LM98714 Three Channel, 16-Bit, 45 MSPS Digital Copier Analog Front End with Integrated CCD/CIS Sensor Timing Generator and LVDS Output

Literature Number: SNAS254

National Semiconductor

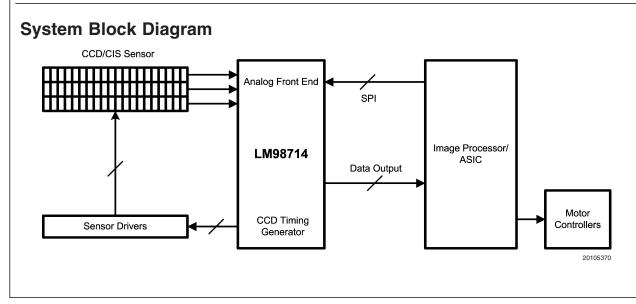
LM98714 Three Channel, 16-Bit, 45 MSPS Digital Copier Analog Front End with Integrated CCD/CIS Sensor Timing Generator and LVDS Output

General Description

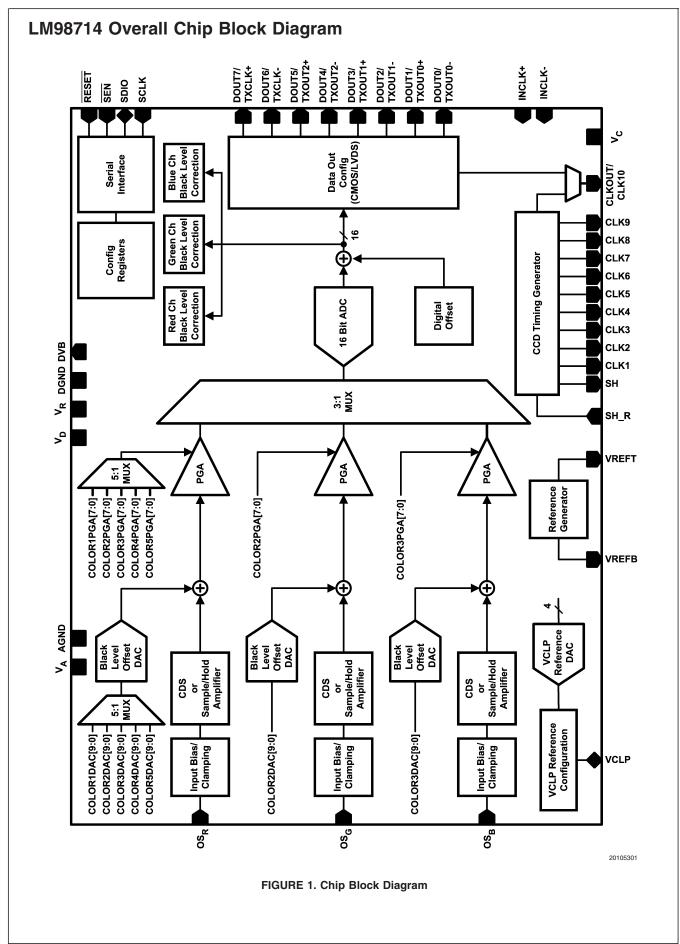
The LM98714 is a fully integrated, high performance 16-Bit, 45 MSPS signal processing solution for digital color copiers, scanners, and other image processing applications. Highspeed signal throughput is achieved with an innovative architecture utilizing Correlated Double Sampling (CDS), typically employed with CCD arrays, or Sample and Hold (S/H) inputs (for Contact Image Sensors and CMOS image sensors). The signal paths utilize 8 bit Programmable Gain Amplifiers (PGA), a +/-9-Bit offset correction DAC and independently controlled Digital Black Level correction loops for each input. The PGA and offset DAC are programmed independently allowing unique values of gain and offset for each of the three inputs. The signals are then routed to a 45MHz high performance analog-to-digital converter (ADC). The fully differential processing channel shows exceptional noise immunity, having a very low noise floor of -74dB. The 16-bit ADC has excellent dynamic performance making the LM98714 transparent in the image reproduction chain.

Applications

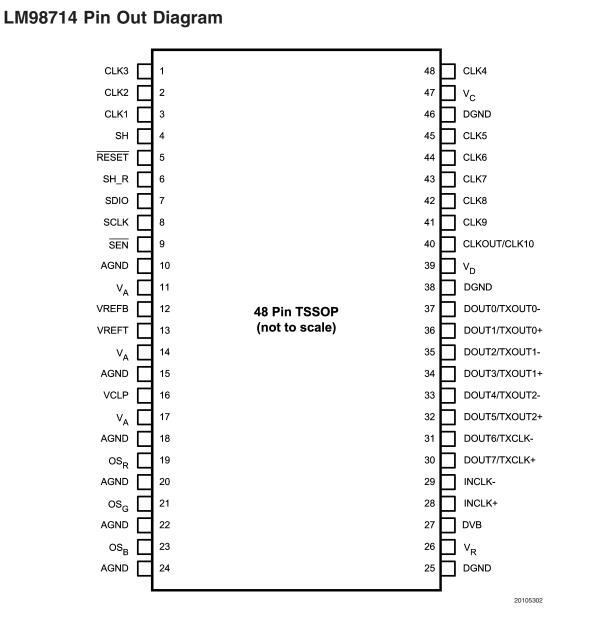
- Multi-Function Peripherals
- Facsimile Equipment
- Flatbed or Handheld Color Scanners
- High-speed Document Scanner


Features

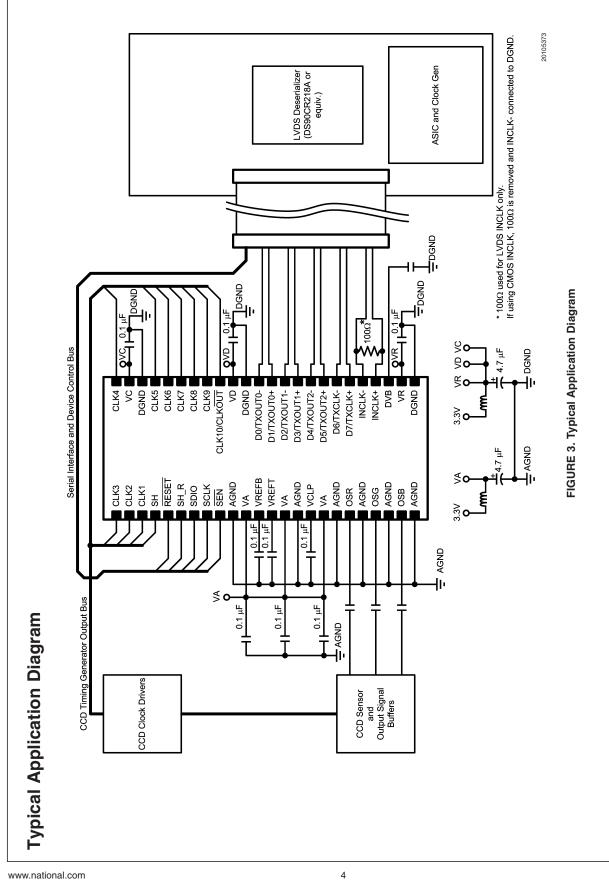
- LVDS/CMOS Outputs
- LVDS/CMOS Pixel Rate Input Clock or ADC Input Clock
- CDS or S/H Processing for CCD or CIS sensors


- Independent Gain/Offset Correction for Each Channel
- Digital Black Level Correction Loop for Each Channel
- Programmable Input Clamp Voltage
- Flexible CCD/CIS Sensor Timing Generator

Key Specifications


Maximum Input Level	1.2 or 2.4 Volt Modes
	(both with + or - polarity option)
ADC Resolution	16-Bit
ADC Sampling Rate	45 MSPS
■ INL	+/- 23 LSB (typ)
Channel Sampling Rate	te 15/22.5/30 MSPS
PGA Gain Steps	256 Steps
PGA Gain Range	0.7 to 7.84x
Analog DAC Resolutio	n +/-9 Bits
Analog DAC Range	+/-300mV or +/-600mV
Digital DAC Resolution	1 +/-6 Bits
Digital DAC Range	-1024 LSB to + 1008 LSB
■ SNR	-74dB (@0dB PGA Gain)
Power Dissipation	505mW (LVDS) 610mW (CMOS)
 Operating Temp 	0 to 70°C
Supply Voltage	3.3V Nominal (3.0V to 3.6V range)




October 2006

www.national.com

Pin Descriptions

Pin	Name	I/O	Тур	Res	Description
1	CLK3	0	D	PU	Configurable sensor control output.
2	CLK2	0	D	PD	Configurable sensor control output.
3	CLK1	0	D	PU	Configurable sensor control output.
4	SH	0	D	PD	Sensor - Shift or transfer control signal for CCD and CIS sensors.
5	RESET	1	D	PU	Active-low master reset. NC when function not being used.
6	SH_R	1	D	PD	External request for an SH pulse.
7	SDIO	1/0	D		Serial Interface Data Input
8	SCLK	1	D	PD	Serial Interface shift register clock.
9	SEN	1	D	PU	Active-low chip enable for the Serial Interface.
10	AGND		Р		Analog ground return.
11	V _A		Р		Analog power supply. Bypass voltage source with 4.7μ F and pin with 0.1μ F to AGND.
12	VREFB	0	A		Bottom of ADC reference. Bypass with a 0.1µF capacitor to ground.
13	VREFT	0	A		Top of ADC reference. Bypass with a 0.1µF capacitor to ground.
14	V _A		Р		Analog power supply. Bypass voltage source with 4.7μ F and pin with 0.1μ F to AGND.
15	AGND		Р		Analog ground return.
16	VCLP	10	A		Input Clamp Voltage. Normally bypassed with a 0.1µF, and a 4.7µF capacitor to
					AGND. An external reference voltage may be applied to this pin.
17	V _A		Р		Analog power supply. Bypass voltage source with 4.7 μ F and pin with 0.1 μ F to AGND.
18	AGND		Р		Analog ground return.
19	OS _B	1	A		Analog input signal. Typically sensor Red output AC-coupled thru a capacitor.
20	AGND		Р		Analog ground return.
21	OS _G	1	A		Analog input signal. Typically sensor Green output AC-coupled thru a capacitor.
22	AGND		Р		Analog ground return.
23	OS _B	1	A		Analog input signal. Typically sensor Blue output AC-coupled thru a capacitor.
24	AGND	1	Р		Analog ground return.
25	DGND	1	Р		Digital ground return.
26	V _R		Р		Power supply input for internal voltage reference generator. Bypass this supply pin with a 0.1μ F capacitor.
27	DVB	0	Р		Digital Core Voltage bypass. Not an input. Bypass with 0.1µF capacitor to DGND.
28	INCLK+	I	D		Clock Input. Non-Inverting input for LVDS clocks or CMOS clock input. CMOS clock is selected when pin 29 is held at DGND, otherwise clock is configured for LVDS operation.
29	INCLK-	1	D		Clock Input. Inverting input for LVDS clocks, connect to DGND for CMOS clock.
30	DOUT7/ TXCLK+	0	D		Bit 7 of the digital video output bus in CMOS Mode, LVDS Frame Clock+ in LVDS Mode.
31	DOUT6/	0	D		Bit 6 of the digital video output bus in CMOS Mode, LVDS Frame Clock- in
	TXCLK-				LVDS Mode.
32	DOUT5/	0	D		Bit 5 of the digital video output bus in CMOS Mode, LVDS Data Out2+ in LVDS
	TXOUT2+				Mode.
33	DOUT4/	0	D		Bit 4 of the digital video output bus in CMOS Mode, LVDS Data Out2- in LVDS
	TXOUT2-				Mode.
34	DOUT3/	0	D		Bit 3 of the digital video output bus in CMOS Mode, LVDS Data Out1+ in LVDS
- 1	TXOUT1+		¯		Mode.
35	DOUT2/	0	D		Bit 2 of the digital video output bus in CMOS Mode, LVDS Data Out1- in LVDS
	TXOUT1-				Mode.

Pin Descriptions (Continued)

LM98714

Pin	Name	I/O	Тур	Res	Description
36	DOUT1/	0	D		Bit 1 of the digital video output bus in CMOS Mode, LVDS Data Out0+ in LVDS
	TXOUT0+				Mode.
37	DOUT0/	0	D		Bit 0 of the digital video output bus in CMOS Mode, LVDS Data Out0- in LVDS
	TXOUT0-				Mode.
38	DGND		Р		Digital ground return.
39	V _D		Р		Power supply for the digital circuits. Bypass this supply pin with 0.1µF
					capacitor. A single $4.7\mu F$ capacitor should be used between the supply and the
					VD, VR and VC pins.
40	CLKOUT/	0	D	PD	Output clock for registering output data when using CMOS outputs, or
	CLK10				configurable sensor control output.
41	CLK9	0	D	PD	Configurable sensor control output.
42	CLK8	0	D	PD	Configurable sensor control output.
43	CLK7	0	D	PD	Configurable sensor control output.
44	CLK6	0	D	PU	Configurable sensor control output.
45	CLK5	0	D	PD	Configurable sensor control output.
46	DGND		Р		Digital ground return.
47	V _c		Р		Power supply for the sensor control outputs. Bypass this supply pin with 0.1µF
					capacitor.
48	CLK4	0	D	PD	Configurable sensor control output.

(I=Input), (O=Output), (IO=Bi-directional), (P=Power), (D=Digital), (A=Analog), (PU=Pull Up with an internal resistor), (PD=Pull Down with an internal resistor.).

Absolute Maximum Ratings (Notes 2,

1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (VA,VR,VD,VC)	4.2V
Voltage on Any Input Pin	-0.3V to
(Not to exceed 4.2V)	(VA + 0.3V)
Voltage on Any Output Pin	-0.3V to
(execpt DVB and not to exceed	(VA + 0.3V)
4.2V)	
DVB Output Pin Voltage	2.0V
Input Current at any pin other than	±25 mA
Supply Pins (Note 3)	
Package Input Current (except	±50 mA
Supply Pins) (Note 3)	
Maximum Junction Temperature (TA)	150°C

Thermal Resistance (θ_{JA}) 66°C/W Package Dissipation at $T_A = 25^{\circ}C$ 1.89W (Note 4) ESD Rating (Note 5) Human Body Model 2500V 250V Machine Model -65°C to +150°C Storage Temperature Soldering process must comply with National Semiconductor's Reflow Temperature Profile specifications. Refer to www.national.com/packaging. (Note 6)

Operating Ratings (Notes 1, 2)

Operating Temperature Range	$0^{\circ}C \leq T_A \leq +70^{\circ}C$
All Supply Voltage	+3.0V to +3.6V

Electrical Characteristics

The following specifications apply for VA = VD = VR = VC = 3.3V, $C_L = 10pF$, and $f_{INCLK} = 15MHz$ unless otherwise specified. Boldface limits apply for $T_A = T_{MIN}$ to T_{MAX} ; all other limits $T_A = 25^{\circ}C$.

				Тур		
Symbol	Parameter	Conditions	Min	(Note 8)	Max	Units
CMOS Digi	tal Input DC Specifications (RESE	Tb, SH_R, SCLK, SENb)				
V _{IH}	Logical "1" Input Voltage		2.0			V
VIL	Logical "0" Input Voltage				0.8	V
I _{IH}	Logical "1" Input Current	V _{IH} = VD				
		RESET		235		nA
		SH_R, SCLK		70		μA
		SEN		130		nA
I _{IL}	Logical "0" Input Current	VIL = DGND				
		RESET		70		μA
		SH_R, SCLK		235		nA
		SEN		70		μA
CMOS Digi	tal Output DC Specifications (SH,	CLK1 to CLK10, CMOS Data C	Dutputs)			•
V _{OH}	Logical "1" Output Voltage	I _{OUT} = -0.5mA	2.95			V
V _{OL}	Logical "0" Output Voltage	I _{OUT} = 1.6mA			0.25	V
I _{os}	Output Short Circuit Current	V _{OUT} = DGND		16		mA
		V _{OUT} = VD	1	-20		
I _{oz}	CMOS Output TRI-STATE	V _{OUT} = DGND		20		nA
	Current	V _{OUT} = VD		-25		
CMOS Digi	tal Input/Output DC Specifications	(SDIO)				
I _{IH}	Logical "1" Input Current	V _{IH} = VD		90		nA
I _{IL}	Logical "0" Input Current	V _{IL} = DGND		90		nA
_VDS/CMC	S Clock Receiver DC Specification	ns (INCLK+ and INCLK- Pins)	•			•
V _{IHL}	Differential LVDS Clock	$R_{L} = 100W$			100	mV
	High Threshold Voltage	V _{CM} (LVDS Input Common				
		Mode Voltage)= 1.25V				
	Differential LVDS Clock]	-100			mV
V _{ILL}	Differential LVDS Clock					

Electrical Characteristics (Continued) The following specifications apply for VA = VD = VR = VC = 3.3V, C_L = 10pF, and f_{INCLK} = 15MHz unless otherwise specified. Boldface limits apply for T_A = T_{MIN} to T_{MAX}; all other limits T_A = $25^{\circ}C$.

Symbol	Parameter	Conditions	Min	Typ (Note 8)	Max	Units
VIHC	CMOS Clock	INCLK- = DGND	2.0			V
	High Threshold Voltage					
V _{ILC}	CMOS Clock	1 1			0.8	V
illo	Low Threshold Voltage					
I _{IHL}	CMOS Clock				280	μΑ
INC	Input High Current					P
I _{ILC}	CMOS Clock				-150	μA
·ILC	Input Low Current					P
I VDS Outr	out DC Specifications					
V _{OD}	Differential Output Voltage	R _L = 100Ω	180	328	450	mV
V _{os}	LVDS Output Offset Voltage		1.17	1.23	1.3	V
	Output Short Circuit Current	$V_{OUT} = 0V, R_L = 100\Omega$	1.17	7.9	1.0	mA
l _{os} Power Sup	ply Specifications	$v_{OUT} = 0v, n_L = 10022$		7.5		
	VA Analog Supply Current	VA Normal State	60	97	125	mA
IA	VA Analog Supply Current	VA Normal State	12	-		
			12	23	32	mA
		(Powerdown)		0.1	75	
IR	VR Digital Supply Current	VR Normal State	30	64	75	mA
		(LVDS Outputs)				
		CMOS Output Data Format	15	47	55	mA
		LVDS Output Data Format		47		mA
		with Data Outputs Disabled				
ID	VD Digital Output Driver Supply	LVDS Output Data Format		0.05		mA
	Current	CMOS Output Data Format	12		40	mA
		(ATE Loading of CMOS				
		Outputs > 50pF)				
IC	VC CCD Timing Generator	Typical sensor outputs:	0.5		12	mA
	Output Driver Supply Current	SH, CLK1=Φ1A, CLK2=Φ2A,				
		CLK3=ΦB, CLK4=ΦC,				
		CLK5=RS, CLK6=CP				
		(ATE Loading of CMOS				
		Outputs > 50pF)				
PWR	Average Power Dissipation	LVDS Output Data Format	350	505	650	mW
		CMOS Output Data Format	380	610	700	mW
		(ATE Loading of CMOS				
		Outputs > 50pF)				
Input Samp	oling Circuit Specifications					
V _{IN}	Input Voltage Level	CDS Gain=1x, PGA Gain=1x		2.3		Vp-p
		CDS Gain=2x, PGA Gain=		1.22		
		1x				

Electrical Characteristics (Continued) The following specifications apply for VA = VD = VR = VC = 3.3V, C_L = 10pF, and f_{INCLK} = 15MHz unless otherwise specified. Boldface limits apply for T_A = T_{MIN} to T_{MAX}; all other limits T_A = $25^{\circ}C$.

Symbol	Parameter	Conditions	Min	Typ (Note 8)	Мах	Units
I _{IN_SH}	Sample and Hold Mode	Source Followers Off	50		70	μA
0.11	Input Leakage Current	CDS Gain = 1x	(-70)		(-40)	
		$OS_X = VA (OS_X = AGND)$				
		Source Followers Off	75		105	μA
		CDS Gain = 2x	(-105)		(-75)	
		$OS_X = VA (OS_X = AGND)$				
		Source Followers On	-200	-10	200	nA
		CDS Gain = 2x		-16		
		$OS_X = VA (OS_X = AGND)$				
C _{SH}	Sample/Hold Mode	CDS Gain = 1x		2.5		pF
- 31	Equivalent Input Capacitance					P .
	(see Figure 11)	CDS Gain = 2x		4		pF
I _{IN_CDS}	CDS Mode	Source Followers Off	-300	7	300	nA
IN_CDS	Input Leakage Current	$OS_x = VA (OS_x = AGND)$		(-25)		
R _{CLPIN}	CLPIN Switch Resistance	$\sum_{X} \sum_{X} \sum_{X$		16	50	Ω
· ·CLPIN	(OS _x to VCLP Node in Figure 8)					22
VCI P Refe	erence Circuit Specifications					
	VCLP DAC Resolution			4		Bits
	VCLP DAC Step Size			0.16		V
V _{VCLP}	VCLP DAC Voltage Min Output	VCLP Config. Register =	0.14	0.26	0.43	V
VCLP	Voli DAO Voliage Min Output	0001 0000b	0.14	0.20	0.40	v
	VCLP DAC Voltage Max Output	VCLP Config. Register =	2.38	2.68	2.93	V
		0001 1111b				
	Resistor Ladder Enabled	VCLP Config. Register =	1.54	V _A / 2	1.73	V
		0010 xxxxb		~		
I _{SC}	VCLP DAC Short Circuit Output	VCLP Config. Register =		30		mA
00	Current	0001 xxxxb				
Black Leve	el Offset DAC Specifications					
	Resolution			10		Bits
	Monotonicity		G	uaranteed by	characterizat	ion
	Offset Adjustment Range	CDS Gain = 1x		,		
	Referred to AFE Input	Minimum DAC Code =		-614		
		0x000				mV
		Maximum DAC Code =		614		
		0x3FF				
		CDS Gain = 2x				
		Minimum DAC Code =		-307		
		0x000				mV
		Maximum DAC Code =		307		
		0x3FF				
	Offset Adjustment Range	Minimum DAC Code =	-16000		-18200	
		0x000				LSB
	Referred to AFE Output	Maximum DAC Code =	16000		18200	LSB
		0x3FF				
	DAC LSB Step Size	CDS Gain = 1x		1.2		mV
		Referred to AFE Output		(32)		(LSB)
DNL	Differential Non-Linearity		-0.95		3.25	LSB

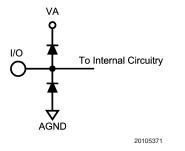
Electrical Characteristics (Continued)

The following specifications apply for VA = VD = VR = VC = 3.3V, $C_L = 10pF$, and $f_{INCLK} = 15MHz$ unless otherwise specified. **Boldface limits apply for T_A = T_{MIN} to T_{MAX};** all other limits T_A = 25°C.

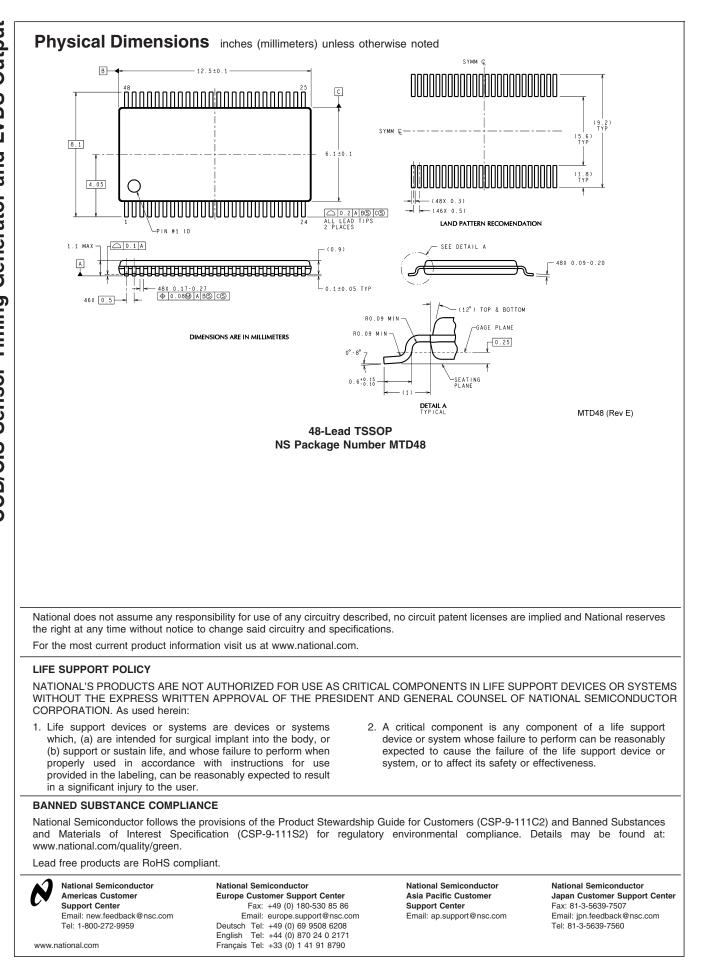
				Тур		
Symbol	Parameter	Conditions	Min	(Note 8)	Max	Units
INL	Integral Non-Linearity		-3.1		2.65	LSB
PGA Spec	fications					
	Gain Resolution			8		Bits
	Monotonicity		G	uaranteed by	characteriza	tion
	Maximum Gain	CDS Gain = 1x	7.18	7.9	8.77	V/V
		CDS Gain = 1x	17.1	17.9	18.9	dB
	Minimum Gain	CDS Gain = 1x	0.56	0.7	0.82	V/V
		CDS Gain = 1x	-5	-3	-1.72	dB
	PGA Function	Gain (V/	/) = (196/(2	280-PGA Code	e))	
		Gain (dB) = 2	0LOG10(1	96/(280-PGA	Code))	
	Channel Matching	Minimum PGA Gain		3		%
		Maximum PGA Gain		12.7		
ADC Spec	ifications					
V _{REFT}	Top of Reference			2.07		V
V _{REFB}	Bottom of Reference			0.89		V
V _{REFT} -	Differential Reference Voltage		1.07	1.18	1.29	V
V _{REFB}	_					
	Overrange Output Code			65535		
	Underrange Output Code			0		
Digital Off	set "DAC" Specifications	· · · · · · · · · · · · · · · · · · ·		1		
	Resolution			7		Bits
	Digital Offset DAC LSB Step Size	Referred to AFE Output		16		LSB
	Offset Adjustment Range	Min DAC Code =7b0000000		-1024		
	Referred to AFE Output	Mid DAC Code =7b1000000		0		
		Max DAC Code =		1008		LSB
		7b111111				
Full Chanr	el Performance Specifications			I		
DNL	Differential Non-Linearity		-0.99	0.8/-0.6	2.55	LSB
INL	Integral Non-Linearity		-73	+/-23	78	LSB
SNR	Total Output Noise	Minimum PGA Gain		-79		dB
				7.2		LSB
						RMS
		PGA Gain = 1x		-74		dB
				13	30	LSB
						RMS
		Maximum PGA Gain		-56		dB
				104		LSB
						RMS
	Channel to Channel Crosstalk	Mode 3		47		ICD
		Mode 2		16		- LSB

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. Operation of the device beyond the Operating Ratings is not recommended.

Note 2: All voltages are measured with respect to AGND = DGND = 0V, unless otherwise specified.


Note 3: When the input voltage (V_{IN}) at any pin exceeds the power supplies $(V_{IN} < GND \text{ or } V_{IN} > V_A \text{ or } V_D)$, the current at that pin should be limited to 25 mA. The 50 mA maximum package input current rating limits the number of pins that can simultaneously safely exceed the power supplies with an input current of 25 mA to two.

Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} and the ambient temperature, T_A . The maximum allowable power dissipation at any temperature is $P_D = (T_{JMAX} - T_A)/\theta_{JA}$. The values for maximum power dissipation listed above will be reached only when the device is operated in a severe fault condition (e.g. when input or output pins are driven beyond the power supply voltages, or the power supply polarity is reversed). Such conditions should always be avoided.


Note 5: Human body model is 100 pF capacitor discharged through a 1.5 k Ω resistor. Machine model is 220 pF discharged through 0 Ω .

Note 6: Reflow temperature profiles are different for lead-free and non-lead-free packages.

Note 7: The analog inputs are protected as shown below. Input voltage magnitudes beyond the supply rails will not damage the device, provided the current is limited per note 3. However, input errors will be generated If the input goes above VA and below AGND.

Note 8: Typical figures are at T_A = 25°C, and represent most likely parametric norms at the time of product characterization. The typical specifications are not guaranteed.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated