32-Channel 256 Gray-Shade High Voltage Driver

Ordering Information

Device	Package Option	
	64-Lead 3-Sided Plastic Gullwing	Die
HV62208	HV62208PG	HV62208X

Features

- $\mathrm{HVCMOS}^{\circledR}$ technology
- 5V CMOS inputs
- Up to 80 V output voltage
- PWM gray shade conversion
- Capable of 256 levels of gray shading
- Balanced shift clock complies with RS-422
- 8 MHz shift and count clock frequency
- 16 MHz data throughput rate
- 8 bit data bus
- 32 outputs per device
- BLANK function

General Description

Not recommended for new designs. Please use HV632 instead.

The HV622 is a 32-channel gray-shade column driver IC designed for driving electrofluorescent displays. Using Supertex's unique $\mathrm{HVCMOS}^{\circledR}$ technology, it is capable of 256 levels of gray shading by PWM conversion.
The shift clock is a balanced clock with electrical characteristics complying with EIA RS-422 standard. Input data, in groups of eight, is latched into a set of data latches on both edges of the shift clock. The data shifted in the first data latch corresponds to $\mathrm{HV}_{\text {OUT }} 1$, the second data latch corresponds to $\mathrm{HV}_{\text {OUT }}{ }^{2}$, and so on. These data are compared to the contents of the master binary counter which counts on both edges of the count clock. Each time the master counter begins to decrement from 1111 1111, the data in the data latches are compared with the contents of the counter; if they match, the corresponding outputs will go high. The master counter counts down to 00000001 and then starts to count up again. The outputs that are at high will stay at high until the contents of the counter match the data in the data latches again. Therefore, the higher the binary data in the data latches, the longer the outputs will stay at high. Thus, different high voltage pulse widths are produced. When the counter reaches its 11111111 count while counting up, the device is ready for the next operation cycle. A data value of 00000000 produces no pulse; the output stays low.
The BLANK input signal will reset the master counter to all ones (1111 1111) and set all high voltage outputs to low.

[^0]
Electrical Characteristics

(Over recommended conditions of $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=70 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Low-Voltage DC Characteristics (Digital)

Symbol	Parameter	Min	Max	Units	Conditions
V_{DD}	Low-voltage digital supply voltage	4.5	5.5	V	
I_{DD}	V_{DD} supply current		25	mA	$\mathrm{f}_{\mathrm{SC}}=8 \mathrm{MHz}, \mathrm{f}_{\mathrm{CC}}=8 \mathrm{MHz}$
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent V_{DD} supply current		100	$\mu \mathrm{~A}$	$\mathrm{All} \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$, Count Clock $=\mathrm{V}_{\mathrm{DD}}$
I_{IH}	High-level input current		10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$
I_{IL}	Low-level input current		-10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IL}}=\mathrm{GND}$
I_{OH}	High-level output current	-1.0		mA	
I_{OL}	Low-level ouptut current	1.0		mA	

Symbol	Parameter	Max	Units	Conditions	
V_{DD}	Low-voltage analog supply voltage	4.5	5.5	V	
I_{DD}	V_{DD} supply current		100	$\mu \mathrm{~A}$	$\mathrm{f}_{\mathrm{SC}}=8 \mathrm{MHz}, \mathrm{f}_{\mathrm{CC}}=8 \mathrm{MHz}$
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent V_{DD} supply current		100	$\mu \mathrm{~A}$	$\mathrm{All} \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$, Count Clock $=\mathrm{V}_{\mathrm{DD}}$

High-Voltage DC Characteristics

Symbol	Parameter	Min	Max	Units	Conditions
$\mathrm{I}_{\text {PPQ }}$	Quiescent $\mathrm{V}_{\text {PP }}$ supply current		100	$\mu \mathrm{~A}$	All HV ${ }_{\text {OUT }}$ low or high
$\mathrm{I}_{\text {OUT(p) }}$	P-channel output current	-4.0		mA	
$\mathrm{I}_{\text {OUT(n) }}$	N-channel output current	4.0		mA	

AC Characteristics

Symbol	Parameter	Min	Max	Units	Conditions
f_{Sc}	Shift clock frequency		8.0	MHz	
f_{CC}	Count clock frequency		8.0	MHz	
$\mathrm{f}_{\text {DIN }}$	Data In frequency		16	MHz	
t_{CW}	Chip select pulse width	80		ns	
$\mathrm{t}_{\text {css }}$	Chip select to shift clock set-up time	15		ns	
$\mathrm{t}_{\mathrm{CSH}}$	Chip select to shift clock hold time	45		ns	
$\mathrm{t}_{\text {ScC }}$	Shift clock cycle time	125		ns	
$\mathrm{t}_{\text {DSS }}$	Data to shift clock set-up time	10		ns	
$\mathrm{t}_{\text {DSH }}$	Data to shift clock hold time	52		ns	
t_{DW}	Data In pulse width	62		ns	
tLCW	Load count pulse width	75		ns	
$\mathrm{t}_{\mathrm{ccw}}$	Count clock pulse width	62.5		ns	
$\mathrm{t}_{\mathrm{ccc}}$	Count clock cycle time	125		ns	
$\mathrm{t}_{\text {LCD }}$	Load count to count clock delay	100		ns	
$\mathrm{t}_{\mathrm{CCD}}$	Count clock to $\mathrm{HV}_{\text {OUT }}$ turn-on/turn-off		600	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\mathrm{t}_{\text {BLW }}$	BLANK pulse width	700		ns	
$\mathrm{t}_{\text {BLD }}$	BLANK to $\mathrm{HV}_{\text {OUT }}$ delay		500	ns	$C_{L}=15 \mathrm{pF}$
$\mathrm{t}_{\text {CDD }}$	Count clock delay between count down and count up cycles	500		ns	

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units	Conditions
V_{DD}	Logic supply voltage	4.5	5.5	V	
$\mathrm{~V}_{\mathrm{PP}}$	Positive high-voltage supply	12	70	V	
$\mathrm{~V}_{\mathrm{NN}}$	Negative high-voltage supply	-8	-10	V	
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage	0	1	V	
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	$\mathrm{V}_{\mathrm{DD}}-1$	$\mathrm{~V}_{\mathrm{DD}}$	V	
f_{SC}	Shift clock frequency		8	MHz	
f_{CC}	Count clock frequency		8	MHz	
T_{A}	Operating temperature	-40	+85	${ }^{\circ} \mathrm{C}$	

Pin Definitions

Pin \#	Name	I/O	Function
$27-30$	D1 - D8		
$36-29$		I	Inputs for binary-format parallel data (D8 is the most significant bit)
34	Shift Clock	I	Triggers data on both edges
35	Shift Clock	I	Triggers data on both edges
31	Count Clock	I	Input to the counter
24	CSI	I	Chip select input to enable the device to accept data
25	CSO	O	Chip select output to enable the next device
33	Load Count	I	Input to initiate the counting
26	Blank	I	Input to reset the counter and HV
$4-19$	HV	OUT $1-H V_{\text {OUT }} 32$	O
$46-61$	High-voltage outputs		
23,43	V $_{\text {PP }}$	-	Positive high-voltage supply
41	$\mathrm{~V}_{\text {DD }}$ (Analog)	-	Low-voltage analog supply voltage
40	$\mathrm{~V}_{\text {DD }}$ (Digital)	-	Low-voltage digital supply voltage
22,44	$\mathrm{~V}_{\text {NN }}$	-	Negative high-voltage supply
$20-21$	GND (Digital)	-	Digital ground
42	GND (Analog)		Analog ground

Input and Output Equivalent Circuits

Functional Block Diagram

Timing Diagrams

Timing Diagrams

Pin Configurations

Package Outline

[^0]: 02/96/022

