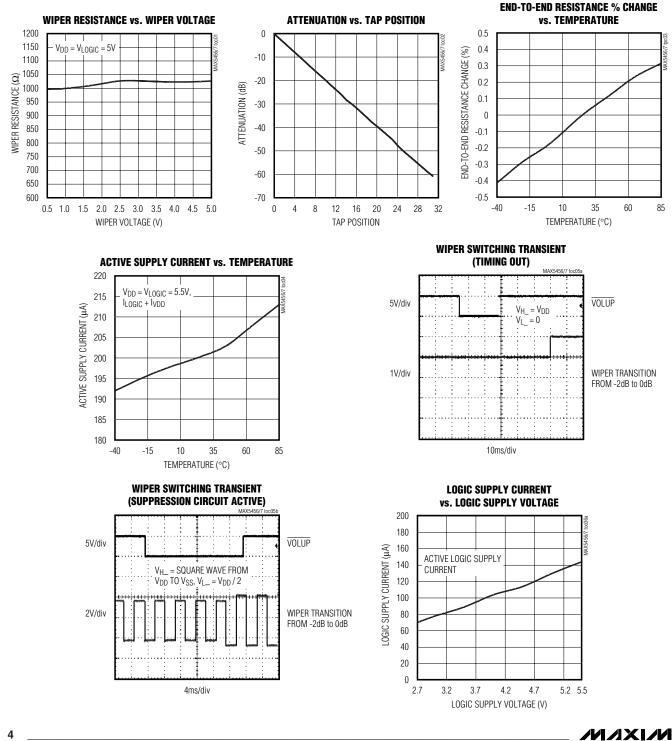
ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = V_{LOGIC} = +2.7V \text{ to } +5.5V, V_{SS} = 0V, \text{ GND} = 0V, V_{H_{-}} = V_{DD}, V_{L_{-}} = V_{SS}, T_A = T_{MIN} \text{ to } T_{MAX}$. Typical values are at $T_A = +25^{\circ}C$, unless otherwise specified.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
First Autoincrement Point				1		s
First Autoincrement Rate				4		Hz
Second Autoincrement Point				4		s
Second Autoincrement Rate				16		Hz
DIGITAL INPUTS (VLOGIC > 4.5	SV)		•			
Input High Voltage	VIH		2.4			V
Input Low Voltage	VIL				0.8	V
Input Leakage Current		Inputs floating			±1	μA
Input Capacitance				5		pF
DIGITAL INPUTS (VLOGIC < 4.5	5V)		•			
Input High Voltage	VIH		0.7 x V _{LOGIC}			V
Input Low Voltage	VIL				0.3 x V _{LOGIC}	V
Input Leakage Current		Inputs floating			±1	μA
Input Capacitance				5		pF
POWER SUPPLIES						
Supply Voltage	V _{DD}		2.7		5.5	V
Negative Power Supply	V _{SS}		-2.7		0	V
Supply-Voltage Difference		V _{DD} - V _{SS}			5.5	V
Active Supply Current	IDD	(Note 2)			100	μA
Standby Supply Current	ISTBY	V_{DD} = +5.5V, V_{SS} = 0V, V_{LOGIC} = 2.7V (Note 3) V_{LOGIC} = V_{DD} = +2.7V, V_{SS} = -2.7V (Note 3)		2 0.5	10 1	μA
Shutdown Supply Current	ISHDN	(Note 4)			1	μA
Power-Up Time	tPU			10		ms
Logic Standby Voltage	VLOGIC		2.7		V _{DD}	V
Logic Active Supply Current	ILOGIC	(Note 2)			160	μA
Logic Standby Supply Current	LOGICSTBY	(Note 3)		0.5	1	μA
Logic Shutdown Current	ILOGICSHDN	(Note 4)			1	μA
DIGITAL OUTPUT, MODE_IND						<u> </u>
		$V_{LOGIC} = 2.7V, I_{SINK} = 10mA$			0.4	
Output Low Voltage	VOL	$V_{LOGIC} = 5.5V$, $I_{SINK} = 10mA$			0.2	V
Output Leakage Current				0.1	10	μA
Output Capacitance				3		pF
Maximum Sink Current			ĺ	150		mA

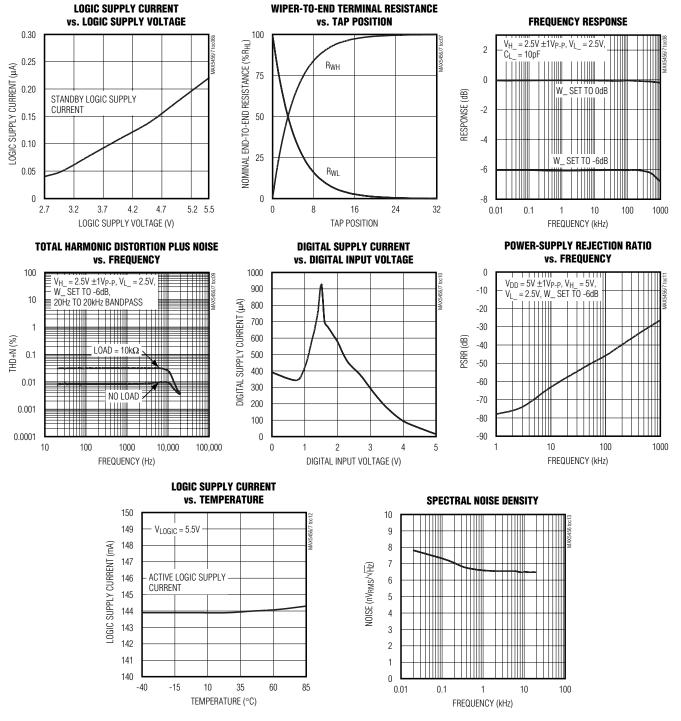
Note 1: Parameters are 100% production tested at +85°C and limits through temperature are guaranteed by design.

Note 2: Supply current measured with the supply on and a button pushed.


Note 3: Supply current measured with the power on, no button pushed, and the wiper position fixed.

Note 4: This is the measured current with SHDN low and MODE_IND unconnected.

Typical Operating Characteristics


(V_{DD} = V_{LOGIC} = +2.7V to +5.5V, V_{SS} = 0V, GND = 0V, V_H = V_{DD}, V_L = V_{SS}, T_A = T_{MIN} to T_{MAX}. Typical values are at T_A = +25°C, unless otherwise specified.)

4

Typical Operating Characteristics (continued)

 $(V_{DD} = V_{LOGIC} = +2.7V \text{ to } +5.5V, V_{SS} = 0V, \text{GND} = 0V, V_{H_{-}} = V_{DD}, V_{L_{-}} = V_{SS}, T_A = T_{MIN} \text{ to } T_{MAX}$. Typical values are at $T_A = +25^{\circ}C$, unless otherwise specified.)

Pin Description

	Р	IN			
МАХ	5457	МАХ	5456	NAME	FUNCTION
TQFN	QSOP	TQFN	QSOP		
1	3	_	_	MODE	Volume/Balance Control. Each transition from high to low toggles between volume and balance modes. $\overline{\text{MODE}}$ is pulled high internally with a 50k Ω resistor to V _{LOGIC} . On power-up, the MAX5457 is in volume-control mode.
2	4		_	MODE_IND	Volume-Control/Balance-Control Mode Indicator Open-Drain Output. Connect to an LED through a resistor to V _{LOGIC} . When the LED is on, the MAX5457 is in balance-control mode. When the LED is off, the MAX5457 is in volume-control mode. See the <i>Mode Indicator, MODE_IND</i> section for more detail.
3	5	3	5	H0	Potentiometer 0 High Terminal. H0 and L0 terminals can be reversed.
4	6	4	6	LO	Potentiometer 0 Low Terminal. L0 and H0 terminals can be reversed.
5	7	5	7	W0	Potentiometer 0 Wiper Terminal
6	8	6	8	SHDN	Active-Low Shutdown Input. In shutdown mode, the MAX5456/MAX5457 store the last wiper settings. The wipers move to the L end of the resistor string, and the H end of the resistor string disconnects from the signal input. Terminating shutdown mode restores the wipers to their previous settings.
7	9	7	9	MUTE	Mute Input. When $\overline{\text{MUTE}}$ is low, the wiper goes to the highest attenuation setting (see Table 1). $\overline{\text{MUTE}}$ is internally pulled up with 50k Ω to V _{LOGIC} .
8	10	8	10	W1	Potentiometer 1 Wiper Terminal
9	11	9	11	L1	Potentiometer 1 Low Terminal. L1 and H1 terminals can be reversed.
10	12	10	12	H1	Potentiometer 1 High Terminal. H1 and L1 terminals can be reversed.
11	13	11	13	V _{SS}	Negative Power Supply. Bypass with 0.1µF to ground.
12	14	12	14	GND	Ground
13	15	13	15	VLOGIC	Digital Logic Power Supply. Bypass with 0.1µF to ground.
14	16	14	16	V _{DD}	Analog Power Supply. Bypass with 0.1µF to ground.
15	1		_	DN/BAL0	Downward Volume/Channel 0 Balance-Control Input. In volume mode, pressing $\overline{\text{DN}/\text{BAL0}}$ moves both wipers towards the L terminals. In balance mode, pressing $\overline{\text{DN}/\text{BAL0}}$ moves the balance towards channel 0. $\overline{\text{DN}/\text{BAL0}}$ is internally pulled up with 50k Ω to V _{LOGIC} .
16	2			UP/BAL1	Upward Volume/Channel 1 Balance-Control Input. In volume mode, pressing UP/BAL1 moves both wipers towards the H terminals. In balance mode, pressing UP/BAL1 moves the balance towards channel 1. UP/BAL1 is internally pulled up with 50k Ω to V _{LOGIC} .
	_	1	3	BAL1	Channel 1 Balance-Control Input. Pressing $\overline{BAL1}$ moves the balance towards channel 1. $\overline{BAL1}$ is internally pulled up with 50k Ω to V _{LOGIC} .
_	_	2	4	BALO	Channel 0 Balance-Control Input. Pressing $\overline{BAL0}$ moves the balance towards channel 0. $\overline{BAL0}$ is internally pulled up with 50k Ω to VLOGIC.
	_	15	1	VOLDN	Downward Volume-Control Input. Pressing $\overline{\text{VOLDN}}$ moves both wipers towards the L terminals. $\overline{\text{VOLDN}}$ is internally pulled up with 50k Ω to VLOGIC.
_	—	16	2	VOLUP	Upward Volume-Control Input. Pressing $\overline{\text{VOLUP}}$ moves both wipers towards the H terminals. $\overline{\text{VOLUP}}$ is internally pulled up with 50k Ω to V _{LOGIC} .

Detailed Description

The MAX5456/MAX5457 dual, logarithmic taper digital potentiometers feature a simple pushbutton interface that controls volume and balance in audio applications. Each potentiometer has 32 tap points and replaces mechanical potentiometers (see the *Functional Diagrams*).

Up and Down Interface

The MAX5456/MAX5457 interface with momentary contact SPST switches. All switch inputs are internally debounced and pulled up to V_{LOGIC} through 50k Ω resistors. The wiper setting advances once per button press up to 1s. Maxim's SmartWiper control circuitry allows the wiper to advance at a rate of 4Hz when an input is held low from 1s up to 4s, and at a rate of 16Hz if the contact is maintained for greater than 4s (see Table 2). The SmartWiper control eliminates the need for a microcomputer to increase the wiper transition rate.

The MAX5456 features independent control inputs for volume and balance control while the MAX5457 MODE input toggles between volume and balance control. Each transition of MODE from high to low toggles the MAX5457 between volume-control and balance-control modes. MODE is internally pulled high with a 50k Ω resistor to VLOGIC.

Volume Control

In volume-control mode, the MAX5456/MAX5457s' wipers move simultaneously, maintaining the balance separation between each wiper (Figure 3a).

When either wiper reaches the maximum tap position (position closest to H_), further commands to increase the volume are ignored. Balance separation is maintained in the maximum volume configuration (Figure 3b).

When either wiper reaches the minimum tap position (position closest to L_), further commands to decrease the volume adjust the other wiper until it also reaches the minimum tap position (Figure 3c).

Increasing the volume from this minimum position restores the original balance separation of the wipers (Figure 3d).

When both wipers are in the 31st tap position (-62dB attenuation), further commands to VOLDN place the wipers in the mute position (see Table 1). VOLUP or MUTE pulses return wipers to position 31.

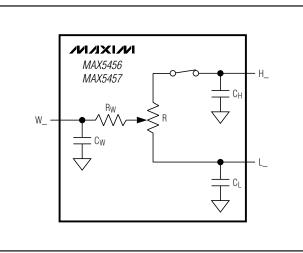


Figure 1. Potentiometer Model (Active)

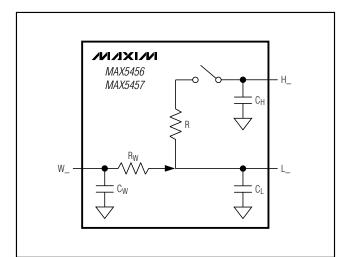


Figure 2. Potentiometer Model (Shutdown)

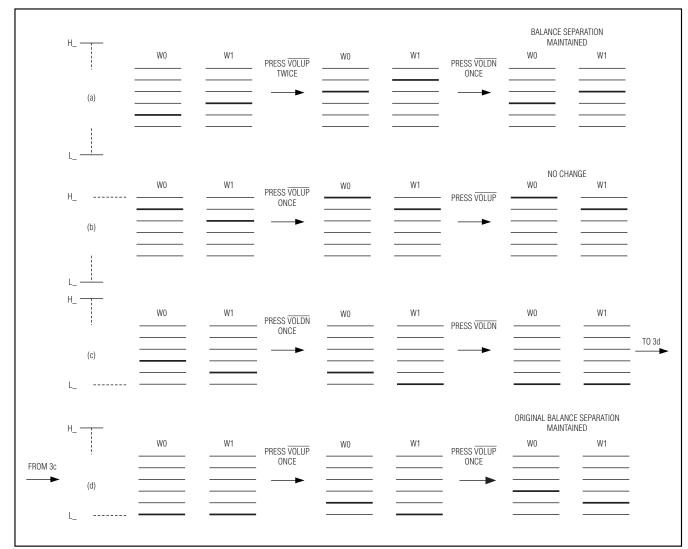
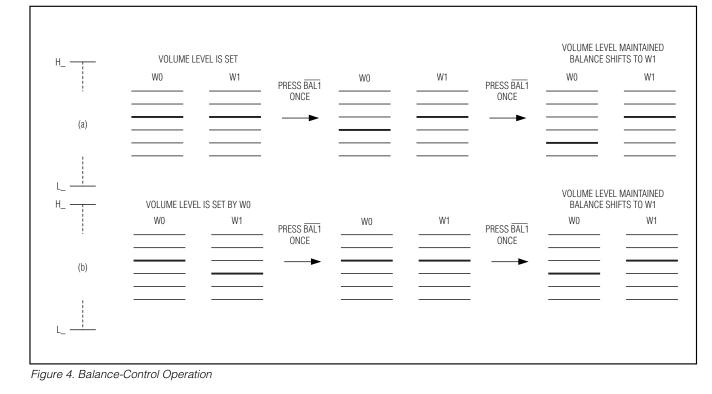


Figure 3. Volume-Control Operation

POSITION	ATTENUATION (dB)
0	0
1	2
2	4
:	
6 (POR)	12
	:
30	60
31	62
32 (mute)	>90
8	

M/X/W


Balance Control

In balance-control mode, the MAX5456/MAX5457 adjust the balance between channel 0 and channel 1 while maintaining the set volume. For example, if the volume of channel 0 equals the volume of channel 1, forcing the balance towards channel 1 increases the attenuation of channel 0 (Figure 4a). If channel 1 is at a higher attenuation than channel 0, adjusting the balance to channel 1 moves channel 1's wiper up to the same wiper position as channel 0 before attenuating channel 0 (Figure 4b).

To control the wiper quickly with a logic signal, maintain pulses at least 22.5ms wide and separated by at least 40ms.

Table 2. Wiper Action vs. PushbuttonContact Duration

CONTACT DURATION	WIPER ACTION
t < 22.5ms	No motion (debouncing).
22.5ms < t ≤ 1s	Wiper changes position once.
1s < t ≤ 4s	Wiper changes position at a rate of 4Hz.
t > 4s	Wiper changes position at a rate of 16Hz.

Click/Pop Suppression

The click/pop suppression feature reduces the audible noise (clicks and pops) that result from wiper transitions. The MAX5456/MAX5457 minimize this noise by allowing the wiper position changes only when V_H = V_L. Thus, the wiper changes position only when the voltage at L_ is the same as the voltage at the corresponding H_. Each wiper has its own suppression and timeout circuitry (see Figure 5a). The MAX5456/MAX5457 change wiper position after 32ms or when V_H = V_L, whichever occurs first (see Figure 5b).

The suppression circuitry monitors left and right channels separately. In volume-control mode, when the first wiper changes position, the second wiper has 32ms to change or it will be forced to change.

Power-On Reset

The power-on comparators monitor V_{DD} - V_{SS} and V_{LOGIC} - GND. A power-on reset is initiated when either of the supplies is brought back to normal operating voltage. The power-on-reset feature sets both wipers to -12dB. Power-on reset places the MAX5457 in volume-control mode.

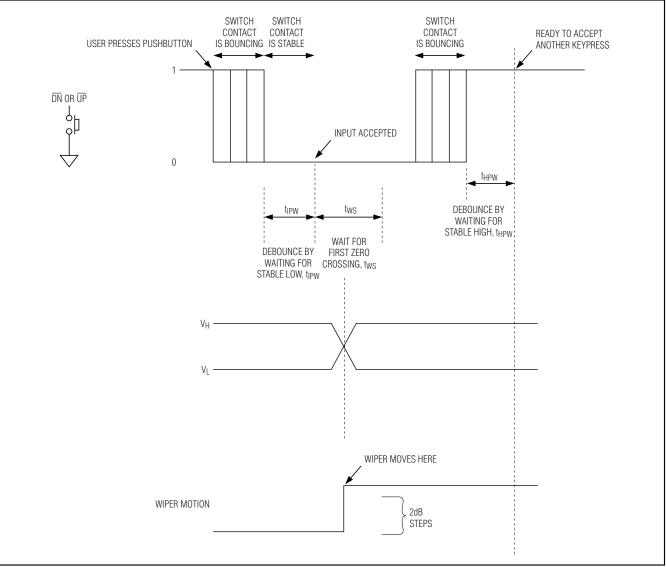


Figure 5a. Wiper Transition Timing Diagram

Shutdown, SHDN

Upon entering shutdown mode, the MAX5456/MAX5457 store the last wiper settings. The wipers move to the L_ end of the resistor string, and the H_ end of the resistor string disconnects from the signal input. Terminating shutdown mode restores the wipers to their previous settings (see Figure 2). Shutdown does not affect the state of MODE_IND.

function forces both wipers to maximum attenuation (-90dB typ). Deactivating the mute function returns the wipers to their previous settings. Pressing VOLUP also deactivates mute, setting the wipers to their previous positions. MUTE is internally pulled high with a 50k Ω resistor to VLOGIC. When both wipers are in the 31st tap position (-62dB attenuation), further commands to VOLDN place the wipers in the mute position (see Table 1). VOLUP or MUTE pulses return the wipers to position 31.

Mute Function, MUTE

The MAX5456/MAX5457 feature a mute function. Successive pulses on MUTE toggle its setting. Activating the mute

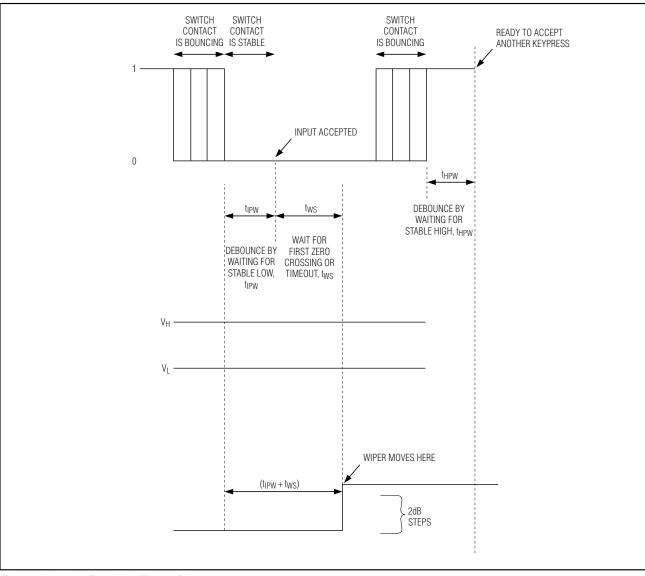


Figure 5b. Wiper Transition Timing Diagram

MAX5456/MAX5457

Mode Control, MODE

The MAX5457 $\overline{\text{MODE}}$ input toggles between volumeand balance-control modes. Force $\overline{\text{MODE}}$ low to toggle between volume-control and balance-control modes. For example, driving $\overline{\text{MODE}}$ low once while in volumecontrol mode, switches the MAX5457 to balance-control mode. Driving mode low once again, switches the MAX5457 back to volume-control mode. $\overline{\text{MODE}}$ is internally pulled high with a 50k Ω resistor to V_{LOGIC}. The MAX5457 powers up in volume-control mode.

Mode Indicator, MODE_IND

MODE_IND is the volume-control and balance-control mode indicator with an open-drain output. Connect MODE_IND to an LED through a pullup resistor to VLOGIC. When the LED is on, the MAX5457 is in balance-control mode. When the LED is off, the MAX5457 is in volume-control mode. See the *Mode Control, MODE* section for more detail on switching between modes. Shutdown does not affect the state of MODE_IND.

Multiple Button Pushes

The MAX5456/MAX5457 do not respond to simultaneous button pushes. Pushing more than one button at the same time stops the wipers in their present states. Only a single button push configures the device. Additionally, a 40ms blocking period affects all other inputs when releasing any input forced low. The MAX5456/MAX5457 do not respond to any logic input until the blocking period ends. If multiple wiper-control buttons are pressed, all wiper-control connections must be released before the part will respond to further commands.

Applications Information

Stereo Volume/Balance Control

Figure 6 shows a volume/balance application using the MAX5457. The op amp is connected in a follower (noninverting gain) configuration to isolate the potentiometer's wiper impedance from the load and provide drive capability. Connect the W_ of the MAX5457 to the positive input of a noninverting gain amp. The pushbutton potentiometers attenuate the input signals. Use the MODE input to switch between volume-control and balance-control modes.

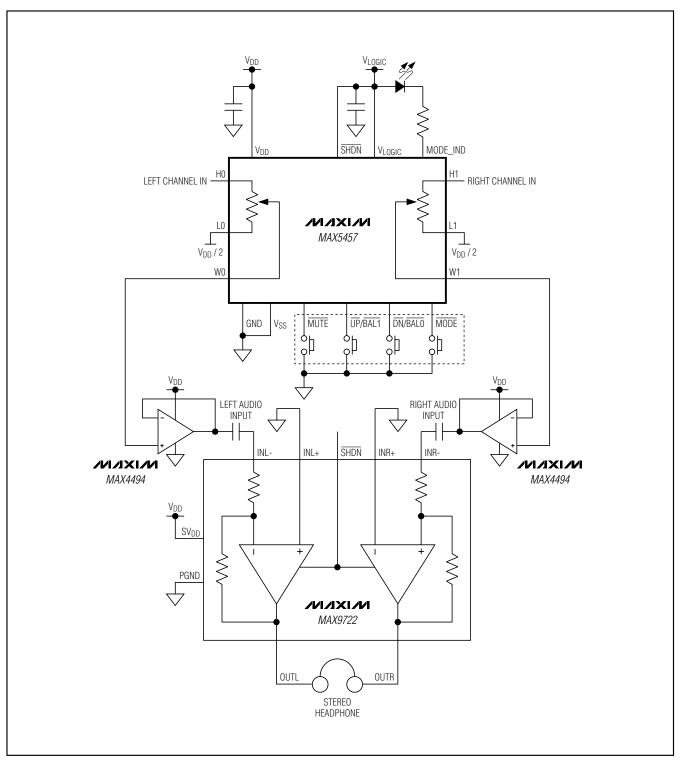
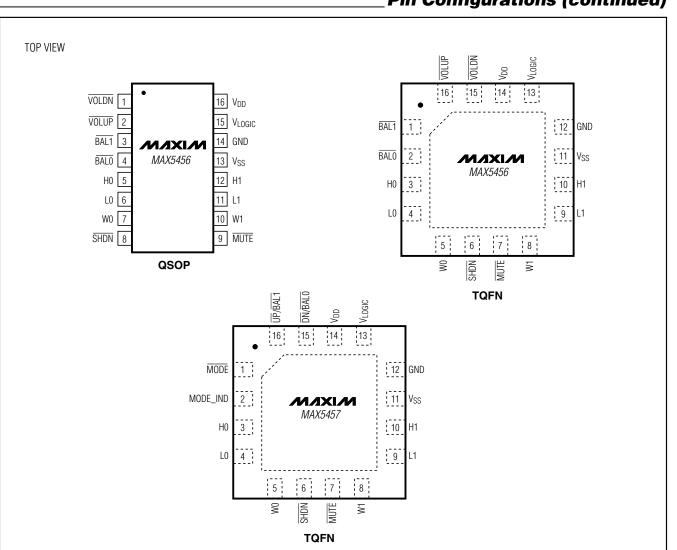
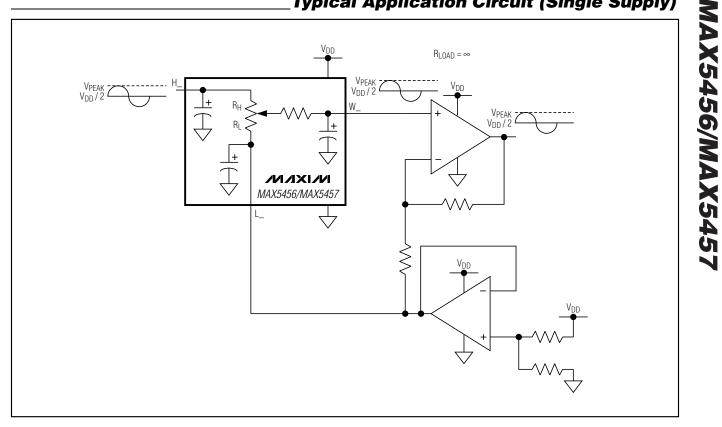


Figure 6. Volume/Balance Control

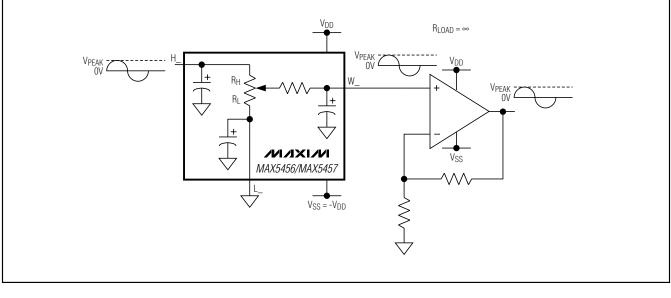

MAX5456/MAX5457

Selector Guide

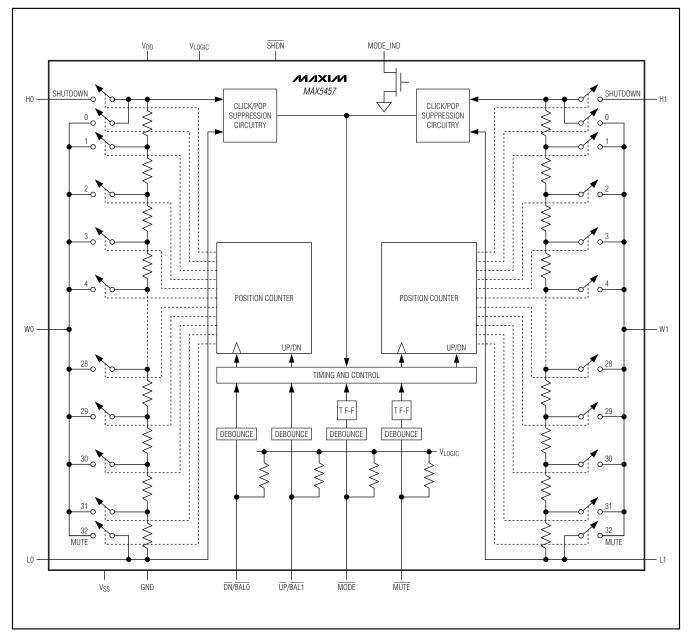
Chip Information


PART INTERFACE PKG. CODE MAX5456EEE 4-Button E16-1 MAX5456ETE* T1644-4 4-Button MAX5457EEE 3-Button E16-1 MAX5457ETE* T1644-4 3-Button

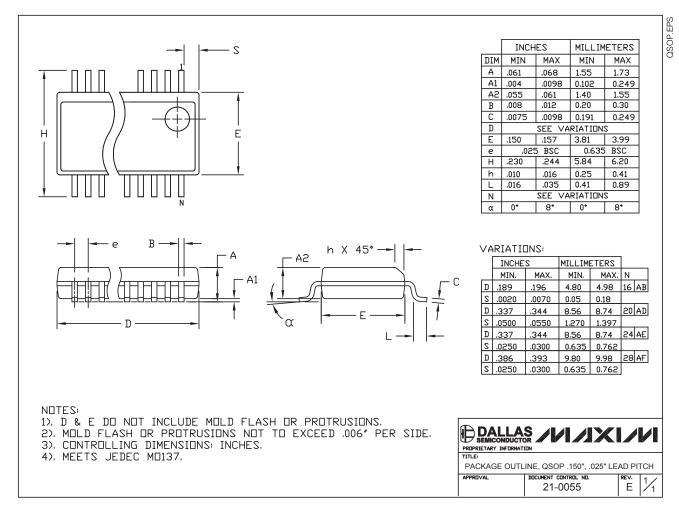
*Future product—contact factory for availability.


TRANSISTOR COUNT: 15,395 PROCESS: CMOS

Pin Configurations (continued)

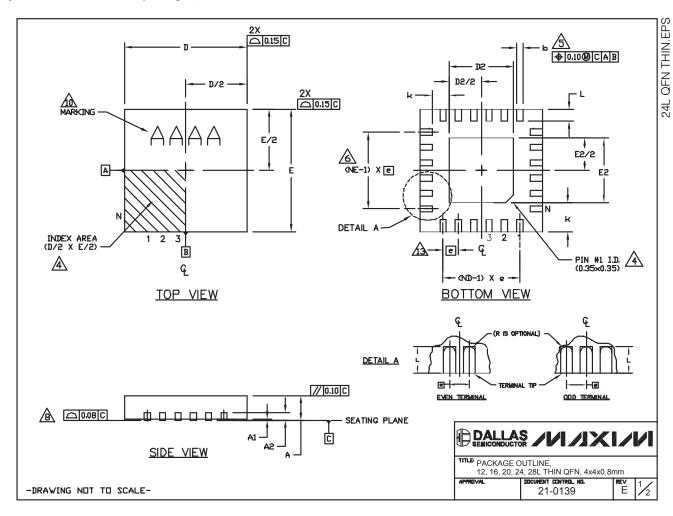

Typical Application Circuit (Single Supply)

Typical Application Circuit (Dual Supplies)


Functional Diagrams

_Functional Diagrams (continued)

Package Information


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

M/IXI/M

_Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

					40N	DIME	NSI	SNE									E	XPDS	SED	PAD	VAR	IATI	[DNS	
PKG	12	2L 4×	4	16	SL 4x	4	20	L 4x	4	2	4L 4>	<4	21	BL 4>	< 4		PKG.		D2			E5		DOWN BONDS
ref.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	L C	CODES	MIN.	NDM.	MAX.	MIN.	NOM.	MAX.	ALLOVE
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	ΙĒ	T1244-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
A1	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0,0	0.02	0.05	0.0	0.02	0.05	Ŀ	T1244-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
A2	0	0.20 RE	F	0	20 RE	F	0.	20 RE	F	0	20 RE	F	0	20 RE	F	Ŀ	T1644-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30	0.15	0.20	0.25	Ŀ	T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
D	3,90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	Ľ	T2044-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
E		4.00	4.10	3.90	4.00	4.10	3.90		4.10	3.90	4.00	4.10	3.90	4.00	4.10		T2044-3	1.95	2.10	2.25	1.95	2.10	2.25	ND
e		0.80 BS			65 BS			50 BS			.50 BS	-		.40 BS			T2444-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
ĸ	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-		T2444-3	2.45	2.60	2.63	2.45	2.60	2.63	YES
L	0.45		0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50	0.30	0.40	0.50	I F	T2444-4	2.45	2.60	2.63	2.45	2.60	2.63	ND
N	<u> </u>	12			16			20			24		<u> </u>	28		Ľ	T2844-1	2.50	2.60	2.70	2.50	2.60	2.70	ND
ND	<u> </u>	3			4			5		<u> </u>	6		<u> </u>	7										
NE	<u> </u>	3			4			5		<u> </u>	6		<u> </u>	7										
Jedec Var.		₩GGB			WGGC			/GGD-:	1		WGGD-	-2		WGGE										
2.	dimens All di	Sioning Mensioi He tot	NS ARE	IN MI	LUMETI	ers. An																		
1. 2. 3.	DIMENS ALL DI N IS T THE TE JESD 9 THE ZO DIMENS	MENSIO THE TOT ERMINAL 35—1 SI DNE INE SION 6	NS ARE AL NUI #1 ID PP-012 DICATED APPLIE	in Mi Mber (Mentifie 2. Deta). The	lumeti Df teri Ir and Ils of Termin	ers. An Minals. Termin Termin Ial #1	igles Ial NL Ial #1 Identii	are in Imberii Identi Fier M	i degr Ng coi Fier Ai Ay Be	ees. Nventk Re opt Eithef	ional, R A MC	BUT N	UST BE	ED FEA	TED WITH ATURE. 0.30 m									
1. 2. 3. (A)	DIMENS ALL DIM N IS TH THE TE JESD 9 THE ZC DIMENS FROM ND ANI	Mensioi The tot Erminal 95—1 Si Dne ind	NS ARE AL NUI PP-012 DICATED APPLIE AL TIP. REFER	E IN MI MBER (MENTIFIE 2. DETA 2. THE 3. THE 5. TO 1 10. THE	LUMETI DF TERI IR AND ILS OF TERMIN METALU	ERS. AN MINALS. TERMIN TERMIN IAL #1 ZED TE BER OF	igles Ial ni Identii Rminal Termin	ARE IN Imberii Identi Fier M . And VALS C	I DEGR NG COI FIER AI AY BE IS MEA IN EAC	ees. Nventk Re opt Eithef Sured	ional, R A MC Betw	BUT M DLD OR EEN 0.1	UST BE MARK 25 mm	E LOCA Ed Fea 1 AND	TURE.									
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENS ALL DI N IS TI THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPT	MENSION THE TOT ERMINAL 35-1 SI 35-1 SI 35-1 SI 35-1 SI 310N B TERMIN/ D NE F	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER	in Mi Mertifie 2. Deta 3. The 5. To 1 5. To 1 5. Sto 1 5. Sto 1 5. Sto 1	LLIMETI DF TER ILS OF TERMIN METALLI I NUMB	ers, an minals, termin termin val #1 zed te ber of symme	GLES IAL NL AL ∯1 IDENTII RMINAL TERMIN TRICAL	ARE IN IDENTI FIER M . AND WALS C FASHIK	I DEGR NG COI FIER AI AY BE IS MEA IS MEA IN EAC ON.	ees. Nventik Re opt Eithef Sured H d a	NDAL, RAMC BETW NDE	BUT M DLD OR EEN 0.: SIDE RE	UST BE MARKI 25 mm ESPECT	E LOCA ED FEA I AND IVELY.	TURE.									
1. 2. 3. (A) (C) 7. (B)	DIMENS ALL DIM N IS THE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPI COPLAN	Mensioi He tot 25—1 Si DNE INE SION B TERMIN/ D NE F ULATION	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER I IS PC APPLIE	in Mi Meer (Mentifie 2. Deta 0. The 3. To 1 5. To 1 DSSIBLE 5. To 1	LLIMETI DF TERI TERMIN METALLI NUMB NUMB NUMB NUMB	ers. An minals. Termin termin val #1 Zed te ber of symme posed	GLES HAL NL IDENTH RMINAL TERMIN TERMIN TERMIN TERMIN TERMIN TERMIN	ARE IN IDENTI FIER M . AND VALS C FASHIK SINK S	I DEGR NG COI FIER AI AY BE IS MEA IS MEA IN EAC ON.	ees. Nventik Re opt Eithef Sured H D A S Well	ND E S	BUT M DLD OR EEN 0.: SIDE RE	UST BE MARKI 25 mm ESPECT	E LOCA ED FE4 I AND IVELY.	TURE.									
1. 2. 3. ▲ ▲	DIMENS ALL DI N IS T THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPT COPLAY DRAWIN	MENSION THE TOT Erminal 25-1 Si DNE INE SION 6 TERMIN/ D NE F ULATION NARITY	NS ARE TAL NUI PP-012 DICATED APPLIE APPLIE APPLIE IFORMS	E IN MI MBER (ENTIFIE 2. DETA 2. DETA 3. THE 5. TO I 5. TO I TO JE	LLIMETI DF TER R AND ILS OF TERMIN METALLI E NUMB E IN A THE EX IDEC M	ERS. AN MINALS. TERMIN TERMIN IAL #1 ZED TE ER OF SYMME POSED 0220,	GLES AL NL AL ∳1 IDENTI IDENTI IDENTI ITERMIN	ARE IN IMBERII IDENTI FIER M . AND VALS C FASHK SINK S F FOR	I DEGR NG COI FIER AI AY BE IS MEA IN EAC ON. ELUG AS T2444	ees. Nventik Re opt Eithef Sured H D A S Well	ND E S	BUT M DLD OR EEN 0.: SIDE RE	UST BE MARKI 25 mm ESPECT	E LOCA ED FE4 I AND IVELY.	TURE.									
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENS ALL DI N IS T THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPT COPLAY DRAWIN (ARKING	MENSION THE TOT ERMINAL 95-1 SI DONE INC SION & TERMIN/ D NE F ULATION NARITY NG CON	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER I IS PO APPLIE FORMS OR PAC	E IN MI MEBER (MENTIFIE 2. DETA . DETA . THE S TO I S TO I TO JE KAGE (LLIMETI DF TER R AND ULS OF TERMIN METALLI IN METALLI IN METALLI I	ERS. AN MINALS. TERMIN TERMIN VAL #1 ZED TE BER OF SYMME POSED 0220, VIION R	GLES AL NL AL ∳1 IDENTI IDENTI IDENTI ITERMIN	ARE IN IMBERII IDENTI FIER M . AND VALS C FASHK SINK S F FOR	I DEGR NG COI FIER AI AY BE IS MEA IN EAC ON. ELUG AS T2444	ees. Nventik Re opt Eithef Sured H D A S Well	ND E S	BUT M DLD OR EEN 0.: SIDE RE	UST BE MARKI 25 mm ESPECT	E LOCA ED FE4 I AND IVELY.	TURE.									
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENS ALL DI N IS T THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPT COPLAN	MENSION THE TOT ERMINAL 55-1 SI DONE IND SION & TERMIN/ D NE F ULATION NARITY NG CON G IS FO ARITY S	NS ARE AL NUI PP-012 DICATED APPLIE AL TIP. REFER I IS PO APPLIE IFORMS DR PAC SHALL N	E IN MI MEER (PENTIFIE 2. DETA 2. DETA 2. DETA 3. TO I 5. TO I 5. TO I 5. TO I 5. TO I 5. TO I 5. TO I 6. KAGE (NOT EX	LUMETI DF TER R AND US OF TERMIN METALU E NUMB E IN A THE EX DEC M DRIENTA CEED (ERS. AM MINALS. TERMIN TERMIN AL #1 ZED TE DER OF SYMME POSED 0220, ATION R 0.08mm	GLES AL NL AL ∳1 IDENTI IDENTI IDENTI ITERMIN	ARE IN IMBERII IDENTI FIER M . AND VALS C FASHK SINK S F FOR	I DEGR NG COI FIER AI AY BE IS MEA IN EAC ON. ELUG AS T2444	ees. Nventik Re opt Eithef Sured H D A S Well	ND E S	BUT M DLD OR EEN 0.: SIDE RE	UST BE MARKI 25 mm ESPECT	E LOCA ED FE4 I AND IVELY.	TURE.									
1. 2. 3. 4. 7. 9. 11. 0 12. V	DIMENS ALL DI N IS T THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPI COPLAY DRAWIN (ARKINC COPLAN/ VARPAG EAD CE	MENSION THE TOT ERMINAL 35-1 SI DONE INE SION & TERMIN/ D NE F ULATION NARITY NG CON G IS FO	NS ARE AL NUI AL ID PP-012 DICATED APPLIE APPLIE APPLIE IS PC APPLIE IFORMS DIC PAC DIC NOT NES TO	E IN MI MEDER (VENTIFIE 2, DETA , DETA S TO I S S I S TO I S S I S TO I S S I S S S S S S S S S S S S S S S S	ILLIMETI DF TERMIN VILS OF TERMIN METALLI E NUMB E IN A THE EXI DEC M DRIENTA CEED (ND 0.1 T TRUE	ERS. AM MINALS. TERMIN TERMIN VAL #1 ZED TE SYMME POSED 0220, NION R 0.08mm 0.08mm 0.08mm	GLES HAL NL AL #1 IDENTII RMINAL TERMIN TRICAL HEAT SCEPT EFEREN ON AS	ARE IN IMBERII IDENTI FIER M AND VALS O FASHIK SINK S FOR VCE OF	I DEGR NG COI FIER AN BE IS MEA IN EAC ON. ELUG AS T2444- NLY.	EES. NMENTIK RE OPT EITHEF SURED H D A S WELL -3, T2	10nal, R A MC BETW ND E \$. AS TI 444-4	BUT M DLD OR EEN 0.: SIDE RE HE TER	UST BE MARKI 25 mm ESPECT MINALS 12844-	E LOCA ED FEA AND IVELY.	TURE.								X	
1. 2. 3. 4. 7. 9. 11. 0 12. V	DIMENS ALL DI N IS T THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPI COPLAY DRAWIN (ARKINC COPLAN/ VARPAG EAD CE	MENSION THE TOT SEMINAL 35-1 SI DONE INC SION & TERMIN/ D NE FO ULATION NARITY NG CON G IS FO ARITY S E SHAL ENTERLI	NS ARE AL NUI AL ID PP-012 DICATED APPLIE APPLIE APPLIE IS PC APPLIE IFORMS DIC PAC DIC NOT NES TO	E IN MI MEDER (VENTIFIE 2, DETA , DETA S TO I S S I S TO I S S I S TO I S S I S S S S S S S S S S S S S S S S	ILLIMETI DF TERMIN VILS OF TERMIN METALLI E NUMB E IN A THE EXI DEC M DRIENTA CEED (ND 0.1 T TRUE	ERS. AM MINALS. TERMIN TERMIN VAL #1 ZED TE SYMME POSED 0220, NION R 0.08mm 0.08mm 0.08mm	GLES HAL NL AL #1 IDENTII RMINAL TERMIN TRICAL HEAT SCEPT EFEREN ON AS	ARE IN IMBERII IDENTI FIER M AND VALS O FASHIK SINK S FOR VCE OF	I DEGR NG COI FIER AN BE IS MEA IN EAC ON. ELUG AS T2444- NLY.	EES. NMENTIK RE OPT EITHEF SURED H D A S WELL -3, T2	10nal, R A MC BETW ND E \$. AS TI 444-4	BUT M DLD OR EEN 0.: SIDE RE HE TER	UST BE MARKI 25 mm ESPECT MINALS 12844-	E LOCA ED FEA AND IVELY.	TURE.		דנד	LD PAC	KAGE	OUTLI 24, 281		QFN, 4		

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

20

© 2005 Maxim Integrated Products Printed USA MAXIM is a registered trademark of Maxim Integrated Products, Inc.

ſ