

CLC730231 Quad High Speed SOIC Op Amp Evaluation Board

General Description

The CLC730231 evaluation board is designed to aid in the characterization of National Semiconductor's High Speed quad SOIC operational amplifiers.

Use the evaluation board as a guide for high frequency layout and as a tool to aid in device testing and characterization.

The evaluation board schematic is shown below in *Figure 1*. Refer to the product data sheets for recommendations for component values.

Basic Operation

By changing RIN and ROUT different input and output impedances can be matched. The SMA connectors and board traces are optimized for 50 to 75Ω operation. Other impedances can be matched but performance may be noticeably different, especially high frequency response. Even with optimal layout board parasitics play a large part in high frequency performance and different termination resistors will change the frequency of the dominant parasitic poles/zeros.

Layout Considerations

Printed circuit board layout and supply bypassing play major roles in determining high frequency performance. When designing your own board use these evaluation boards as a guide and follow these steps to optimize high frequency performance:

- 1. Use a ground plane
- 2. Include large (~6.8 μF) capacitors on both supplies.
- 3. Near the device use .01 μF ceramic capacitors from both supplies to ground C1, C2.
- Remove the ground and power planes from under and around the part, especially the input and output pins.
- 5. Minimize all trace lengths

6. Use terminated transmission lines for long traces. Sample artwork for the CLC730231 Evaluation board is included on the next page in *Figure 2*.

Inverting Operation

With slight modification this board can be modified for inverting operation. Cut the input trace between the SMA connector and the RIN resistor leaving RIN connected to the non inverting pin (the non-inverting input needs a DC bias current path). Solder a resistor between the input line and the inverting input side of $R_{\rm F}$ (the side closest to the input trace). Leave $R_{\rm G}$ empty and all other components should be loaded as marked. For matching input impedance a parallel terminating resistor can be added from the input line to the unused ground pad from the empty $R_{\rm G}$ space. The necessary trace cuts are shown in Figure 4.

Measurement Hints

The board is designed for 50Ω input and output connections into coaxial cables. For other impedances the terminating resistors can be modified to help match different impedances.

Do not use normal oscilloscope probes to test these circuits. The capacitive loading will change circuit performance drastically. Instead use low impedance resistive divider probes of 100 to 500Ω . See *Figure 3* for a sample resistive probe. The Low impedance resistor should be 50- 450Ω . The ground connection should be as short as possible (~1/2"). Even with careful use of these probes results should be considered preliminary until verified with controlled impedance measurements. Even the best probes will interfere with circuit operation to some degree. Also, tools, power cables, fingers etc. near the device will change measurement results often dramatically.

Measurement Hints (Continued)

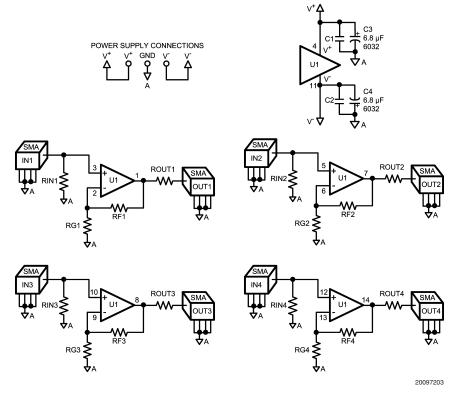
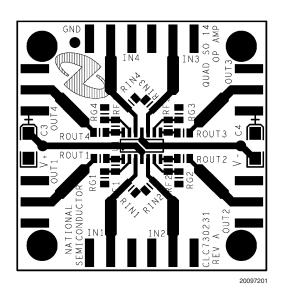



FIGURE 1. Board Schematic

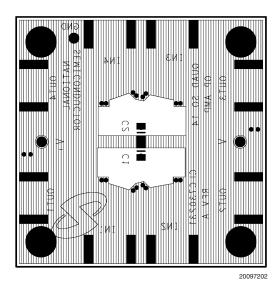
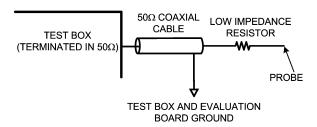
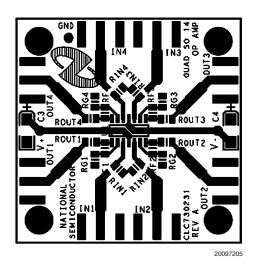



FIGURE 2. Board Layout (Actual size = 2" x 2")

www.national.com 2


Measurement Hints (Continued)

PROBE ATTENUATION =
$$\frac{50}{R + 50}$$

20097204

FIGURE 3. Probe Schematic

FIGURE 4. Inverting Operation Modifications

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor **Europe Customer Support Center** Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com **National Semiconductor** Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Applications

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity

Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		

www.ti.com/wirelessconnectivity

TI E2E Community Home Page

e2e.ti.com