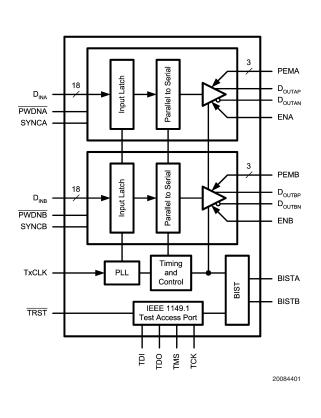
SCAN921821 Dual 18-Bit Serializer with Pre-emphasis, IEEE 1149.1 (JTAG),

and At-Speed BIST

Literature Number: SNLS173B

SCAN921821 Dual 18-Bit Serializer with Pre-emphasis, IEEE 1149.1 (JTAG), and At-Speed BIST **General Description**

The SCAN921821 is a dual channel 18-bit serializer featuring signal conditioning, boundary SCAN, and at-speed BIST. Each serializer block transforms an 18-bit parallel LVCMOS/ LVTTL data bus into a single Bus LVDS data stream with embedded clock. This single serial data stream with embedded clock simplifies PCB design and reduces PCB cost by narrowing data paths that in turn reduce PCB size and layers. The single serial data stream also reduces cable size, the number of connectors, and eliminates clock-to-data and data-to-data skew.


Each channel also has an 8-level selectable pre-emphasis feature that significantly extends performance over lossy interconnect. Each channel also has its own powerdown pin that saves power by reducing supply current when the channel is not being used.

The SCAN921821 also incorporates advanced testability features including IEEE 1149.1 and at-speed BIST PRBS pattern generation to facilitate verification of board and link integrity

Features

- 15-66 MHz Dual 18:1 Serializer with 2.376 Gbps total throughput
- 8-level selectable pre-emphasis on each channel drives lossy cables and backplanes
- >15kV HBM ESD protection on Bus LVDS I/O pins
- Robust BLVDS serial data transmission with embedded clock for exceptional noise immunity and low EMI
- Power saving control pin for each channel
- IEEE 1149.1 "JTAG" Compliant
- At-Speed BIST PRBS generation
- No external coding required
- Internal PLL, no external PLL components required
- Single +3.3V power supply
- Low power: 260 mW (typ) per channel at 66 MHz with PRBS-15 pattern
- Single 3.3 V supply
- Fabricated with advanced CMOS process technology
- Industrial –40 to +85°C temperature range
- Compact 100-ball FBGA package

Block Diagram

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V_{DD})Ramp Rate< 30 V/msLVCMOS/LVTTL Input-0.3V to (V_{DD} +0.3V)Voltage-0.3V to (V_{DD} +0.3V)LVCMOS/LVTTL Output-0.3V to (V_{DD} +0.3V)Bus LVDS Driver Output-0.3V to (V_{DD} +0.3V)Bus LVDS Driver Output-0.3V to +3.9VBus LVDS Output Short-0.3V to +3.9VCircuit Duration10msJunction Temperature+150°CStorage Temperature-65°C to +150°CLead Temperature(Soldering, 4 seconds)+220°C	Supply Voltage (V _{DD})	-0.3V to +4V				
LVCMOS/LVTTL Input Voltage -0.3V to (V _{DD} +0.3V) LVCMOS/LVTTL Output Voltage -0.3V to (V _{DD} +0.3V) Bus LVDS Driver Output Voltage -0.3V to +3.9V Bus LVDS Output Short Circuit Duration 10ms Junction Temperature +150°C Storage Temperature -65°C to +150°C Lead Temperature	Supply Voltage (V _{DD})					
Voltage-0.3V to (V_DD +0.3V)LVCMOS/LVTTL Output-0.3V to (V_DD +0.3V)Bus LVDS Driver Output-0.3V to (V_DD +0.3V)Bus LVDS Output Short-0.3V to +3.9VCircuit Duration10msJunction Temperature+150°CStorage Temperature-65°C to +150°CLead Temperature-0.3V to +3.9V	Ramp Rate	< 30 V/ms				
LVCMOS/LVTTL OutputVoltage-0.3V to (V_DD +0.3V)Bus LVDS Driver Output-0.3V to +3.9VBus LVDS Output Short-0.3V to +3.9VCircuit Duration10msJunction Temperature+150°CStorage Temperature-65°C to +150°CLead Temperature-0.3V to +3.9V	LVCMOS/LVTTL Input					
Voltage-0.3V to (V_DD +0.3V)Bus LVDS Driver Output-0.3V to +3.9VVoltage-0.3V to +3.9VBus LVDS Output Short-0.3V to +3.9VCircuit Duration10msJunction Temperature+150°CStorage Temperature-65°C to +150°CLead Temperature-05°C to +150°C	Voltage	-0.3V to (V _{DD} +0.3V)				
Bus LVDS Driver Output Voltage –0.3V to +3.9V Bus LVDS Output Short Circuit Duration 10ms Junction Temperature +150°C Storage Temperature –65°C to +150°C Lead Temperature	LVCMOS/LVTTL Output					
Voltage-0.3V to +3.9VBus LVDS Output Short10msCircuit Duration10msJunction Temperature+150°CStorage Temperature-65°C to +150°CLead Temperature-	Voltage	–0.3V to (V _{DD} +0.3V)				
Bus LVDS Output Short Circuit Duration 10ms Junction Temperature +150°C Storage Temperature -65°C to +150°C Lead Temperature	Bus LVDS Driver Output					
CircuitDuration10msJunctionTemperature+150°CStorageTemperature-65°C to +150°CLeadTemperature-65°C to +150°C	Voltage	-0.3V to +3.9V				
Junction Temperature+150°CStorage Temperature-65°C to +150°CLead Temperature	Bus LVDS Output Short					
Storage Temperature-65°C to +150°CLead Temperature	Circuit Duration	10ms				
Lead Temperature	Junction Temperature	+150°C				
	Storage Temperature	–65°C to +150°C				
(Soldering, 4 seconds) +220°C	Lead Temperature					
	(Soldering, 4 seconds)	+220°C				
Maximum Package Power Dissipation at 25°C	Maximum Package Power Dissipation at 25°C					
FBGA-100 3.57 W	FBGA-100	3.57 W				

Derating Above 25°C	28.57 mW/°C
Thermal resistance θ_{JA}	35°C/W
θ_{JC}	11.1°C/W
ESD Rating	
HBM, 1.5 KΩ, 100 pF	
All pins	>8 kV
Bus LVDS pins	>15 kV
MM, 0Ω, 200 pF	>1200 V
CDM	>2 kV

Recommended Operating Conditions

	Min	Nom	Max	Units
Supply Voltage (V _{DD})	3.15	3.3	3.45	V
Operating Free Air Temperature (T _A)	-40	+25	+85	°C
Clock Rate	15		66	MHz
Supply Noise			100	mV p-p

DC Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
VCMOS/	LVTTL Input DC Specifica	ations			•	•	
V _{IH}	High Level Input Voltage		2.0		V _{DD}	V	
V _{IL}	Low Level Input Voltage		GND		0.8	V	
V _{CL}	Input Clamp Voltage	I _{CL} = -18 mA	-1.5	-0.7		V	
I _{INH}	High Level Input Current	$V_{IN} = V_{DD} = V_{DDMAX}$	-20	±2	+20	μA	
Low Level Output Current		$V_{IN} = V_{SS}, V_{DD} = V_{DDMAX}$	-10	±2	+10	μA	
149.1 (J1	TAG) DC Specifications						
V _{IH} High Level Input Voltage			2.0		V _{DD}	V	
$V_{\rm IL}$	Low Level Input Voltage		GND		0.8	V	
V _{CL}	Input Clamp Voltage	$I_{CL} = -18 \text{ mA}$	-1.5	-0.7		V	
High Level Input Current		$V_{IN} = V_{DD} = V_{DDMAX}$	-20		+20	μA	
I _{INL} Low Level Output Current		$V_{IN} = V_{SS}, V_{DD} = V_{DDMAX}$	-200		+200	μA	
V _{OH}	High Level Output Voltage	I _{OH} = -9 mA	2.3		V _{DD}	mV	
V _{OL} Low Level Output Voltage Output Short Circuit Current		I _{OL} = 9 mA	GND		0.5	mV	
		V _{OUT} = 0 V	-100	-80	-50	mA	
	Output Tri-state	$\overline{\text{PWDN}}$ or EN = 0.8V, V _{OUT} = 0 V	-10		+10	μA	
l _{oz}	Current	\overline{PWDN} or EN = 0.8V, V _{OUT} = VDD	-30		+30	μA	

Symbol	Parameter	Cor	ditions	Min	Тур	Мах	Units
	1 1		ł				
Bus LVDS	3 Output DC Specification	ons					
	Output Differential						
V _{OD}	Voltage (DO+) - (DO-)	Figure 1	$P, R_{L} = 100\Omega$	450	500	550	mV
$\Delta V_{\rm OD}$	Output Differential Voltage Unbalance				2	15	mV
Vos	Offset Voltage			1.05	1.2	1.25	V
ΔV_{OS}	Offset Voltage Unbalance				2.7	15	mV
		Pre-Emph	asis Level = 1	1.10	1.24	1.35	
		Pre-Emph	asis Level = 2	1.35	1.47	1.55	
	Pre-Emphasis Output	Pre-Emph	1.55	1.70	1.80		
Q_{POV}	Voltage Ratio	Pre-Emph	1.80	1.91	1.95		
	V _{ODPRE} / V _{OD}	Pre-Emph	1.95	2.08	2.20		
			asis Level = 6	2.10	2.21	2.35	
		asis Level = 7	2.15	2.30	2.50		
I _{os}	Output Short Circuit Current	DO = 0V, Din = H, \overline{PWDN} and EN = 2.4V		-10	-25	-75	mA
1	TRI-STATE Output	PWDN or EN = 0.8V, DO = 0V (Note 4) PWDN or EN = 0.8V, DO = VDD (Note 4)		-10	± 1	+10	μA
I _{oz}	Current			-55	± 6	+55	μΑ
Power Su	pply Current (DVDD, PV	DD and AVDD Pins)					
	Total Supply Current		f = 66 MHz, PRBS-15 Pattern		160	225	mA
I _{DD}		$C_L = 15 pF,$ $R_L = 100 \Omega$	f = 66 MHz, Worst Case Pattern (Checker-Board Pattern)		180		mA
	Total Supply Current		f = 66 MHz, PRBS-15 Pattern		240		mA
I _{DDP}	with Pre-Emphasis (includes load current)	C_L = 15pF, R_L = 100 Ω	f = 66 MHz, Worst Case Pattern (Checker-Board Pattern)		280	325	mA
I _{DDX}	Supply Current Powerdown	$\overline{\text{PWDN}} = 0.8\text{V}, \text{EN} = 0.8\text{V}$			1.0	3.0	mA

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{TCP}	Transmit Clock Period		15.2	Т	66.7	ns
t _{TCIH}	Transmit Clock High Time		0.4T	0.5T	0.6T	ns
t _{TCIL}	Transmit Clock Low Time		0.4T	0.5T	0.6T	ns
t _{CLKT}	TCLK Input Transition Time			3	6	ns
t _{JIT}	TCLK Input Jitter	(Note 5)			80	ps (RM

www.national.com

SCAN921821

3

AC Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Serializer	AC Specifications				II	
t _{LLHT}	Bus LVDS Low-to-High Transition Time	<i>Figure 2</i> , (Note 5) R _L = 100Ω,		0.3	0.4	ns
t _{LHLT}	Bus LVDS High-to-Low Transition Time	$R_L = 10022$, $C_L = 10pF$ to GND		0.3	0.4	ns
t _{DIS}	DIN (0-17) Setup to TCLK	<i>Figure 4</i> , (Note 5) R _L = 100Ω,	1.9			ns
t _{DIH}	DIN (0-17) Hold from TCLK	$C_L = 100S2$, $C_L = 10$ F to GND	0.6			ns
t _{HZD}	DO ± HIGH to TRI-STATE Delay			3.9	10	ns
t _{LZD}	DO ± LOW to TRI-STATE Delay	Figure 5 $R_{L} = 100\Omega$,		3.5	10	ns
t _{ZHD}	DO ± TRI-STATE to HIGH Delay	$R_L = 10022$, $C_L = 10$ F to GND		3.2	10	ns
t _{ZLD}	DO ± TRI-STATE to LOW Delay			2.4	10	ns
t _{SPW}	SYNC Pulse Width	Figure 7, $R_L = 100\Omega$	5*t _{TCP}		6*t _{TCP}	ns
t _{PLD}	Serializer PLL Lock Time	<i>Figure 6</i> , R _L = 100Ω	510*t _{TCP}		1024*t _{TCP}	ns
t _{SD}	Serializer Delay	Figure 8 , $R_L = 100\Omega$	t _{TCP} + 2.5	t _{TCP} + 4.5	t _{TCP} + 6.5	ns
t _{skcc}	Channel to Channel Skew			70		ps
t _{RJIT}	Random Jitter	Room Temperature, V _{DD} = 3.3V, 66 MHz		6.1		ps (RMS)
	Deterministic Jitter	15 MHz	-390		320	ps
t _{DJIT}	Figure 9, (Note 5)	66 MHz	-60		30	ps
1149.1 (JT	AG) AC Specifications					
f _{MAX}	Maximum TCK Clock Frequency		25			MHz
ts	TDI or TMS Setup to TCK, H or L		2.4			ns
t _H	TDI or TMS Hold from TCK, H or L	$C_{L} = 15 pF,$	2.8			ns
t _{W1}	TCK Pulse Width, H or L	$R_L = 500 \ \Omega$	10			ns
t _{W2}	TRST Pulse Width, L		10			ns
t _{REC}	Recovery Time, TRST to TCK		2			ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation.

Note 2: Typical values are given for V_{CC} = 3.3V and T_A = +25 $^\circ\text{C}.$

Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground except VOD, \triangle VOD, VTH and VTL which are differential voltages.

Note 4: I_{OZ} is measured at each pin. The DOUT pin not under test is floated to isolate the TRI-STATE current flow.

Note 5: Guaranteed by Design (GBD) using statistical analysis.

AC Timing Diagrams and Test Circuits

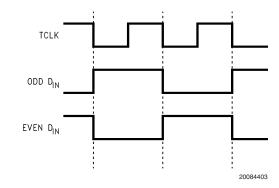


FIGURE 1. "Worst Case" Serializer IDD Test Pattern

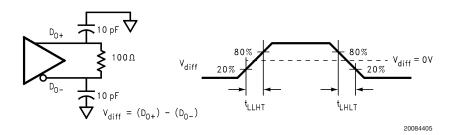
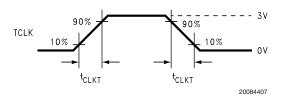



FIGURE 2. Serializer Bus LVDS Distributed Output Load and Transition Times

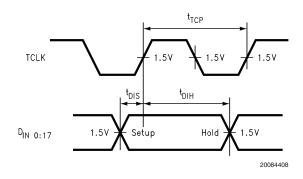
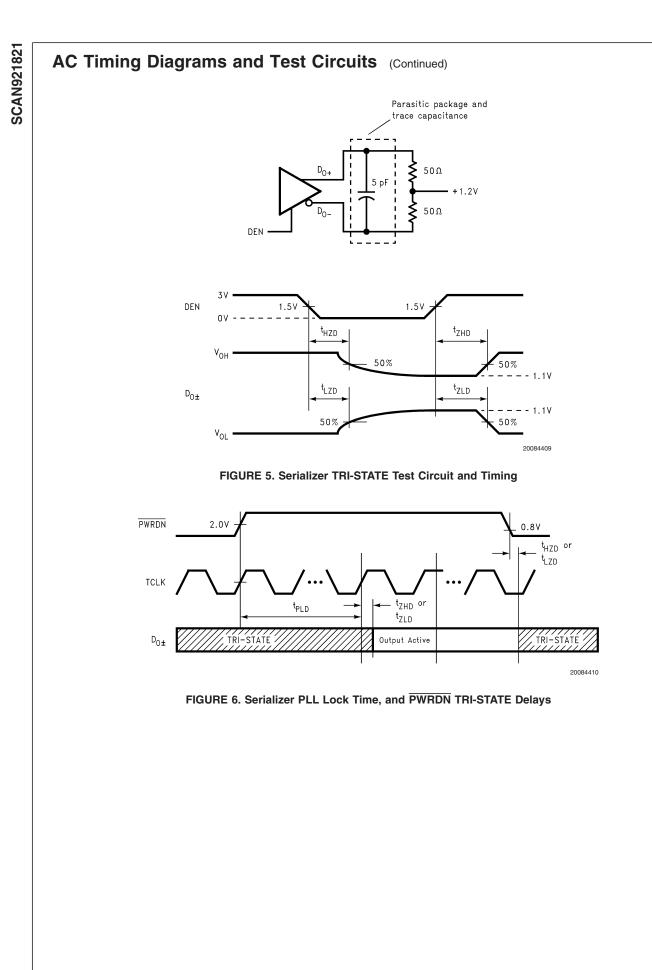
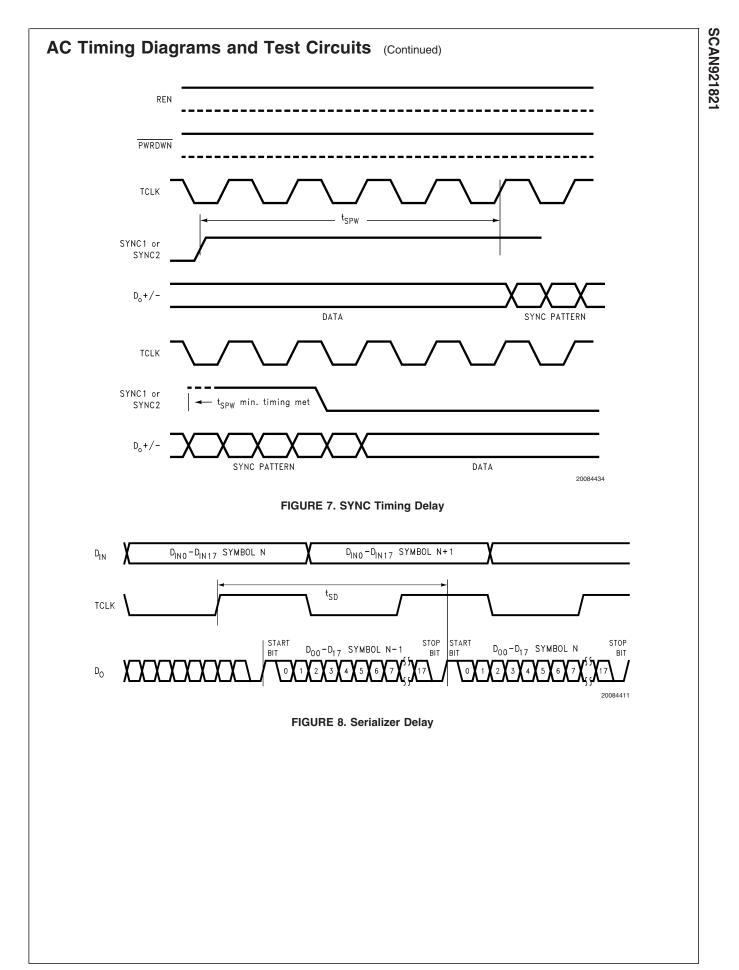
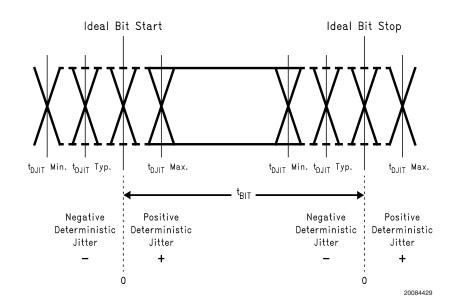
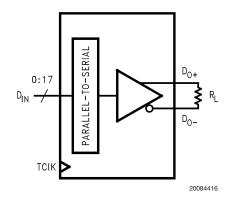





FIGURE 4. Serializer Setup/Hold Times



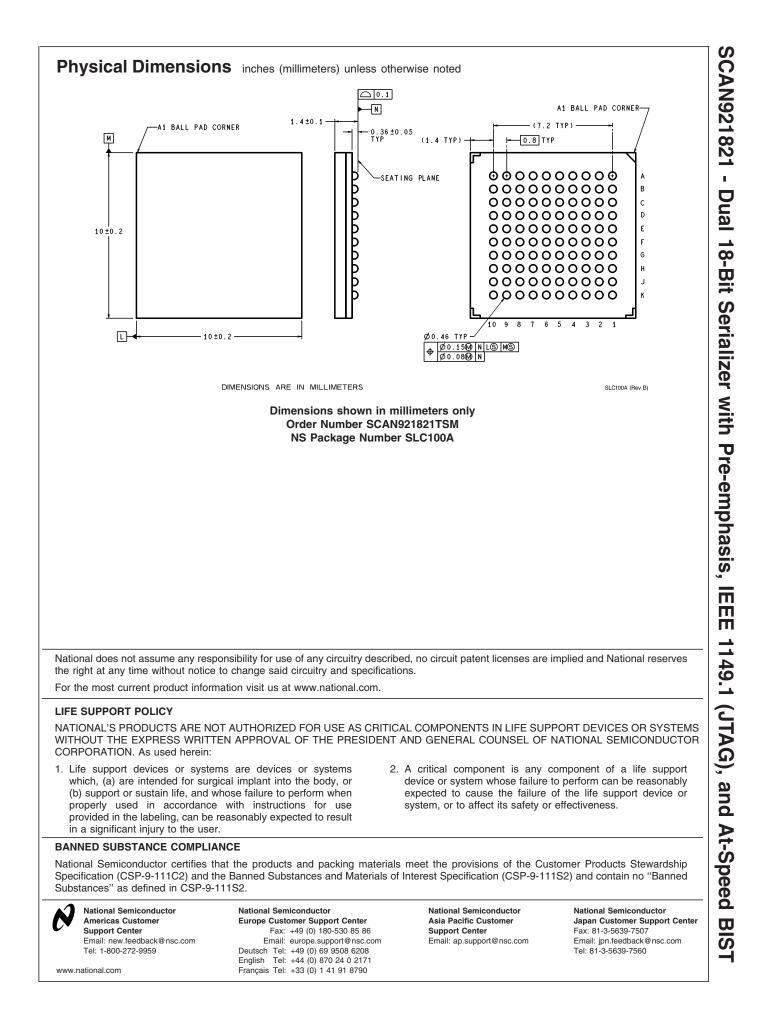
AC Timing Diagrams and Test Circuits (Continued)

 $\mathsf{V}_{\mathsf{OD}} = (\mathsf{DO}^+) {-} (\mathsf{DO}^-).$

Differential output signal is shown as (DO+)-(DO-), device in Data Transfer mode.

FIGURE 10. V_{OD} Diagram

Pre-emphasis Truth Table


PEM LEVEL	PEM2	PEM1	PEM0
0	L	L	L
1	L	L	Н
2	L	Н	L
3	L	Н	Н
4	Н	L	L
5	Н	L	Н
6	Н	Н	L
7	Н	Н	Н

SCAN921821

Pin Diagram									
					1821TVV View				
A1	A2	A3	A4	A5	A6	A7		A9	A10
BISTB	PV _{SS}	DOUTBN	AV _{DD}	ENB	AV _{DD}	DOUTAN		AV _{DD}	ENA
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10
DINB16	SYNCB	AV _{DD}	DOUTBP	AV _{DD}	PEMB1	AV _{SS}	PEMB0	PEMA1	BISTA
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
DINB14	DV _{DD}	DV _{SS}	AV _{SS}	AV _{SS}	AV _{SS}	AV _{DD}	PEMA2	SYNCA	DINA16
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
DINB13	DINB12	DINB17	DV _{DD}	PV _{DD}	PEMA0	AV _{SS}	DINA17	DINA15	DINA13
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10
DINB11	DINB9	DINB15	DV _{SS}	DINB8	PEMB2	DV _{SS}	DINA14	DINA12	DINA9
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
DINB10	DINB7	DINB5	DV _{SS}	PV _{DD}	DINA11	DV _{SS}	DINA4	DINA10	DINA8
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10
DINB6	DINB4	DINB2	DV _{SS}	DV _{DD}	DV _{DD}	DINA1	DINA2	DINA7	DINA6
H1	H2	H3	H4	H5	H6	H7	H8	H9	H10
DINB3	DINB1	TxCLK	DV _{SS}	TCK	PV _{DD}	PV _{SS}	DV _{SS}	DINA0	DINA5
J1	J2	J3	J4	J5	J6	J7	J8	J9	J10
DINB0	PWDNA	DV _{DD}	TRST	PV _{DD}	PV _{SS}	PV _{DD}	NC	DV _{DD}	DINA3
K1 DV _{SS}	K2 TDI	K3 TMS	K4 DV _{SS}	K5 TDO	K6 DV _{DD}	K7 PV _{SS}	K8 PV _{SS}	K9 PWDNB	K10 DV _{DD} 20084402

inti D:

Pin Name	Pin Count	I/O, Type	Description			
DATA PINS	•					
DINA0-17	18		Transmitter inputs. There is a pull-down circuitry on each of these pins which are			
DINB0-17	18	I, LVCMOS	active if respective PWDNA or PWDNB pin is pulled high.			
DOUTAP	1					
DOUTAN	1		Inverting and non-inverting differential transmitter outputs			
DOUTBP 1		- O,BLVDS	Inverting and non-inverting differential transmitter outputs.			
DOUTAN	1					
TIMING AND	CONTROL PINS					
TxCLK	1	I, LVCMOS	Transmitter reference clock. Used to strobe data at the inputs and to drive the transmitter PLL. There is a pull-up circuitry on this pin which is always active.			
ENA	1		Transmitter outputs enable pins. There is a pull-down circuitry on each of these pins that are active if corresponding \overline{PWDNA} or \overline{PWDNB} pin is pulled high.			
ENB 1		I, LVCMOS	When these pins are set to LOW, the transmitter outputs will be disabled. The PLL will remain locked.			
PWDNA	1	I, LVCMOS	Stand-by mode pins. There is a pull-down circuitry on each of these pins that ar always active. When these pins are set to LOW, the transmitter will be put in low			
PWDNB 1			power mode and the PLL will lose lock.			
SYNCA			Transmitter synchronization pins. There is a pull-down circuitry on each of these pins that are active if corresponding PWDNA or PWDNB pin is pulled high.			
SYNCB	1	I, LVCMOS	When these pins are set to HIGH, the transmitter will ignore incoming data and send SYNC patterns to provide a locking reference to receiver(s).			
PRE-EMPHAS	SIS PINS					
PEMA0-2	3		8-level pre-emphasis selection pins. There is a pull-down circuitry on each of			
PEMB0-2	3	I, LVCMOS	these pins which are active if corresponding PWDNA or PWDNB pin is pulled high.			
JTAG PINS	· · · · · · · · · · · · · · · · · · ·					
TDI	1	I, LVCMOS	Test Data Input to support IEEE 1149.1. There is a pull-up circuitry on this pin which is always active.			
TDO	1	O, LVCMOS	Test Data Output to support IEEE 1149.1.			
TMS	1	I, LVCMOS	Test Mode Select Input to support IEEE 1149.1. There is a pull-up circuitry on this pin which is always active.			
TCK	1	I, LVCMOS	Test Clock Input to support IEEE 1149.1. There is no failsafe circuitry on this pin			
TRST	1	I, LVCMOS	Test Reset Input to support IEEE 1149.1. There is a pull-up circuitry on this pin which is always active.			
BIST PINS	•					
BISTA	1	I, LVCMOS	BIST selection pins. These pins select which transmitter will generate a PRBS			
BISTB	1	1	like data. There is a pull-down circuitry on these pins which are active if corresponding PWDNA or PWDNB pin is pulled high.			
POWER PINS	1	1				
AVDD	6	I, POWER	Power Supply for the LVDS circuitry.			
DVDD	8	I, POWER	Power Supply for the digital circuitry.			
PVDD	5	I, POWER	Power Supply for the PLL and BG circuitry.			
AVSS	5	I, POWER	Ground reference for the LVDS circuitry.			
DVSS	10	I, POWER	Ground reference for the digital circuitry.			
PVSS	5	I, POWER	Ground reference for the PLL and BG circuitry.			
OTHER PINS	•		·			
NC	1	N/A	Not connected.			

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated