

SILICON POWER MOS FET NE5520279A

3.2 V OPERATION SILICON RF POWER LDMOS FET FOR 1.8 GHz 1.6 W TRANSMISSION AMPLIFIERS

DESCRIPTION

The NE5520279A is an N-channel silicon power laterally diffused MOS FET specially designed as the transmission power amplifier for 3.2 V DCS1800 handsets. Dies are manufactured using our NEWMOS2 technology (our WSi gate laterally diffused MOS FET) and housed in a surface mount package. This device can deliver 32.0 dBm output power with 45% power added efficiency at 1.8 GHz under the 3.2 V supply voltage.

FEATURES

High output power
 Pout = 32.0 dBm TYP. (VDS = 3.2 V, IDSet = 700 mA, f = 1.8 GHz, Pin = 25 dBm)
 High power added efficiency
 η_{add} = 45% TYP. (VDS = 3.2 V, IDSet = 700 mA, f = 1.8 GHz, Pin = 25 dBm)
 High linear gain
 GL = 10 dB TYP. (VDS = 3.2 V, IDSet = 700 mA, f = 1.8 GHz, Pin = 5 dBm)

• Surface mount package : $5.7 \times 5.7 \times 1.1$ mm MAX.

• Single supply : VDS = 2.8 to 6.0 V

APPLICATION

• Digital cellular phones : 3.2 V DCS1800 Handsets

ORDERING INFORMATION

Part Number	Package	Marking	Supplying Form
NE5520279A-T1	79A	A2	12 mm wide embossed taping Gate pin face the perforation side of the tape Qty 1 kpcs/reel
NE5520279A-T1A			12 mm wide embossed taping Gate pin face the perforation side of the tape Qty 5 kpcs/reel

Remark To order evaluation samples, contact your nearby sales office.

Part number for sample order: NE5520279A-A

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

ABSOLUTE MAXIMUM RATINGS (TA = +25°C)

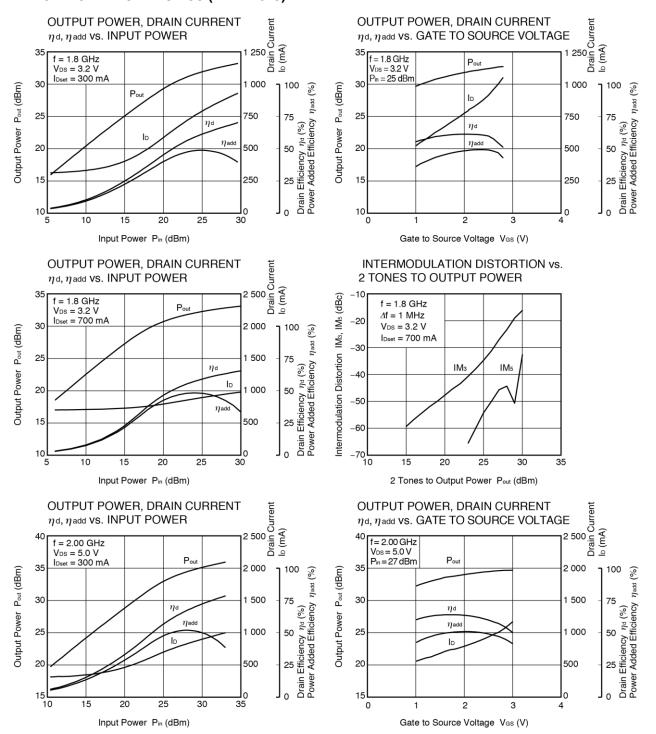
Parameter	Symbol	Ratings	Unit
Drain to Source Voltage	V _{DS}	15.0	V
Gate to Source Voltage	Vgs	5.0	V
Drain Current	ΙD	0.6	А
Drain Current (Pulse Test)	I _D Note	1.2	А
Total Power Dissipation	Ptot	12.5	W
Channel Temperature	Tch	125	°C
Storage Temperature	T _{stg}	-55 to +125	°C

Note Duty Cycle 50%, $T_{on} \le 1 \text{ s}$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Drain to Source Voltage	VDS		2.8	3.0	6.0	V
Gate to Source Voltage	Vgs		0	2.0	3.0	V
Drain Current	ΙD	Duty Cycle 50%, Ton ≤ 1 s	- 1	800	1 000	mA
Input Power	Pin	f = 1.8 GHz, Vps = 3.2 V	24	25	30	dBm

ELECTRICAL CHARACTERISTICS


(T_A = +25°C, unless otherwise specified, using NEC standard test fixture)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Gate to Source Leak Current	Igss	V _{GS} = 5.0 V	-	-	100	nA
Drain to Source Leakage Current (Zero Gate Voltage Drain Current)	IDSS	Vps = 6.0 V	-	-	100	nA
Gate Threshold Voltage	Vth	V _{DS} = 3.5 V, I _D = 1 mA	1.0	1.4	1.9	V
Thermal Resistance	Rth	Channel to Case	_	=	8	°C/W
Transconductance	Gm	V _{DS} = 3.2 V, I _D = 700 mA	-	1.3	=	S
Drain to Source Breakdown Voltage	BVDSS	loss = 10 μA	15	18	=	V
Output Power	Pout	f = 1.8 GHz, Vps = 3.2 V,	30.5	32.0	_	dBm
Drain Current	ΙD	Pin = 25 dBm,	=	800		mA
Power Added Efficiency	η add	IDset = 700 mA (RF OFF), Note1	40	45	-	%
Linear Gain Note2	G∟		_	10	_	dB

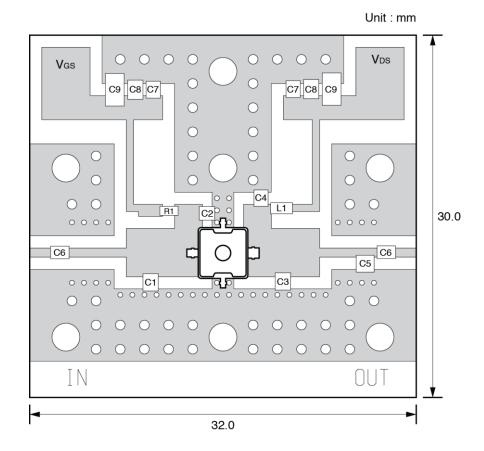
Notes 1. DC performance is 100% testing. RF performance is testing several samples per wafer. Wafer rejection criteria for standard devices is 1 reject for several samples.

2. $P_{in} = 5 dBm$

TYPICAL CHARACTERISTICS (TA = +25°C)

Remark The graphs indicate nominal characteristics.

S-PARAMETERS

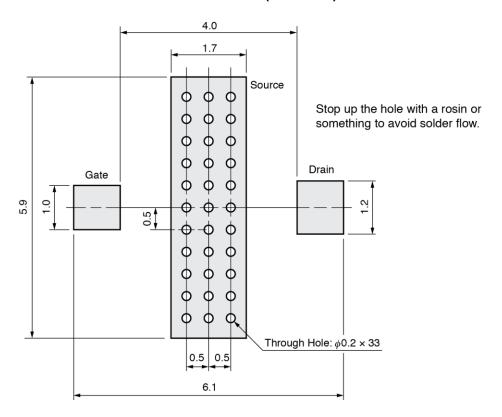

- S-parameters and noise parameters are provided on our Web site in a format (S2P) that enables the direct import of the parameters to microwave circuit simulators without the need for keyboard inputs.
- · Click here to download S-parameters.
- [RF and Microwave] ® [Device Parameters]
- URL http://www.necel.com/microwave/en/

LARGE SIGNAL IMPEDANCE (VDS = 3.2 V, ID = 700 mA, f = 1.8 GHz)

f (GHz)	$Z_{in}\left(\Omega \right)$	$ZoL\left(\Omega\right)^{Note}$		
1.8	1.77 –j6.71	1.25 –j5.73		

Note ZoL is the conjugate of optimum load impedance at given voltage, idling current, input power and frequency.

EVALUATION BOARD FOR 1.8 GHz


Symbol	Value	Comment
C1, C3	4.7 pF	
C2	2.4 pF	
C4	2.2 pF	
C5	0.8 pF	
C6	10 pF	
C7	1 000 pF	
C8	0.22 μF	
C9	3.3 μF - 16V	
R1	1 000 Ω	
L1	22 nH	
Circuit Board	$t = 0.4$ mm, ϵ $r = 4.5$	R4775

PACKAGE DIMENSIONS

79A (UNIT: mm)

79A PACKAGE RECOMMENDED P.C.B. LAYOUT (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions	Condition Symbol	
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
VPS	Peak temperature (package surface temperature) Time at temperature of 200°C or higher Preheating time at 120 to 150°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 215°C or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2%(Wt.) or below	VP215
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per pin of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350-P3

Caution Do not use different soldering methods together (except for partial heating).