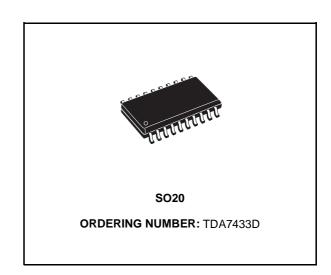
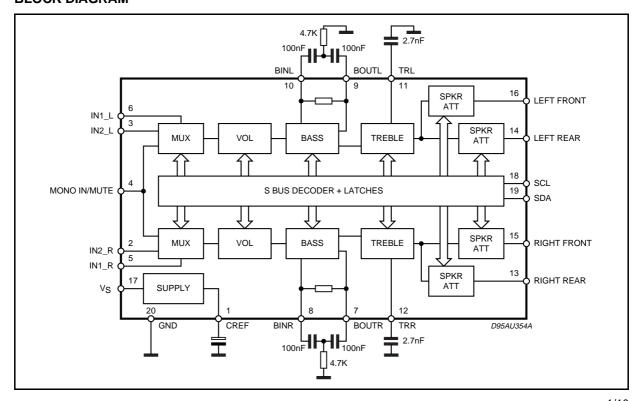


BASIC FUNCTION AUDIO PROCESSOR


- TWO STEREO AND ONE MONO INPUTS CONTROLLED
- MUTE FUNCTION (SOFTWARE AND HARD-WARE)
- VOLUME CONTROL IN 1dB STEP
- FOUR SPEAKER ATTENUATORS:
 - Independent attenuation control
 - Independent mute function
- ALL FUNCTIONS PROGRAMMABLE VIA I²CBUS

DESCRIPTION

The TDA7433 is a volume, tone (bass and treble) balance (Left/Right) processor for quality audio applications in car radio and Hi-Fi systems.

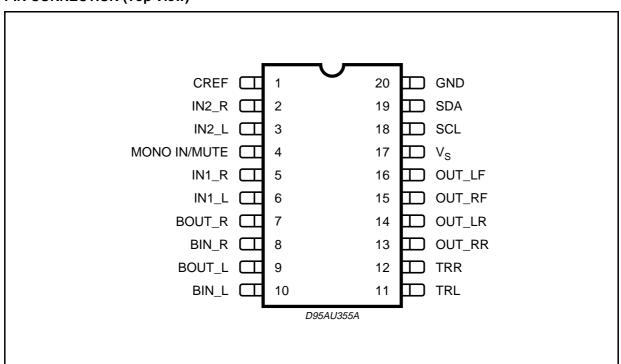

Control is accomplished by serial bus microprocessor interface.

The AC signal setting is obtained by resistor networks and switches combined with operational amplifiers.

Thanks to the advanced BIPOLAR/CMOS Technology, the external components have been reduced.

BLOCK DIAGRAM

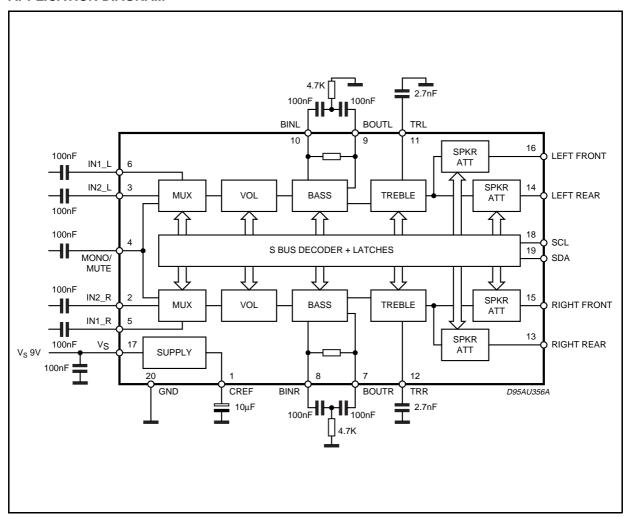
November 1999 1/10


ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Operating Supply Voltage	10.2	V
T _{amb}	Operating Temperature Range	-40 to 85	°C
T _{stg}	Storage Temperature Range	-55 to +150	°C

QUICK REFERENCE DATA

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vs	Supply Voltage	7	9	10.2	V
V_{CL}	Max. Input Signal Handling	1.3	1.6		Vrms
THD	Total Harmonic Distortion (V = 1Vrms f = 1kHZ)		0.05		%
S/N	Signal to Noise Ratio		102		dB
Sc	Channel Separation f = 1kHz		100		dB
	Volume Control 1dB step	-79		+32	dB
	Bass Control 2dB step	-18		+18	dB
	Treble Control 2dB step	-14		+14	dB
	Speaker Attenuators	-37.5		0	dB
·	Mute Attenuation		100		dB


PIN CONNECTION (Top View)

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th j-pins}	Thermal Resistance Junction-pins Max.	150	°C/W

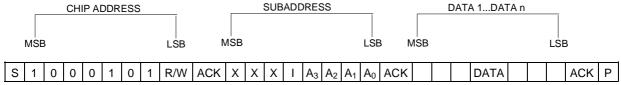
APPLICATION DIAGRAM

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $V_{S} = 9V$, $R_{L} = 10k\Omega$, $R_{g} = 50\Omega$, all variable gains = 0dB, f = 1kHz, unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
INPUT SEL	ECTOR					
R_{IN}	Input Resistance		70	100	130	kΩ
V_{CL}	Clipping Level	d ≤ 0.3%	1.3	1.6		Vrms
S _{IN}	Input Separation		70	100		dB
A _{MUTE}	Input Mute Attenuation		70	95		dB
V_{DC}	Mute DC Step			0.2	10	mV
MUTE AT A	AM INPUT (*)					
V_{IL}	Input Low Voltage	AM not selected			0.4	V
VOLUME C	ONTROL					
G _{MAX}	Max. Gain	Note 2	30.5	32	33.5	dB
A _{MAX}	Max Attenuation		75	79	83	dB
A _{step}	Step Resolution		0.5	1	1.5	dB
E _A	Attenuation Set Error	G = +20 to -20dB	-1.0	0	+1.0	dB
		G = -20 to -60dB	-2		2	dB
E _T	Tracking Error	G = -20 to -60dB			2	dB
V_{DC}	DC Steps	Adjacent Attenuation Steps, Range from 0 to -79dB		0.1	4	mV
		From 0dB to -79dB		0.5	10	mV
BASS CON	TROL					
B _{RANGE}	Max. Bass boost		15.5	18	20	dB
B _{CUT}	Max. Bass cut		-20	-18	15.5	dB
A _{Step}	Step Resolution		1	2	3	dB
R_B	Internal Feedback Resistance		48	65	82	kΩ
TREBLE C	ONTROL					
C _{RANGE}	Control Range		±13	±14	±15	dB
A _{step}	Step Resolution		1	2	3	dB
SPEAKER	ATTENUATORS					
C _{RANGE}	Control Range		36	37.5	39	dB
A _{step}	Step Resolution	From 0 to -24dB	0.5	1	1.5	dB
A _{MUTE}	Output Mute Attenuation	From 0 to -24dB	70	90		dB
E _A	Attenuation Set Error				1	dB
V_{DC}	DC Steps	Adjacent Attenuation Steps		0.1	4	mV
AUDIO OU	TPUTS					
V_{CLIP}	Clipping Level	d = 0.3%	2	2.5		Vrms
G _{OUT}	Output Gain (fixed)			4		dB
R _L	Output Load Resistance	AC - connected	3			kΩ
		DC connected to GND	5			
C _L	Output Load Capacitance				10	nF
R _{OUT}	Output Impedance			30	100	Ω
VDC	DC Voltage Level		3.7	4.0	4.3	V

^(*) The mute function can be activated without using the I2C bus by grounding the AM input when AM is not selected. This causes the input multiplexer to select the reference voltage instead of an input signal.

ELECTRICAL CHARACTERISTICS (continued)


Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
GENERAL						
Vs	Supply Voltage		6	9	10.2	V
Is	Supply Current		5	8	11	mA
PSRR	Power Supply Rejection Ratio		65	85		dB
e _{NO}	Output Noise	20Hz - 20kHz "A" - weighted BW = 200Hz - 20kHz, flat output muted		4 7.0 5.5	20	μV μV μV
S/N	Signal to Noise Ratio	all gains = 0dB; V _O = 1Vrms		102		dB
d	Distortion	V _{OUT} = 1Vrms		0.05	0.15	%
Sc	Channel Separation		70	80		dB
E _T	Total Tracking Error	$A_V = 0 \text{ to } -20 \text{dB}$ $A_V = -20 \text{ to } -60 \text{dB}$		0 0	1 2	dB dB
BUS INPUT	S					
V _{IL}	Input Low Voltage				1	V
V _{IH}	Input High Voltage		3			V
I _{IN}	Input Current	$V_{IN} = 0.4V$	-5		+5	μΑ
Vo	Output Voltage SDA Acknowledge	I _O = 1.6mA		0.15	0.4	V

SOFTWARE SPECIFICATION

Interface Protocol

The interface protocol comprises:

- a start condition (S)
- a chip address byte (the LSB bit determines read /write transmission)
- a subaddress byte
- a sequence of data (N-bytes + acknowledge)
- a stop condition (P)

ACK = Acknowledge

S = Start

P = Stop

MAX CLOCK SPEED 500kbits/s

Auto Increment

If bit I in the subaddress byte is set to "1", the autoincrement of the subaddress is enabled.

SUBADDRESS (receive mode)

MSB							FUNCTION				
Х	Х	Х	I	А3	A2	A1	A0	FUNCTION			
				0	0	0	0	Input selector			
				0	0	0	1	Volume			
				0	0	1	0	Bass, Treble			
				0	0	1	1	Speaker attenuator LF			
				0	1	0	0	Speaker attenuator LR			
				0	1	0	1	Speaker attenuator RF			
				0	1	1	0	Speaker attenuator RR			

I = Auto increment

X = Not used

DATA BYTE SPECIFICATION

X = not relevant; set to "1" during testing

Input Selector

MSB							LSB	FUNCTION			
D ₇	D ₆	D ₅	D_4	D ₃	D ₂	D ₁	D_0	FUNCTION			
			0	0 1	0 0 0 0 1	0 0 1 1 X	0 1 0 1 X	IN2 IN1 mono IN no input selected mute (low homic) non-symmetrical bass cut (note 1) symmetrical bass cut extended bass range standard bass range ±14dB			

For example to select the IN2 input the Data Byte is: X X X X X 0 1 0.

An additional direct mute function is included in the Speaker Attenuators.

Note 1: Bass cut for very low frequencies.

MSB							LSB	VOLUME
D ₇	D ₆	D ₅	D_4	D ₃	D ₂	D ₁	D_0	VOLOIVIL
0 0 0 0 0	0 0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0					+32dB +16dB 0dB -16dB -32dB -48dB -64dB
0 0 0 0				0 0 0	0 0 0	0 0 1	0 1 0	0dB -1dB -2dB -15dB

Note 2:

It is not recommended to use a gain more than 20dB for system performance reason. In general, the max. gain should be limited by software to the maximum value, which is needed for the system.

Bass, Treble

	MSB							LSB	FUNCTION
	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	FUNCTION
D4 Input Selector					0 0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 1 1 1 1 1 1 1 1 0 0	0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0	0 1 0 1 0 1 0 1 1 0 1 0 1 0 1	Treble Steps - 14dB -12dB -10dB -8dB -6dB -4dB -2dB 0dB 0dB +2dB +4dB +4dB +6dB +8dB +10dB +12dB +14dB
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	0 0 0 0 0 1 1 1 1 1 1 1 0 0 0	0 0 0 0 1 1 0 0 1 1 1 0 0 0	1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1					Bass Steps -18dB -16dB -14dB -12dB -10dB -8dB -6dB -4dB -2dB normal 0dB range 0dB ±14dB +2dB +4dB +4dB +6dB +8dB +10dB +12dB +11dB +16dB +18dB

For example 12dB Treble and -8dB Bass give the following DATA BYTE: 0 0 1 1 1 0 $\,$ 0

Speaker Attenuators

MSB							LSB	SPEAKER ATTENUATOR			
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	LF,LR,RF,RR			
Х	Χ	0	0	0	0	0	0	0dB			
X	Χ	0	0	0	0	0	1	-1dB			
				:				:			
X	X	0	1	1	0	0	0	-24dB			
X	X	0	1	1	0	0	1	-25.5dB			
X	X	0	1	1	0	1	0	-27dB			
X	X	0	1	1	0	1	1	-28.5dB			
X	X	0	1	1	1	0	0	-30dB			
X	X	0	1	1	1	0	1	-32dB			
X	X	0	1	1	1	1	0	-34.5dB			
X	Χ	0	1	1	1	1	1	-37.5dB			
X	Χ	1	Χ	Χ	Х	Х	Χ	Speaker Mute			

Functional Description

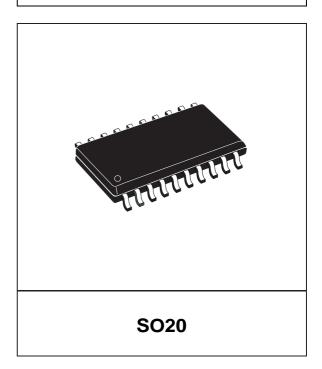
The input selector is able to select 2 stereo inputs and 1 mono input (AM). The inputs are DC biased with $100k\Omega$ resistors to the internal reference voltage of 3V. The mono input can be used additionally as hardware mute pin. If this pin is pulled to ground by an external transistor and AM is not selected, the input selector mutes the input (reference voltage selected). The AM part is considered to be switched OFF. If the output of the AM part is not high ohmic in this condition, a series resistor of about $20k\Omega$ has to be foreseen.

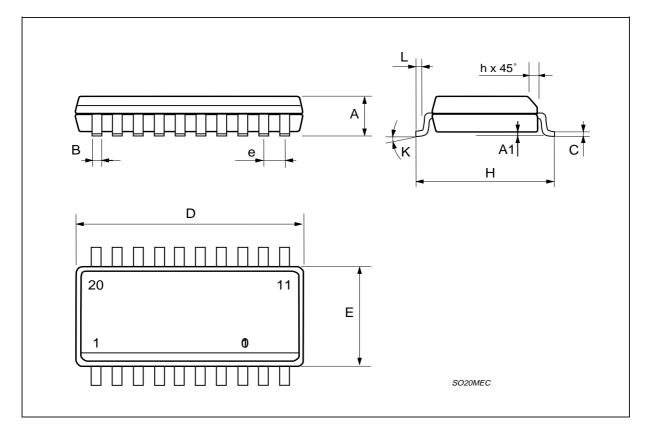
The volume control can be programmed from a gain of +32dB to an attenuation of -79dB in 1dB steps. The maximum gain should be kept as low as possible for system performance reason. It has to be limited by software to the absolute necessary system gain, depending on the signal source level and the power amplifier gain.

The bass control acts in a range from +18dB to -18dB in 2dB steps. The filter response is deter-

mined by the external filter components. An extensive simulation software is available in order to support the design of the bass filter response with different filter configurations.

The extended bass boost range of +18dB allows the implementation of the software loudness function by additional bass and treble boost.


The treble control acts in a range of $\pm 14dB$ in 2dB steps. The external capacitor determines with the internal resistor of $50K\Omega$ the corner frequency of the treble response.


The four speaker attenuators can be controlled independently from 0 to -37.5dB, which allows the implementation of balance and fader a the four speaker system. The attenuation steps size is 1 db from 0 to -24dB and increases non linearly up to the maximum attenuation of 37.5dB. A special mute bit forces the speaker attenuator into the mute position.

All 4 outputs are low distortion push pull outputs, able to drive a load of $3k\Omega$.

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	2.35		2.65	0.093		0.104	
A1	0.1		0.3	0.004		0.012	
В	0.33		0.51	0.013		0.020	
С	0.23		0.32	0.009		0.013	
D	12.6		13	0.496		0.512	
Е	7.4		7.6	0.291		0.299	
е		1.27			0.050		
Н	10		10.65	0.394		0.419	
h	0.25		0.75	0.010		0.030	
L	0.4		1.27	0.016		0.050	
K		(ວ° (min.)ຢ	B° (max.))		

OUTLINE AND MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

