

Spectrum Analyzer (MSP-SA430-SUB1GHZ)

This document describes how to install, setup, run, and use the Spectrum Analyzer.

The Spectrum Analyzer kit (MSP-SA430-SUB1GHZ) can be ordered from the TI eStore.

Contents

1	Introduction	2
2	Preparing for Operation	4
3	First Measurement	6
4	Spectrum Analyzer Software Reference	7
5	Troubleshooting	4
	List of Figures	
1	Hardware Tab	Ę
2	Connect Symbol	Ę
3	Device Connection Message	6
4	Start Button	6
5	Frequency Graph	7
6	Spectrum Analyzer GUI	8
7	RF Settings Tab, Frequency	ξ
8	RF Settings Tab, Amplitude / Reference Level	ξ
9	RF Settings Tab, Sweep / Measure	S
10	RF Settings Tab, RF Mode	(
11	RF Settings Tab, Band Width10	(
12	RF Settings Tab, Settings	C
13	Traces Tab, Trace 0	1
14	Marker Tab, Marker 1 1	2
15	Marker Tab, Jog Dial1	2
16	Screen Tab, Grid and Display1	3
17	Screen Tab, Print1	3
18	Screen Tab. Save to File	3

Introduction www.ti.com

1 Introduction

TI's MSP-SA430-SUB1GHZ Spectrum Analyzer is an easy-to-use and affordable tool to jumpstart radio frequency (RF) development in the sub-GHz frequency range.

More and more electronic devices include a built-in RF link. RF transceivers are inexpensive, but the equipment to design and debug such systems is not. The purpose of this Spectrum Analyzer is to provide an affordable development tool that reduces the time you need to spend using expensive measurement equipment.

The Spectrum Analyzer (SA430) connects to a PC through USB and is operated from a powerful yet simple graphical user interface (GUI).

1.1 Hardware Specification

Frequency ranges: 300 MHz to 348 MHz, 389 MHz to 464 MHz, and 779 MHz to 928 MHz

Minimum frequency step: 397 Hz (typical)

Maximum input level: -40 dBm (typical) (range extendable with attenuators)

Minimum detectable level: -100 dBm (typical)

Level resolution: 0.5 dB

1.2 System Requirements

Screen resolution: Minimum: 800x600, Recommended: 1024x768

Operating system: Windows® XP 32 bit, Windows Vista® 32/64 bit, Windows 7 32/64 bit

Hard drive space: 200MB free drive space

Connection: One USB 2.0 port

1.3 Product Regulatory Compliance

1.3.1 FCC

This device has been tested and verified to comply with Part 15, Class B, of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- · Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Note: See EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS for further regulatory compliance statements.

www.ti.com Introduction

1.3.2 CE

This device has been tested and found to comply with the requirements set up in the EMC Directive 2004/108/EC and the harmonized standard EN 61326-1.

1.3.3 Canadian ICES-003

This Class B digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.

Preparing for Operation www.ti.com

2 Preparing for Operation

2.1 Install Software

The MSP-SA430-SUB1GZ is shipped with a CD that contains all of the required software. To download the latest versions of the software, go to www.ti.com/sa430.

A standard Windows® installer simplifies the software installation. To start the installer, run setup.exe from the root of the CD. All required files and resources are installed to a user-selectable path, referred to as %sa430_install_path% in the following sections. The default installation path is C:\Program Files\Texas Instruments\SA430 Spectrum Analyzer\.

2.2 Install Driver

A standard CDC USB driver is used for communication between the PC and the Spectrum Analyzer (SA430). Therefore, no additional driver is required; however, Windows requires an inf file to register the device properly. Setup.exe installs the inf file to the correct location. The file is also available in the %sa430 install path%\driver\ folder.

2.3 Connect Hardware

After all software has been installed, connect the SA430 to the PC with a standard USB 2.0 Mini cable.

The Microsoft® certified driver is automatically detected and installed as the MSP-SA430-SUB1GHZ – CDC virtual COM port device. On Windows® XP, this device can be viewed with the Device Manager (devmgmt.msc) in the Ports (COM & LPT) section.

When the SA430 is connected to the PC, the SA430 blinks a green LED followed by a steady red LED. The SA430 is now ready to be used.

2.4 Connect RF

The MSP-SA430-SUB1GHZ is equipped with a standard 50- Ω SMA connector. This allows easy connection to multiple systems.

CAUTION

Absolute maximum input level is +0 dBm. Exceeding this level can damage the SA430.

2.4.1 Antenna

A center fed dipole antenna is supplied with the SA430 kit. This antenna works for most applications, but it has some drawbacks. A dipole antenna is tuned to work best within a small frequency range. The antenna that is supplied in the kit is a $\lambda/2$ antenna with a center frequency of 868 MHz and a recommended span of 30 MHz. Using the antenna outside this range impacts the level reading.

For better accuracy outside of this frequency range, use a $50-\Omega$ antenna designed for the intended frequency range (915 MHz, 315 MHz, or 868 MHz).

However, it is difficult to determine the true level at the transmitter in an RF system, because the transmit level and the received level depend on so many factors. In most cases, the effect of the antenna can be neglected, especially during the prototyping phase.

2.4.2 Cable

To improve power reading accuracy, a $50-\Omega$ SMA cable can directly connect the Spectrum Analyzer with the target system / transmitter.

To reduce influences from impedance mismatch, $50-\Omega$ attenuators should be connected next to the SMA connector of the Spectrum Analyzer. Depending on the target impedance, a 1-dB attenuator is sufficient.

CAUTION

Absolute maximum input level is +0 dBm. Exceeding this level can damage the SA430.

2.5 Start Spectrum Analyzer Software

2.5.1 Launch

By default, setup.exe creates a shortcut to the software in the Windows® Start Menu and on the Desktop from where it can easily be launched. It can also be started by running %sa430_install_path%\SA430GUI.exe.

2.5.2 Connect with Hardware

The SA430 GUI starts in the Hardware tab to allow selection of the desired hardware (see Figure 1).

Figure 1. Hardware Tab

Assuming only one SA430 connected to this computer the connection can easily be made by pressing the Connect symbol or the Connect button in the hardware tab (see Figure 2).

Figure 2. Connect Symbol

First Measurement www.ti.com

The hardware tab now shows additional information about the connected device such as the firmware version found on the device.

2.5.3 Firmware Update

The Spectrum Analyzer GUI provides a built-in updater that can update the SA430 firmware for new features and bug fixes.

If the Spectrum Analyzer GUI determines that a firmware update is required, a message is displayed. Click Update Firmware to start the update or click Decline to keep the existing firmware. Note that declining a required update can prevent the SA430 GUI from using the SA430 hardware.

NOTE:

Do not remove the SA430 from USB while updating firmware. This could lead to an undefined state.

2.5.4 Ready for Operation

After the GUI establishes communication with the SA430 hardware, the connect icon is disabled and the status bar shows a message to which COM port and device the GUI is connected (see Figure 3). The software is now ready for the first measurement.

Device is connected to Port:COM250

Figure 3. Device Connection Message

3 First Measurement

After the SA430 hardware is connected (Tip: Connection status is displayed on left side of the status bar; see Figure 3) the Spectrum Analyzer is ready to operate. Set the desired Frequency and Amplitude, then click the Start button (see Figure 4) to start measurement.

Figure 4. Start Button

Pressing the Start button not only starts a measurement, it also applies the RF settings for measurement. To change RF settings during measurement, first enter the new settings and then apply them by pressing the Start button again.

By default, the graph shows all settings and the measurement results (see Figure 5). Two traces are automatically enabled. Trace 0 shows the actual (ACT) measured values, and trace 1 shows the maximum (MAX) value for each measured frequency point since the start button was last pressed.

Results are displayed immediately in the graph window, which also shows all RF parameters.

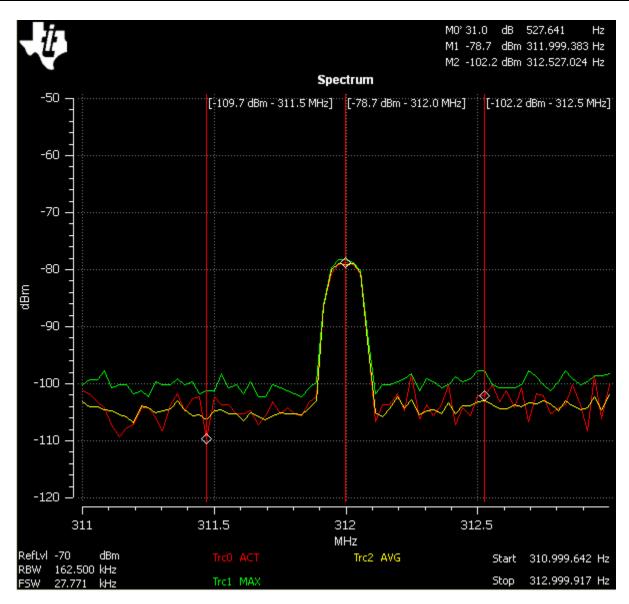


Figure 5. Frequency Graph

NOTE: Frequency parameters shown in the graph may be slightly different from the parameters that were set in the RF tab. This is caused by the frequency resolution of the hardware.

For a full feature description of the SA430 Spectrum Analyzer GUI, see Section 4.

4 Spectrum Analyzer Software Reference

This section explains functions provided by the Spectrum Analyzer GUI.

The software layout consists of five main areas (see Figure 6):

- Graph: Displays measurement results
- Tabs: Measurement and display options
- Icon Bar: Quick access to frequently used functions
- Menu Bar: File, Hardware, Grid, and Help menus
- Status Bar: Provides an overview of connection and status

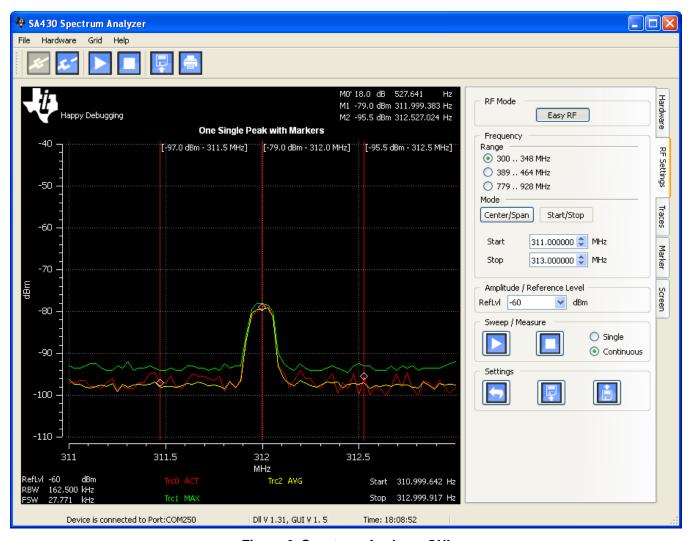


Figure 6. Spectrum Analyzer GUI

4.1 RF Settings

The most important part of using a Spectrum Analyzer is the selection of measurement parameters. All of these settings can be made in the RF Settings tab. The following sections describe the options available in this tab.

Changes to settings can be made while a measurement is running. After all settings are adjusted in the RF Settings tab, apply the settings by clicking the Start button. New measurement data and updated RF settings are now displayed in the graph.

NOTE: Frequency parameters shown in the graph may be slightly different from the parameters that were set in the RF Settings tab. This is caused by the frequency resolution of the hardware.

4.1.1 Frequency

In the RF Settings tab, first select the frequency range (one of the three supported ranges), then specify the center frequency and span to measure (see Figure 7).

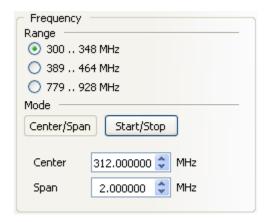


Figure 7. RF Settings Tab, Frequency

This can be done either with Center frequency (for example, 312 MHz) and Span (for example, 2 MHz) or the equivalent Start (for example, 311 MHz) and Stop (for example, 313 MHz). Both result in the same output: a spectrum from 311 MHz to 313 MHz.

4.1.2 Amplitude

Select the Reference Level (RefLvL) accordingly to the expected input level (see Figure 8). The reference level sets the maximum power level that can be measured without saturating the measurement device. If a power level higher than the reference level is applied, the measurement result contains signal artifacts (power) close to the input signal frequency.

Figure 8. RF Settings Tab, Amplitude / Reference Level

If signal strength is not known, it is a good idea to start with a low reference level and increase it if high readings or artifacts are seen.

NOTE:

In saturation, the Spectrum Analyzer shows incorrect results but is not damaged unless the absolute maximum input level of +0 dBm is exceeded.

4.1.3 Sweep

In Continuous Sweep mode, each measurement result is displayed and a new measurement is triggered, resulting in continuous updates. In single mode, only one measurement is taken when the Start button is pressed. To take another measurement in single sweep mode, press the Start button again (see Figure 9).

Figure 9. RF Settings Tab, Sweep / Measure

4.1.4 Band Width

The band width determines the frequency resolution of a measurement. The general rule is that a larger frequency range of interest (span) requires a larger bandwidth.

In Easy RF mode, these settings are managed automatically, and the user does not need to change them. However, it might be necessary under certain circumstances to apply special settings. The Easy RF mode can be turned off by clicking the Easy RF mode button (see Figure 10).

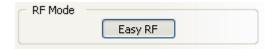


Figure 10. RF Settings Tab, RF Mode

Two different settings are then available and closely linked to each other (see Figure 11).

Figure 11. RF Settings Tab, Band Width

4.1.4.1 Filter Step Width

The SA430 has an analog heterodyne receiver that is digitally controlled. The filter step width (FSW) determines the frequency distance between two measured power levels. As every measured level is shown on the graph it also gives the frequency distance between two points in the graph. The number of points is defined by span divided by the FSW plus one.

A number that is small compared to the span gives more samples but takes more time to measure.

4.1.4.2 Resolution Band Width

The resolution band width (RBW) gives the frequency size of the input filter that is applied to the input signal. This filter is applied at each measured frequency point.

A small number gives better frequency resolution but covers a smaller frequency area. For larger frequency spans, therefore, it is better to have a larger RBW.

RBW and FSW depend on each other. To avoid losing signal information, the distance between two measurements (FSW) needs to be smaller than the filter width RBW.

4.1.5 Settings

To make repetitive tasks easier, all RF settings can be exported and imported to an application specific XML file. The settings are not tied to this computer or equipment so a measurement setting can be shared easily with others.

Figure 12. RF Settings Tab, Settings

An undo to last settings button is available to quickly go back to the last setting.

4.2 Traces

All measurement data is stored in traces. A total of four traces are available and a function or mode can be assigned to each of them in the Traces tab (see Figure 13).

Figure 13. Traces Tab, Trace 0

Four modes are available and define the function of each trace.

- · ACT (Actual) gives the current measured value
- MAX (Maximum) shows the maximum value measured per frequency point since the last measurement start button press.
- AVG (Average) shows an average value per frequency point since the last measurement start.
- · OFF removes the trace from the graph

For the average function a sliding weighted average function is implemented. The formula looks like: AVG = $(5*AVG[last\ measurement] + 1*ACT)/6$.

Starting a measurement by pressing the Start button sets AVG and MAX to ACT values. In Single Sweep mode all traces will show the same result.

Pressing the Clear Button resets the average and maximum trace, so MAX or AVG will be identical with next ACT trace measurement.

The Hold button will stop updates to this trace. It will not stop the measurement – it only stops updating data on a selected trace. This feature is Useful to compare for example two devices or settings.

Each trace can be exported to a comma separated text file (csv) with frequency and dBm values. This is useful to store or share measurement results. Good file names are key.

4.3 Marker

Markers are available to allow for easier reading of measurement results. They are enabled in the Marker tab by selecting a trace (see Figure 14).

Figure 14. Marker Tab, Marker 1

With the jog dial the markers can be moved in frequency. The jog dial is assigned to the marker associated with the button being pressed (see Figure 15).

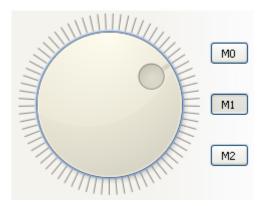


Figure 15. Marker Tab, Jog Dial

Marker 0 and 2 can be made relative (delta) to marker 1, allowing to measure for example the spacing to neighbor signals. An asterisk after the marker number will indicate delta mode in the graph window.

4.4 Screen Tab

The graph output, including grid and displayed items, can be configured (see Figure 16).

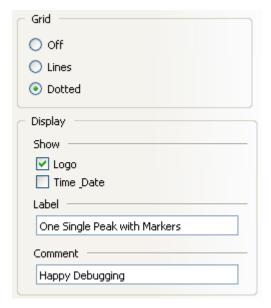


Figure 16. Screen Tab, Grid and Display

Printing to any installed printer is supported including an invert color switch to easier read the results (see Figure 17).

Figure 17. Screen Tab, Print

A screenshot of the application or only the graph only can be saved in many formats including pdf and png (see Figure 18).

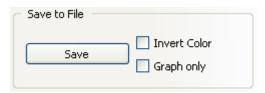


Figure 18. Screen Tab, Save to File

Troubleshooting www.ti.com

5 Troubleshooting

5.1 FAQ

- Q: The hardware is connected, but it is not shown as available in the hardware tab.
- A: Scan for connected devices (see Figure 1). Maybe the device was plugged in after the software was started.
- Q: My device is still not shown!
- A: Check the red LED-it should be on. Make sure that the COM port is shown in the device manager.
- Q: Now-after I really connected the USB-the device is shown, but I cannot connect to it.
- A: Make sure that the port is not used by any other software. Some applications connect to everything they can and block access to the port. Make sure that no other instances of SA430GUI.exe are running. Remove the SA430 hardware from USB and reinsert it.
- Q: What if the PC loses power?
- A: Make sure to use the export RF settings function to save your work for later reference.
- Q: I see an issue that is not described here. What should I do?
- A: Go online to e2e.ti.com and post a question.

5.2 Known Limitations

The SA430 hardware functions with Linux, because it uses a standard USB CDC driver. However, the SA430 GUI software is not available for Linux.

At very low reference level settings, the internal VCO is measured. This can happen at multiples of 26 MHz.

The software is tested on multiple platforms but issues and errors can occur. Please report findings on www.ti.com/sa430 so that the software can be improved.

This is not a high-end spectrum analyzer (there is a reason why high end devices are expensive); however, the MSP-SA430-SUB1GHZ works well during prototyping and development of RF links. In this stage, the typical questions that need to be answered are whether or not a signal is generated at all and whether or not it is at the expected frequency.

5.3 Additional Resources

For more information and to download the latest software, go to www.ti.com/sa430.

Question on how to use the Spectrum Analyzer or how to debug a RF link? Question on how to use TI parts? The TI online support community can help: <u>e2e.ti.com</u>.

www.ti.com Troubleshooting

EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS

Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on Tl's environmental and/or safety programs, please contact the Tl application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

UNITED STATES FCC AND CANADA IC REGULATORY COMPLIANCE INFORMATION

As noted in the EVM Users Guide, this EVM and/or accompanying hardware may or may not be subject to and compliant with Part 15 of the FCC and Canadian ICES-003 rules.

For EVMs annotated to comply with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada. Les changements ou les modifications pas expressément approuvés par la partie responsible de la conformité ont pu vider l'autorité de l'utilisateur pour actionner l'équipement.

For EVMs annotated as not subject to or compliant with Part 15 of the FCC Rules. This evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Troubleshooting www.ti.com

EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMERS

For Feasibility Evaluation Only, in Laboratory/Development Environments. The EVM is not a complete product. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

- 1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.
- 2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.
- 3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.
- 4. Customer must take care of proper disposal and recycling of the EVM's electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI's recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	Applications
----------	--------------

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated