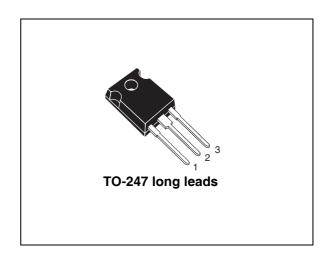


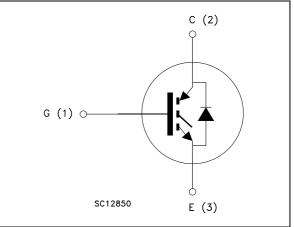
STGW35NC120HD

32 A - 1200 V - very fast IGBT

Features


- Low on-losses
- Low on-voltage drop (V_{CE(sat)})
- High current capability
- High input impedance (voltage driven)
- Low gate charge
- Ideal for soft switching application

Application


- Induction heating
- High frequency inverters
- UPS

Description

This IGBT utilizes the advanced PowerMESH[™] process resulting in an excellent trade-off between switching performance and low on-state behavior.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order code	Marking	Package	Packaging
STGW35NC120HD	GW35NC120HD	TO-247 long leads	Tube

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	9
4	Package mechanical data 1	0
5	Revision history1	2

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	1200	V
$I_{C}^{(1)}$	Continuous collector current at $T_C = 25 \text{ °C}$	60	А
$I_{C}^{(1)}$	Continuous collector current at T _C = 100 °C	32	А
I _{CL} ⁽²⁾	Turn-off latching current	135	А
$I_{CP}^{(3)}$	Pulsed collector current	135	А
V_{GE}	Gate-emitter voltage	±25	V
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	235	W
١ _F	Diode RMS forward current at $T_C = 25 \text{ °C}$	30	А
I _{FSM}	Surge non repetitive forward current t _p = 10 ms sinusoidal	100	А
Тj	Operating junction temperature	-55 to 150	°C

1. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

2. Vclamp = 80% of V_{CES}, T_j =125 °C, R_G=10 $\Omega,$ V_GE=15 V

3. Pulse width limited by max. junction temperature allowed

Symbol	Parameter	Value	Unit
R.	Thermal resistance junction-case IGBT	0.53	°C/W
R _{thj-case}	Thermal resistance junction-case diode	1.5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	50	°C/W

2 Electrical characteristics

(T_j =25 °C unless otherwise specified)

Table 4. Stati

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 1 mA	1200			V
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 20 A, V _{GE} = 15 V, I _C = 20 A, T _j =125 °C		2.2 2.0	2.75	V V
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 250 \mu A$	3.75		5.75	V
I _{CES}	Collector cut-off current (V _{GE} = 0)	V _{CE} =1200 V V _{CE} =1200 V, T _j =125 °C			500 10	μA mA
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} =± 20 V			± 100	nA
g _{fs} ⁽¹⁾	Forward transconductance	V _{CE} = 25 V _, I _C = 20 A		14		S

1. Pulse duration = 300 μ s, duty cycle 1.5%

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} =0	-	2510 175 30	-	pF pF pF
Q _g Q _{ge} Q _{gc}	Total gate charge Gate-emitter charge Gate-collector charge	V _{CE} = 960 V, I _C = 20 A,V _{GE} =15 V	-	110 16 49	-	nC nC nC

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 960 \text{ V}, \text{ I}_{C} = 20 \text{ A}$ $R_{G} = 10 \Omega, \text{ V}_{GE} = 15 \text{ V},$ <i>Figure 17</i>	-	29 11 1820	-	ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 960 \text{ V}, I_C = 20 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_j = 125 \text{ °C}$ Figure 17	-	27 14 1580	-	ns ns A/µs
t _r (V _{off}) t _d (_{off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 960 \text{ V}, I_{C} = 20 \text{ A}$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V},$ <i>Figure 17</i>	-	90 275 312	-	ns ns ns
t _r (V _{off}) t _d (_{off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 960 \text{ V}, I_C = 20 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_j = 125 \text{ °C} Figure 17$	-	150 336 592	-	ns ns ns

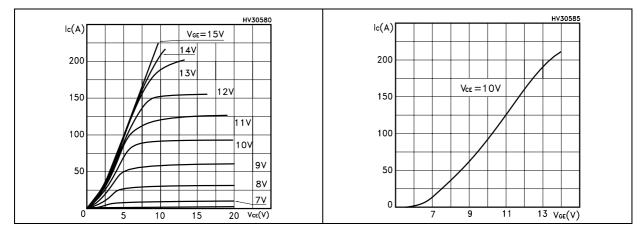
Table 6. Switching on/off (inductive load)

Table 7. Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Eon ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	V_{CC} = 960 V, I _C = 20 A R _G = 10 Ω , V _{GE} = 15 V, <i>Figure 17</i>	-	1660 4438 6098	-	μJ μJ μJ
Eon ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	V _{CC} = 960 V, I _C = 20 A R _G = 10 Ω, V _{GE} = 15 V, T _j =125 °C <i>Figure 17</i>	-	3015 6900 9915	-	μ Lμ L

 Eon is the turn-on losses when a typical diode is used in the test circuit in figure 2. If the IGBT is offered in a package with a co-pack diode, the co-pack diode is used as external diode. IGBTs & Diode are at the same temperature (25 °C and 125 °C)

2. Turn-off losses include also the tail of the collector current


Table 8. Collector-emitter diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _F	Forward on-voltage	I _F = 20 A		1.9	2.5	V
		I _F = 20 A, T _C = 125 °C	-	1.7		V
t _{rr}	Reverse recovery time	I _F = 20 A, V _R = 27 V,		152		ns
Q _{rr}	Reverse recovery charge	T _j =125 °C, di/dt = 100 A/μs	-	722	-	nC
I _{rrm}	Reverse recovery current	Figure 20		9		А

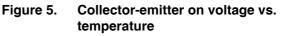

2.1 Electrical characteristics (curves)

Figure 2. Output characteristics

Figure 3. Transfer characteristics

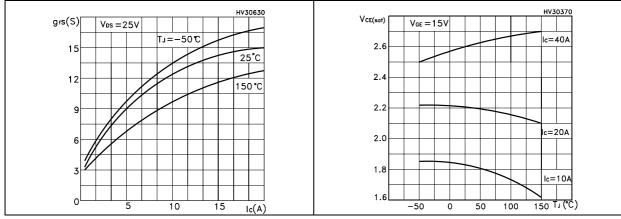
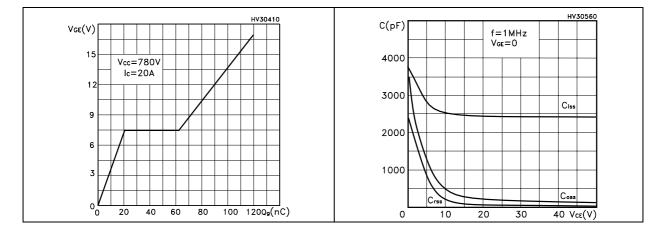
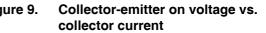




Figure 6. Gate charge vs. gate-source voltage Figure 7. Capacitance variations

Figure 8. Normalized gate threshold voltage Figure 9. vs. temperature

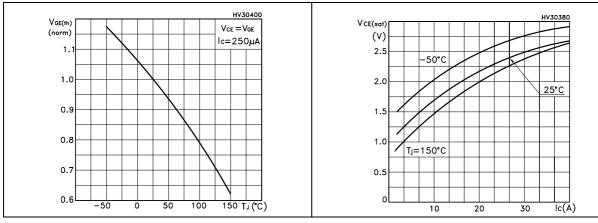
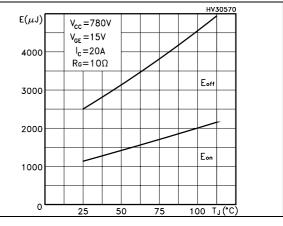
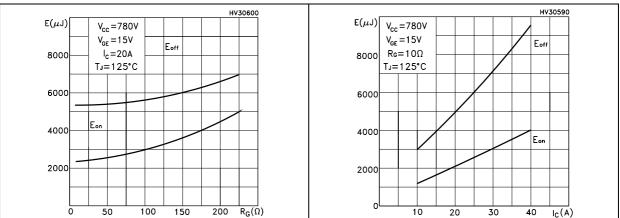
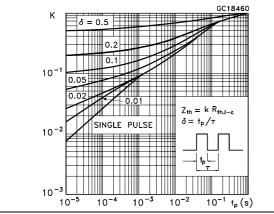
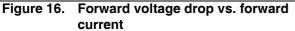
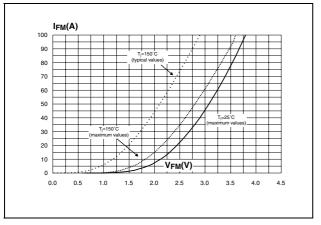


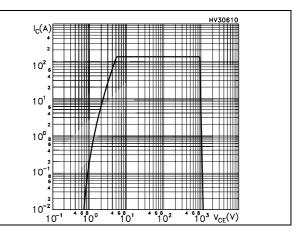
Figure 10. Normalized breakdown voltage vs. Figure 11. Switching losses vs. temperature temperature

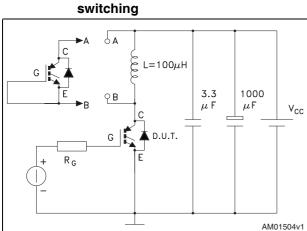
Figure 12. Switching losses vs. gate resistance

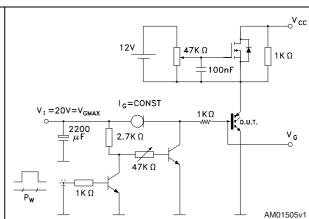





Figure 13. Switching losses vs. collector current




Figure 14. Thermal Impedance


Figure 15. Reverse biased SOA



3 Test circuits

Figure 17. Test circuit for inductive load

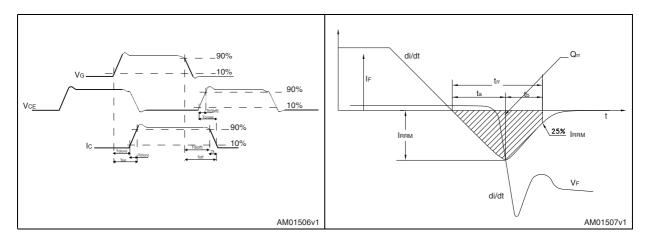
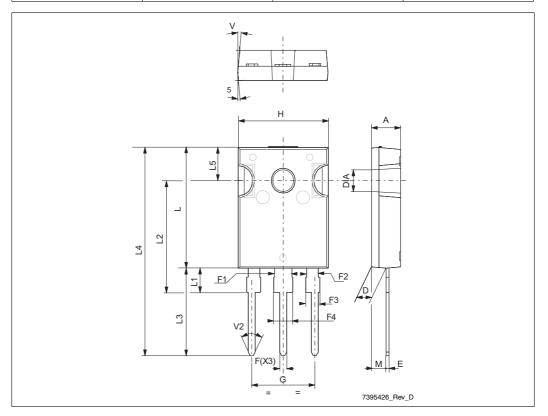



Figure 19. Switching waveform



4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

TO-247 long leads mechanical data						
Dim	mm					
Dim.	Min.	Тур.	Max.			
A	4.85		5.16			
D	2.2		2.6			
E	0.4		0.8			
F	1		1.4			
F1		3				
F2		2				
F3	1.9		2.4			
F4	3		3.4			
G		10.9				
Н	15.45		16.03			
L	19.85		21.09			
L1	3.7		4.3			
L2	18.3		19.13			
L3	14.2		20.3			
L4	34.05		41.38			
L5	5.35		6.3			
М	2		3			
V		5°				
V2		60°				
DIAM	3.55		3.65			

57

5 Revision history

Table 9.Document revision history

Date	Revision	Changes	
25-Jan-2008	1	First issue.	
07-May-2009	2	Section 4: Package mechanical data has been updated.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

