NPN SILICON TRANSISTOR

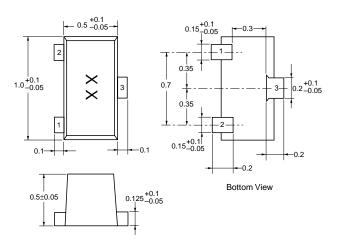
NE856M13

FEATURES

NE

• NEW MINIATURE M13 PACKAGE:

- Small transistor outline –
- 1.0 X 0.5 X 0.5 mm
- Low profile / 0.50 mm package height


- Flat lead style for better RF performance
- LOW NOISE FIGURE: NF = 1.4 dB at 1 GHz
- HIGH COLLECTOR CURRENT: Ic MAX = 100 mA

DESCRIPTION

The NE856M13 transistor is designed for low cost amplifier and oscillator applications. Low noise figure, high gain and high current capability equate to wide dynamic range and excellent linearity. NEC's new low profile/flat lead style "M13" package is ideal for today's portable wireless applications. The NE856 is also available in chip, Micro-x, and eight different low cost plastic surface mount package styles.

OUTLINE DIMENSIONS (Units in mm)

PACKAGE OUTLINE M13

PIN CONNECTIONS

- 1. Emitter
- 2. Base
- 3. Collector

ELECTRICAL CHARACTERISTICS (TA = 25°C)

PART NUMBER EIAJ ¹ REGISTERED NUMBER PACKAGE OUTLINE		NE856M13 2SC5614 M13			
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
fτ	Gain Bandwidth at VcE = 3 V, Ic = 7 mA, f = 1 GHz	GHz	3	4.5	
NF	Noise Figure at Vce = 3 V, Ic = 7 mA, f = 1 GHz	dB		1.4	2.5
S 21E ²	Insertion Power Gain at VcE = 3 V, Ic = 7 mA, f = 1 GHz	dB	7	10	
hfe ²	Forward Current Gain at VcE = 3 V, Ic = 7 mA		80		145
Ісво	Collector Cutoff Current at VcB = 10 V, IE = 0	μA			1
Іево	Emitter Cutoff Current at VEB = 1 V, IC = 0	μΑ			1
Cre ³	Feedback Capacitance at VcB = 3 V, IE = 0, f = 1 MHz	pF		0.7	1.5

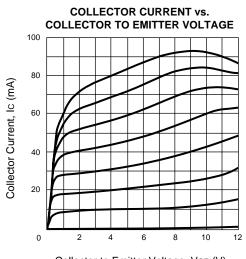
Notes:

1. Electronic Industrial Association of Japan.

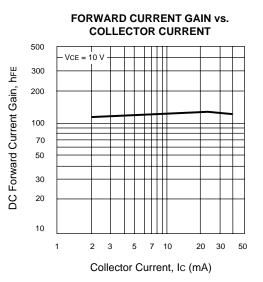
2. Pulsed measurement, pulse width \leq 350 µs, duty cycle \leq 2 %.

3. Capacitance is measured with emitter and case connected to the guard terminal at the bridge.

			· ,
SYMBOLS	PARAMETERS	UNITS	RATINGS
Vсво	Collector to Base Voltage	V	20
VCEO	Collector to Emitter Voltage	V	12
Vebo	Emitter to Base Voltage	V	3
Ic	Collector Current	mA	100
Pt ²	Total Power Dissipation	mW	140
TJ	Junction Temperature	°C	150
Tstg	Storage Temperature	°C	-65 to +150


ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C)

Notes:


1. Operation in excess of any one of these parameters may result in permanent damage.

2. With device mounted on 1.08 cm² X 1.2 mm glass epoxy board.

TYPICAL PERFORMANCE CURVES (TA = 25°C)

Collector to Emitter Voltage, VCE (V)

