LMH6552

Application Note 1743 LMH6552SDEVAL High Speed Differential Amplifier Evaluation Board

Literature Number: SNOA496A

LMH6552SDEVAL High Speed Differential Amplifier Evaluation Board

National Semiconductor Application Note 1743 Vannavong Philavanh June 20, 2008

General Description

The LMH6552SDEVAL evaluation board is designed to aid in the characterization of National Semiconductor's LMH6552 fully differential amplifier in an 8-pin LLP package. The LMH6552 is part of the LMH® high speed amplifier family.

Use the evaluation board as a guide for high frequency layout and as a tool to aid in device testing and characterization.

The evaluation board schematic is shown below in *Figure 1*. Refer to the product datasheets for recommended for component values.

Basic Operation

The LMH6552SDEVAL evaluation board has been set up to provide maximum flexibility for evaluating National's differential LMH6552 operational amplifier. The board supports fully differential operation as well as single-ended to differential and single-ended to single-ended operation. For fully differential operation, use resistors R5 and R6 to set the input impedance of the amplifier. Input resistance will be equal to $2*R_5 \parallel 2*R_1$. Where $R_5 = R_6$ and $R_1 = R_2$. In this mode resistors R_1 , R_2 , R_3 and R_4 set the gain of the amplifier. Amplifier gain $= R_F/R_G = R_4/R_2$ where $R_1 = R_2$ and $R_3 = R_4$. For single-ended input mode of operation, the input and termination resistance must be properly configured to give the correct gain and R_{IN}. For example, in the case of the LMH6552, if a gain of 2 V/V is desired, R_5 = 28.7 Ω , R_1 = R_2 = 127 Ω , R_3 = R_4 = 275 Ω , and R_6 = 68.1 Ω . Which will make R_{IN} = 50 Ω at the most positive node of R₅ looking into R₂. Further details of single-ended input mode calculations for the LMH6552 can be found in the datasheet. Components R₇, R₈, C₆, and C₇ should be used for AC-couple applications otherwise can be left empty.

For differential output applications, load $\rm R_{12}$ and $\rm R_{13}$ with the desired values to match the output load and leave $\rm R_{10}$ and $\rm R_{11}$ empty.

If single-ended output is desired leave $\rm R_{12}$ and $\rm R_{13}$ empty and load $\rm R_{10},~R_{11}$ and an output transformer such as the ADT4-1WT from Mini Circuits. The ADT4-1WT has a 4:1 impedance ratio (2:1 turns/voltage ratio). This is particularly useful for interfacing to 50Ω test equipment. When referencing the transformer datasheet, the 980600016 evaluation board has the primary windings on the output side of the evaluation board and the amplifier is driving the secondary windings. This provides a step down transformation from the differential amplifier output to the test equipment. The centertapped secondary winding also allows a differential to single

ended conversion (Balun). The impedance seen by the differential amplifier = $(R_{10} + R_{11} + R_{L}^{*4})$, where R_{L} is the impedance from pin 3 of the transformer to the load.

Pin 7 on the LMH6552 device is the enable (EN) pin that can be used to disable the device with an external signal. Refer to LMH6552 datasheet for more details.

Layout Considerations

Printed circuit board layout and supply bypassing play major roles in determining high frequency performance. When designing your own board use these evaluation boards as a guide and follow these steps to optimize high frequency performance:

- 1. Symmetry is of the utmost importance.
- 2. Use precision resistors 0.1% or 0.01%.
- Use a ground plane.
- Include large (~ 10 μF) capacitors on both supplies (C₁ and C₃).
- Near the device use 0.01 μF ceramic capacitors from both supplies to ground (C₂, C₄).
- A capacitor between V+ and V- (C₅) is optional, but will help lower distortion.
- Remove the ground and power planes from under and around the part, especially the input and output pins.
- 8. Minimize all trace lengths.
- 9. Use terminated transmission lines for long traces.

Sample artwork for the LMH6552SDEVAL™ Evaluation board is included on the next page in *Figure 2*.

Measurement Hints

Balance, CMRR and HD2 are highly dependent on resistor matching. Use 0.1 or 0.01% resistors.

The LMH6552SDEVAL evaluation board is designed for differential or single-ended output measurements, but not both at the same time. When not using the transformer make sure to leave $\rm R_{10}$ and $\rm R_{11}$ empty. Likewise, when making single-ended output measurements leave $\rm R_{12}$ and $\rm R_{13}$ empty.

Many differential amplifiers are optimized for the higher impedances represented by most ADCs.

On a differential amplifier both inputs are inverting, keep parasitic capacitance to a minimum on both inputs. Also, using probes of any kind on a differential circuit is not recommended.

LMH® is a registered trademark of National Semiconductor Corporation.

T1 = Mini Circuits ADT4-1WT

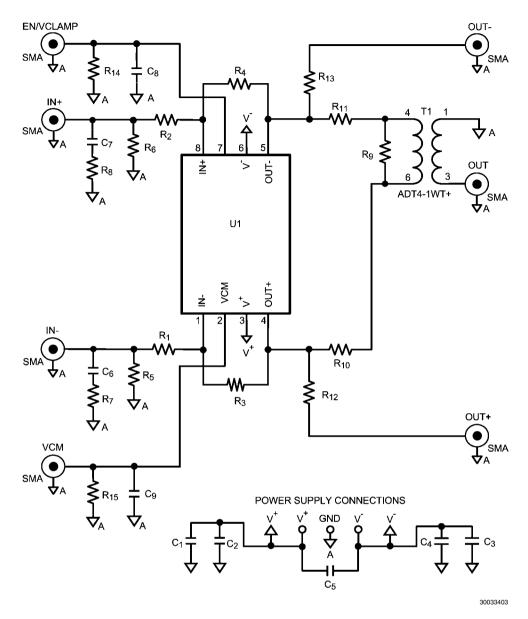
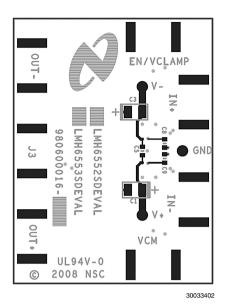



FIGURE 1. Board Schematic

www.national.com 2

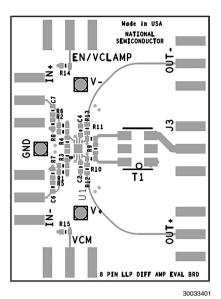


FIGURE 2. Board Layout

3 www.national.com

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH	www.national.com/webench
Audio	www.national.com/audio	Analog University	www.national.com/AU
Clock Conditioners	www.national.com/timing	App Notes	www.national.com/appnotes
Data Converters	www.national.com/adc	Distributors	www.national.com/contacts
Displays	www.national.com/displays	Green Compliance	www.national.com/quality/green
Ethernet	www.national.com/ethernet	Packaging	www.national.com/packaging
Interface	www.national.com/interface	Quality and Reliability	www.national.com/quality
LVDS	www.national.com/lvds	Reference Designs	www.national.com/refdesigns
Power Management	www.national.com/power	Feedback	www.national.com/feedback
Switching Regulators	www.national.com/switchers		
LDOs	www.national.com/ldo		
LED Lighting	www.national.com/led		
PowerWise	www.national.com/powerwise		
Serial Digital Interface (SDI)	www.national.com/sdi		
Temperature Sensors	www.national.com/tempsensors		
Wireless (PLL/VCO)	www.national.com/wireless		

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2008 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page <u>e2e.ti.com</u>