The RF Sub-Micron MOSFET Line **RF Power Field Effect Transistors**N-Channel Enhancement-Mode Lateral MOSFETs

Designed for broadband commercial and industrial applications with frequencies up to 1.0 GHz. The high gain and broadband performance of these devices make them ideal for large—signal, common—source amplifier applications in 28 volt base station equipment.

- Typical Performance at 945 MHz, 28 Volts
 Output Power 45 Watts PEP
 Power Gain 19 dB
 Efficiency 41% (Two Tones)
 IMD –31 dBc
- Integrated ESD Protection
- Guaranteed Ruggedness @ Load VSWR = 5:1, @ 28 Vdc, 945 MHz, 45 Watts CW Output Power
- Excellent Thermal Stability
- Characterized with Series Equivalent Large—Signal Impedance Parameters
- Dual—Lead Boltdown Plastic Package Can Also Be Used As Surface Mount.
- TO-272 Available in Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
- TO-270 Available in Tape and Reel. R1 Suffix = 500 Units per 24 mm, 13 inch Reel.

MRF9045MR1 MRF9045MBR1

945 MHz, 45 W, 28 V LATERAL N-CHANNEL BROADBAND RF POWER MOSFETs

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	65	Vdc
Gate-Source Voltage	V _{GS}	+15, -0.5	Vdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	177 1.18	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ	175	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case		0.85	°C/W

ESD PROTECTION CHARACTERISTICS

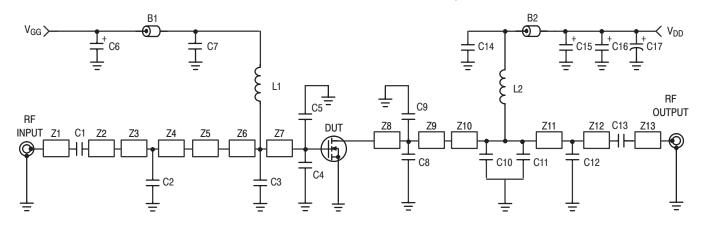
Test Conditions	Class
Human Body Model	1 (Minimum)
Machine Model	M2 (Minimum)

MOISTURE SENSITIVITY LEVEL

Test Methodology	Rating	
Per JESD 22-A113	3	

 $NOTE - \underline{\textbf{CAUTION}}$ - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

REV 6



ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	<u> </u>			-	•
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_		1	μAdc
N CHARACTERISTICS	<u> </u>			ļ	
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 150 μAdc)	V _{GS(th)}	2	2.8	4	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _D = 350 mAdc)	V _{GS(Q)}	3	3.7	5	Vdc
Drain–Source On–Voltage (V _{GS} = 10 Vdc, I _D = 1 Adc)	V _{DS(on)}	_	0.22	0.4	Vdc
Forward Transconductance (V _{DS} = 10 Vdc, I _D = 3 Adc)	9fs	_	4	_	S
YNAMIC CHARACTERISTICS				-	•
Input Capacitance (V_{DS} = 28 Vdc \pm 30 mV(rms)ac @ 1 MHz, V_{GS} = 0 Vdc)	C _{iss}	_	70	_	pF
Output Capacitance ($V_{DS} = 28 \text{ Vdc} \pm 30 \text{ mV(rms)ac} @ 1 \text{ MHz}, V_{GS} = 0 \text{ Vdc}$)	C _{oss}	_	38	_	pF
Reverse Transfer Capacitance ($V_{DS} = 28 \text{ Vdc} \pm 30 \text{ mV(rms)ac} @ 1 \text{ MHz}, V_{GS} = 0 \text{ Vdc}$)	C _{rss}	_	1.7	_	pF
UNCTIONAL TESTS (In Motorola Test Fixture, 50 ohm system	m)	-			•
Two-Tone Common-Source Amplifier Power Gain (V _{DD} = 28 Vdc, P _{out} = 45 W PEP, I _{DQ} = 350 mA, f1 = 945.0 MHz, f2 = 945.1 MHz)	G _{ps}	17	19	_	dB
Two–Tone Drain Efficiency $(V_{DD}=28\ Vdc,\ P_{out}=45\ W\ PEP,\ I_{DQ}=350\ mA,\ f1=945.0\ MHz,\ f2=945.1\ MHz)$	η	38	41	_	%
3rd Order Intermodulation Distortion $(V_{DD} = 28 \text{ Vdc}, P_{out} = 45 \text{ W PEP}, I_{DQ} = 350 \text{ mA}, f1 = 945.0 \text{ MHz}, f2 = 945.1 \text{ MHz})$	IMD	_	-31	-28	dBc
Input Return Loss $(V_{DD} = 28 \text{ Vdc}, P_{out} = 45 \text{ W PEP}, I_{DQ} = 350 \text{ mA}, \\ f1 = 945.0 \text{ MHz}, f2 = 945.1 \text{ MHz})$	IRL	_	-14	-9	dB
Two–Tone Common–Source Amplifier Power Gain (V_{DD} = 28 Vdc, P_{out} = 45 W PEP, I_{DQ} = 350 mA, f1 = 930.0 MHz, f2 = 930.1 MHz and f1 = 960.0 MHz, f2 = 960.1 MHz)	G _{ps}	_	19	_	dB
Two–Tone Drain Efficiency $(V_{DD} = 28 \text{ Vdc}, P_{out} = 45 \text{ W PEP}, I_{DQ} = 350 \text{ mA}, \\ f1 = 930.0 \text{ MHz}, f2 = 930.1 \text{ MHz} \text{ and } f1 = 960.0 \text{ MHz}, \\ f2 = 960.1 \text{ MHz})$	η	_	41	_	%
3rd Order Intermodulation Distortion (V _{DD} = 28 Vdc, P _{out} = 45 W PEP, I _{DQ} = 350 mA, f1 = 930.0 MHz, f2 = 930.1 MHz and f1 = 960.0 MHz, f2 = 960.1 MHz)	IMD	_	- 31	_	dBc
Input Return Loss (V _{DD} = 28 Vdc, P _{out} = 45 W PEP, I _{DQ} = 350 mA, f1 = 930.0 MHz, f2 = 930.1 MHz and f1 = 960.0 MHz, f2 = 960.1 MHz)	IRL	_	-13	_	dB

Z2

Freescale Semiconductor, Inc.

B1, B2	Short Ferrite Beads, Surface Mount	Z3	0.14" x 0.32" Microstrip
C1, C7, C13, C14	47 pF Chip Capacitors, B Case	Z 4	0.47" x 0.32" Microstrip
C2, C8	2.7 pF Chip Capacitors, B Case	Z 5	0.16" x 0.32" x 0.62" Taper
C3	3.9 pF Chip Capacitor, B Case	Z6	0.18" x 0.62" Microstrip
C4, C5, C8, C9	10 pF Chip Capacitors, B Case	Z 7	0.56" x 0.62" Microstrip
C6, C15, C16	10 μF, 35 V Tantalum Surface Mount Capacitors	Z8	0.33" x 0.32" Microstrip
C10	2.2 pF Chip Capacitor, B Case	Z9	0.14" x 0.32" Microstrip
C11	4.7 pF Chip Capacitor, B Case	Z10	0.36" x 0.08" Microstrip
C12	1.2 pF Chip Capacitor, B Case	Z11	1.01" x 0.08" Microstrip
C17	220 μF, 50 V Electrolytic Capacitor	Z12	0.15" x 0.08" Microstrip
L1, L2	12.5 nH Inductors	Z13	0.29" x 0.08" Microstrip
Z1	0.20" x 0.08" Microstrip		

0.57" x 0.12" Microstrip

Figure 1. MRF9045MR1 930-960 MHz Broadband Test Circuit Schematic

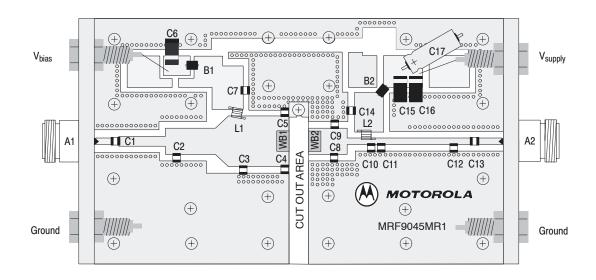
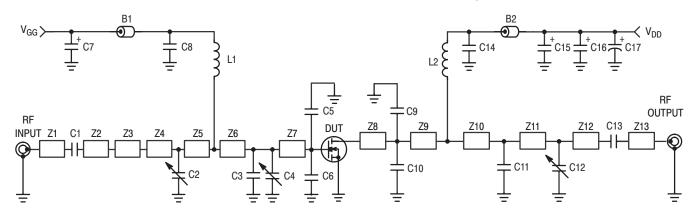



Figure 2. MRF9045MR1 930-960 MHz Broadband Test Circuit Component Layout

B1	Short Ferrite Bead	Z1	0.260" x 0.060" Microstrip
B2	Long Ferrite Bead	Z2	0.240" x 0.060" Microstrip
C1, C8, C13, C14	47 pF Chip Capacitors, B Case	Z3	0.500" x 0.100" Microstrip
C2	0.4–2.5 pF Variable Capacitor, Johanson Gigatrim	Z4	0.215" x 0.270" Microstrip
C3	3.6 pF Chip Capacitor, B Case	Z5	0.315" x 0.270" Microstrip
C4	0.8-8.0 pF Variable Capacitor, Johanson Gigatrim	Z6	0.160" x 0.270" x 0.520" Taper
C5, C6, C9, C10	10 pF Chip Capacitors, B Case	Z 7	0.285" x 0.520" Microstrip
C7, C15, C16	10 μF, 35 V Tantalum Chip Capacitors	Z8	0.140" x 0.270" Microstrip
C11	7.5 pF Chip Capacitor, B Case	Z9	0.450" x 0.270" Microstrip
C12	0.6–4.5 pF Variable Capacitor, Johanson Gigatrim	Z10	0.250" x 0.060" Microstrip
C17	220 μF Electrolytic Chip Capacitor	Z11	0.720" x 0.060" Microstrip
L1, L2	12.5 nH Surface Mount Inductors	Z12	0.490" x 0.060" Microstrip
WB1, WB2	10 mil Brass Wear Blocks	Z13	0.290" x 0.060" Microstrip
		Board	Taconic RF–35–0300, ε_r = 3.5

Figure 3. MRF9045MBR1 930-960 MHz Broadband Test Circuit Schematic

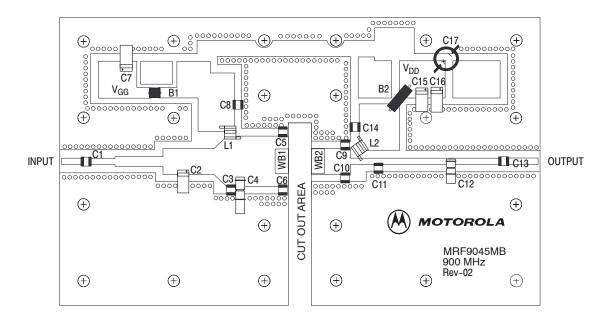


Figure 4. MRF9045MBR1 930-960 MHz Broadband Test Circuit Component Layout

TYPICAL CHARACTERISTICS

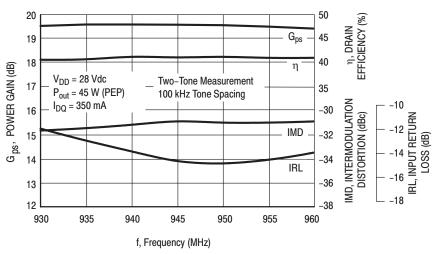


Figure 5. Class AB Broadband Circuit Performance

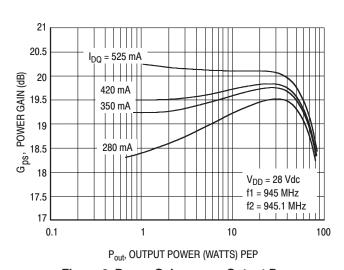


Figure 6. Power Gain versus Output Power

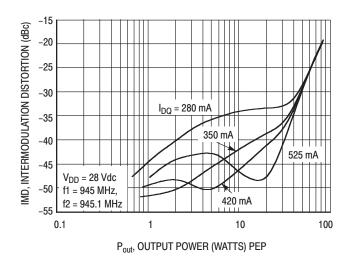


Figure 7. Intermodulation Distortion versus
Output Power

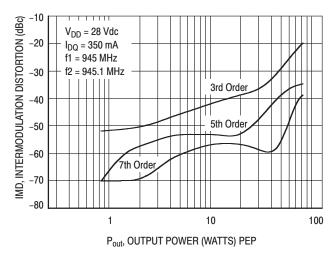


Figure 8. Intermodulation Distortion Products versus Output Power

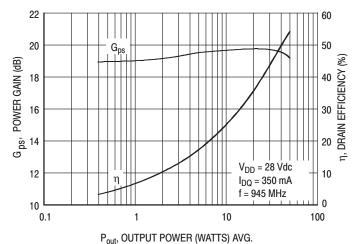


Figure 9. Power Gain and Efficiency versus Output Power

TYPICAL CHARACTERISTICS

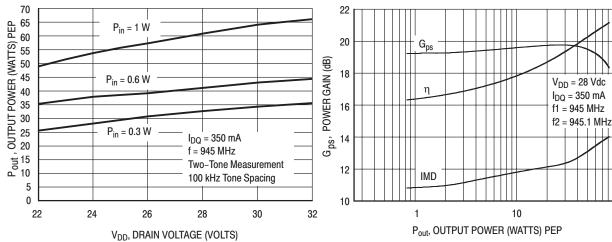
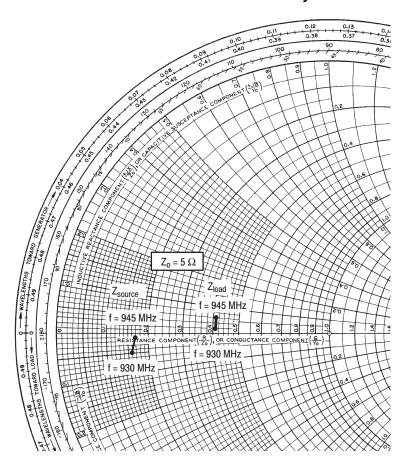


Figure 10. Output Voltage versus Supply Voltage (MRF9045MR1)

Figure 11. Power Gain, Efficiency and IMD versus Output Power (MRF9045MBR1)

60


IMD, INTERMODULATION DISTORTION (dBc)

η, DRAIN EFFICIENCY (%)

0

-60

100

 V_{DD} = 28 V, I_{DQ} = 350 mA, P_{out} = 45 W (PEP)

f MHz	$\mathbf{Z_{source}}_{\Omega}$	$\mathbf{Z_{load}}_{\Omega}$
930	0.81 – j0.25	2.03 + j0.09
945	0.85 – j0.05	2.03 + j0.28

 Z_{source} = Test circuit impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

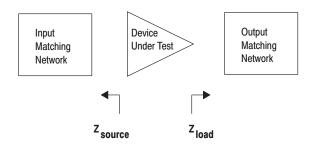
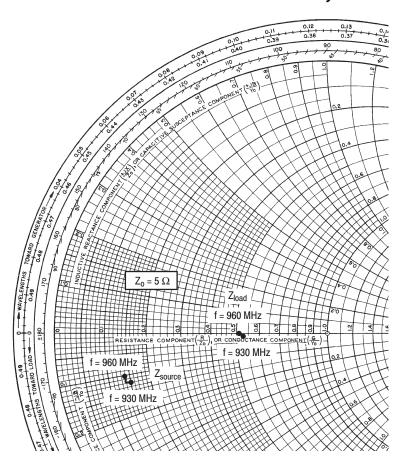



Figure 12. Series Equivalent Input and Output Impedance (MRF9045MR1)

 V_{DD} = 28 V, I_{DQ} = 350 mA, P_{out} = 45 W (PEP)

f MHz	$\mathbf{Z_{source}}_{\Omega}$	$oldsymbol{Z_{load}}{\Omega}$	
930	0.75 – j0.6	2.65 – j0.05	
945	0.72 - j0.6	2.60 — j0.05	
960	0.70 – j0.5	2.55 – j0.02	

Test circuit impedance as measured from gate to ground.

 Z_{load} Test circuit impedance as measured from drain to ground.

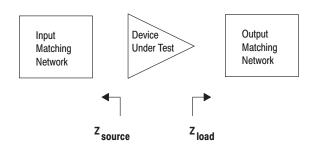
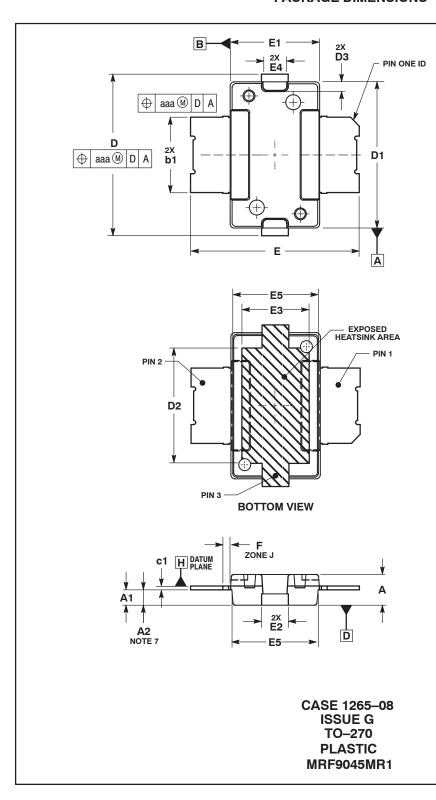
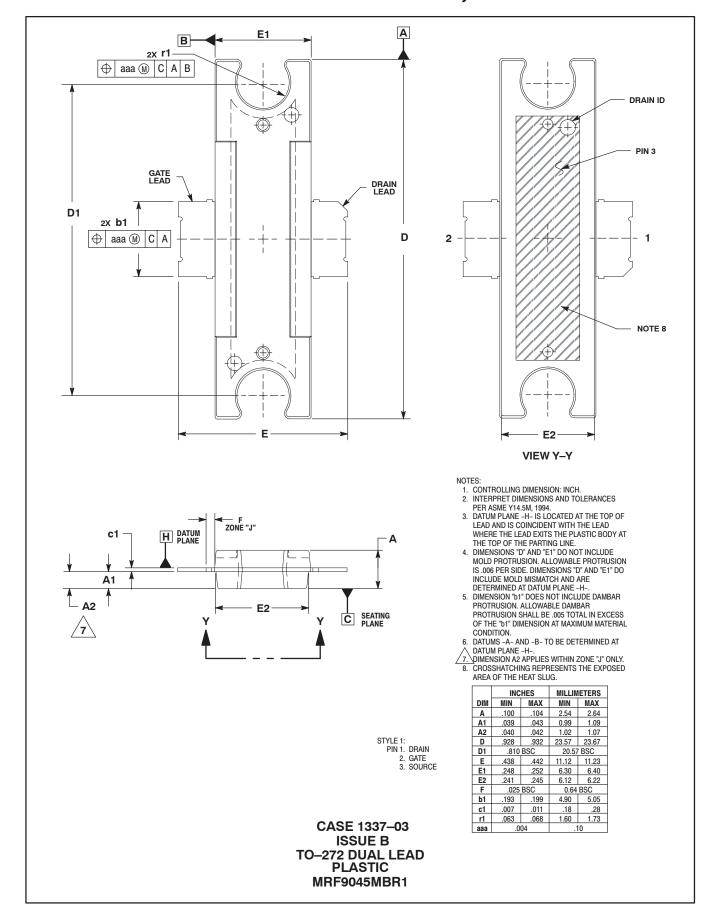



Figure 13. Series Equivalent Input and Output Impedance (MRF9045MBR1)

PACKAGE DIMENSIONS


- NOTES:
 1. CONTROLLING DIMENSION: INCH.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D1" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D1" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETER-
- MINED AT DATUM PLANE -H-.

 5. DIMENSION 61 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE b1 DIMENSION AT MAXIMUM MATERIAL CONDITION.
 6. DATUMS -A- AND -B- TO BE DETERMINED AT
- DATUM PLANE -H-.
 DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.
- DIMENSIONS "D" AND "E2" DO NOT INCLUDE
 MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .003 PER SIDE. DIMENSIONS "D" AND "E2" DO INCLUDE MOLD MISMATCH AND ARE DETER-MINED AT DATUM PLANE -D-

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	.078	.082	1.98	2.08
A1	.039	.043	0.99	1.09
A2	.040	.042	1.02	1.07
D	.416	.424	10.57	10.77
D1	.378	.382	9.60	9.70
D2	.290	.320	7.37	8.13
D3	.016	.024	0.41	0.61
E	.436	.444	11.07	11.28
E1	.238	.242	6.04	6.15
E2	.066	.074	1.68	1.88
E3	.150	.180	3.81	4.57
E4	.058	.066	1.47	1.68
E5	.231	.235	5.87	5.97
F	.025	BSC	0.64 BSC	
b1	.193	.199	4.90	5.06
c1	.007	.011	0.18	0.28
aaa	.0	04	0.10	

STYLE 1: PIN 1. DRAIN

- 2. GATE 3. SOURCE

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola Inc. 2003

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:Motorola Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1–800–521–6274 or 480–768–2130

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu, Minato–ku, Tokyo 106–8573, Japan 81–3–3440–3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852–26668334

HOME PAGE: http://motorola.com/semiconductors

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.