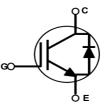
IPT ter- ed-	

April 2012

FGP10N60UNDF 600V, 10A Short Circuit Rated


GCE TO-220

Applications

- Home appliance inverter-driven appplication - Air Conditioner, Washing Machine, Refrigerator, **Dish Washer**
- Industrial Inverter Sewing Machine, CNC

General Description

Using advanced NPT IGBT Technology, Fairchild's the N IGBTs offer the optimum performance for low power invert driven applications where low-losses and short circuit rugge ness feature are essential.

Absolute Maximum Ratings

FAIRCHILD

SEMICONDUCTOR®

· Short circuit rated 10us · High current capability

High input impedance

Fast switching RoHS compliant

600V, 10A

Features

•

•

•

FGP10N60UNDF

Short Circuit Rated IGBT

Symbol	Description	n	Ratings	Units
V _{CES}	Collector to Emitter Voltage		600	V
V _{GES}	Gate to Emitter Voltage		± 20	V
	Collector Current	@ T _C = 25°C	20	A
IC	Collector Current	@ T _C = 100°C	10	A
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25°C	30	A
I _F	Diode Forward Current	@ T _C = 25°C	10	A
P _D	Maximum Power Dissipation	@ T _C = 25°C	139	W
·D	Maximum Power Dissipation	@ T _C = 100°C	56	W
TJ	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C

Notes: 1: Repetitive rating: Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Symbol Parameter		Max.	Units
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case	-	0.9	°C/W
$R_{\theta JC}$ (Diode)	R _{0JC} (Diode) Thermal Resistance, Junction to Case		3.5	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient (PCB Mount)(2)	-	62.5	°C/W

Notes:

2: Mountde on 1" square PCB (FR4 or G-10 material)

1

Device N	/larking	g Device Pa		Packaging Ickage Type		Qty per Tube		Max Qty per Box	
FGP10N60UNDF FGP10N60UNDF 1		TO2	220 Tube	į	50ea	-			
Electric	al Chai	racteristics of t	the IGE	$T_{\rm C}$ = 25°C unless otherwise	noted				
Symbol		Parameter		Test Conditions	Min.	Тур.	Max.	Units	
Off Charac	teristics								
BV _{CES}	Collector	to Emitter Breakdown V	oltage V _d	_{GE} = 0V, I _C = 250μA	600	-	-	V	
I _{CES}		Cut-Off Current	,	$v_{\text{CE}} = V_{\text{CES}}, V_{\text{GE}} = 0V$	-	-	1	mA	
I _{GES}		age Current		$_{BE} = V_{GES}, V_{CE} = 0V$	-	-	±10	uA	
On Charac	teristics								
V _{GE(th)}	1	shold Voltage	Ic	= 10mA, V _{CE} = V _{GE}	5.5	6.8	8.5	V	
GE((II)				= 10A, V _{GE} = 15V		2	2.45	V	
V _{CE(sat)}	Collector to Emitter Saturation Voltage		oltage I _C	= 10A, V _{GE} = 15V, c = 125°C	-	2.3	-	v	
Dynamic C	haracteris	tics			·				
C _{ies}	Input Cap				-	517		pF	
C _{oes}	Output Ca	apacitance		V _{CE} = 30V, V _{GE} = 0V, f = 1MHz	-	65		pF	
C _{res}	Reverse ⁻	Transfer Capacitance		i 1MHZ	-	20		pF	
Switching	Characteri	istics							
t _{d(on)}	Turn-On Delay Time				-	8.0		ns	
t _r	Rise Time))			-	6.3		ns	
t _{d(off)}	Turn-Off [Delay Time	Ve	_{CC} = 400V, I _C = 10A,	-	52.2		ns	
t _f	Fall Time		R	_G = 10Ω, V _{GE} = 15V,	-	19.1	24.8	ns	
E _{on}	Turn-On S	Switching Loss	Inc	ductive Load, $T_C = 25^{\circ}C$	-	0.15		mJ	
E _{off}	Turn-Off S	Switching Loss			-	0.05		mJ	
E _{ts}	Total Swit	ching Loss			-	0.2		mJ	
t _{d(on)}	Turn-On [Delay Time			-	8.1		ns	
t _r	Rise Time	9			-	7.3		ns	
t _{d(off)}	Turn-Off [Delay Time	Va	_{CC} = 400V, I _C = 10A,	-	55.1		ns	
t _f	Fall Time		R	_G = 10Ω, V _{GE} = 15V,	-	34.2		ns	
Eon	Turn-On S	Switching Loss	Inc	ductive Load, T _C = 125°C	-	0.22		mJ	
E _{off}	Turn-Off S	Switching Loss			-	0.08		mJ	
E _{ts}	Total Swit	ching Loss			-	0.3		mJ	
T _{sc}	Short Circ	cuit Withstand Time	R	$V_{CC} = 350V,$ $R_{G} = 100\Omega, V_{GE} = 15V,$ $T_{C} = 150^{\circ}C$		-	-	μs	

Electrical Characteristics of the IGBT $T_{C} = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max	Units
Qg	Total Gate Charge		-	37		nC
Q _{ge}	Gate to Emitter Charge	V _{CE} = 400V, I _C = 10A, V _{GE} = 15V	-	5		nC
Q _{gc}	Gate to Collector Charge	VGE - 10V	-	21		nC

Electrical Characteristics of the Diode $T_{C} = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Max	Units
V _{FM}	Diode Forward Voltage	I _E = 10A	T _C = 25°C	-	1.8	2.2	V
* FIM		-F . S. C	T _C = 125°C	-	1.7		
t _{rr}	Diode Reverse Recovery Time	-	T _C = 25 ^o C	-	37.7		ns
41			T _C = 125°C	-	78.9		
Q _{rr}	Diode Reverse Recovery Charge	η – τολ, αιριαι – 200λιμο	T _C = 25°C	-	75		nC
~II			$T_{C} = 125^{\circ}C$	-	221		

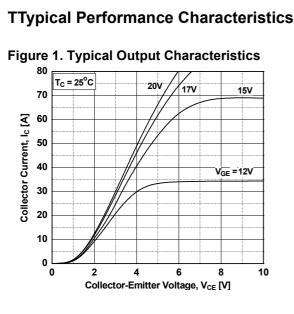


Figure 3. Typical Saturation Voltage Characteristics

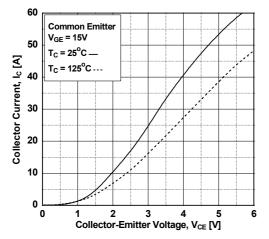
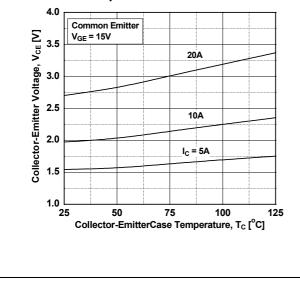
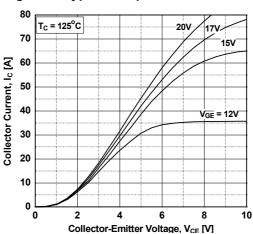




Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

Figure 2. Typical Output Characteristics

Figure 4. Transfer Characteristics

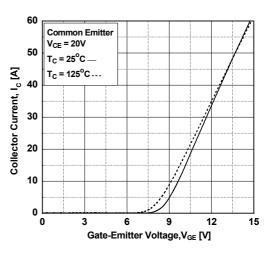
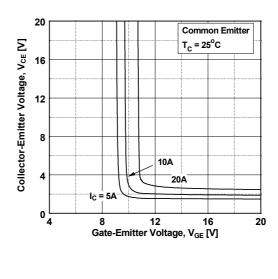
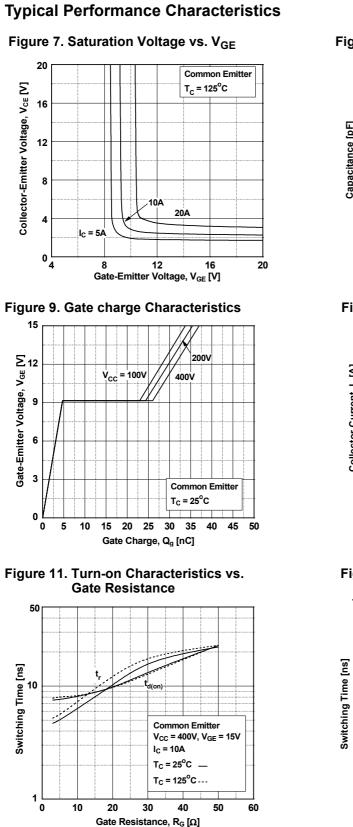
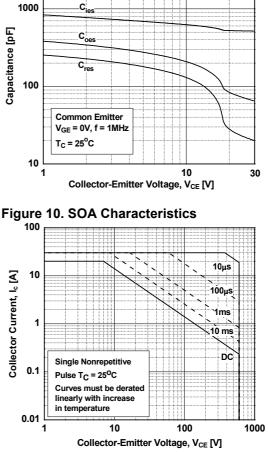
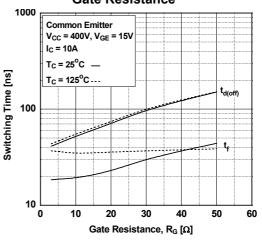
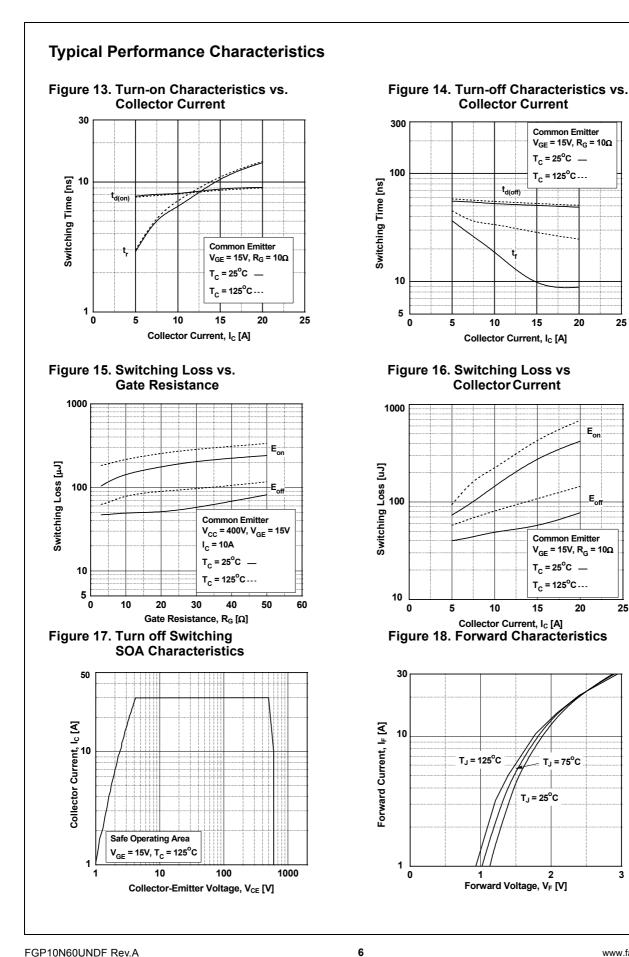




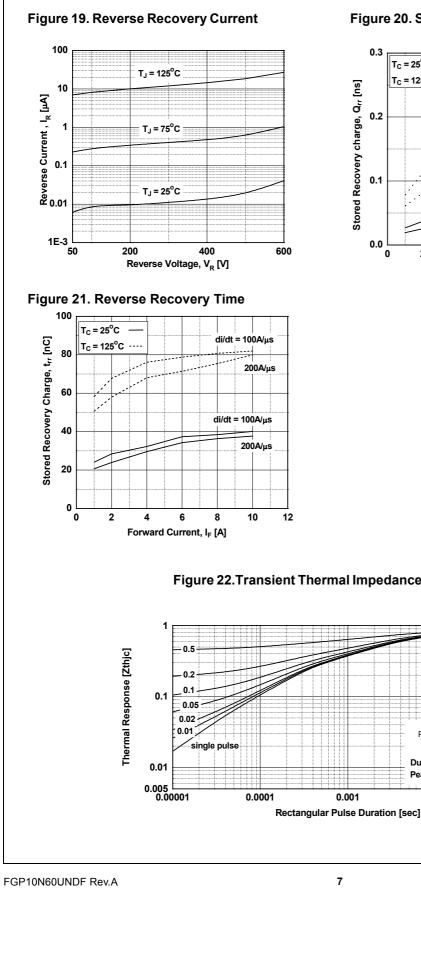
Figure 6. Saturation Voltage vs. V_{GE}

Typical Performance Characteristics

Figure 8. Capacitance Characteristics

3000


Figure 12. Turn-off Characteristics vs. Gate Resistance

FGP10N60UNDF 600V, 10A Short Circuit Rated

FGP10N60UNDF Rev.A

Typical Performance Characteristics

Figure 20. Stored Charge

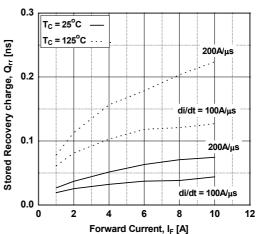
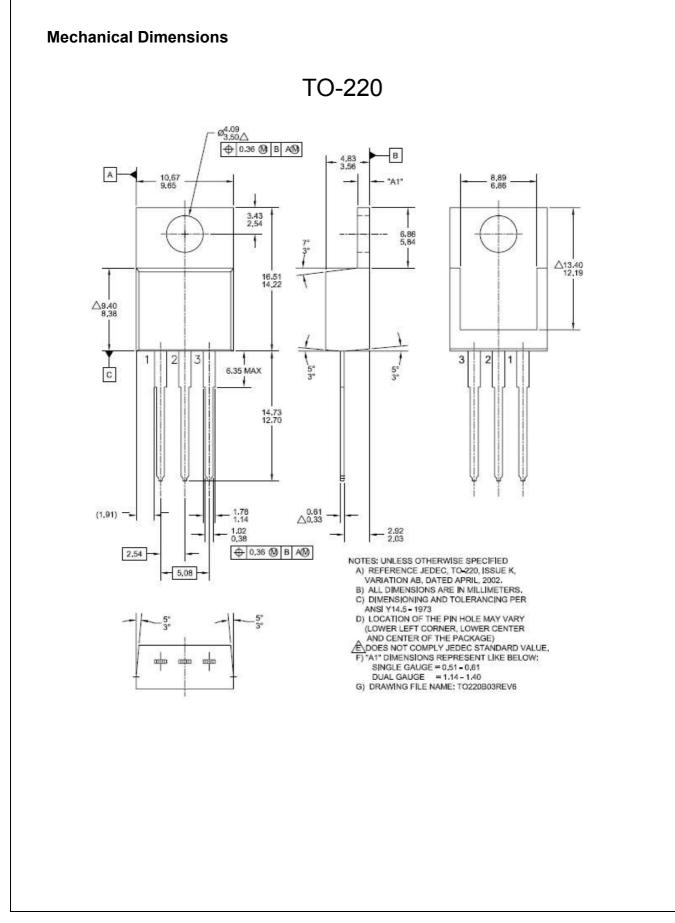


Figure 22. Transient Thermal Impedance of IGBT


PDN 1

0.01

Duty Factor, D ≡ t1/t2

Peak T_i = Pdm x Zthjc + T_C

0.1

FGP10N60UNDF 600V, 10A Short Circuit Rated

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool [™] AccuPower [™] AX-CAP ^{™*} BitSiC [®] Build it Now [™] CorePLUS [™] CorePOWER [™] CROSSVOLT [™] CTL [™] CUTCHT Transfer Logic [™] DEUXPEED [®] Dual Cool [™] EcoSPARK [®] EfficentMax [™] ESBC [™] ESBC [™] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series [™] FACT [®] FAST [®] FastvCore [™] FIashWriter [®] * FPS [™]	F-FFS™ FRFET® Global Power Resource SM Green Bridge™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Loud and Better™ Marking Small Speakers Sound Loud and Better™ MicroPatM MicroPat™ MicroPat™ MicroPak2™ MillerDrive™ Motion-SPM™ Motion-SPM™ mWSaver™ OptoHiT™ OptoHiT™ OptoHiT™ OptoHiANAR®	PowerTrench [®] Programmable Active Droop [™] QFET [®] QS [™] Quiet Series [™] RapidConfigure [™] Ouiet Series [™] RapidConfigure [™] Saving our world, 1mW/W/kW at a time [™] SignalWise [™] SmartMax [™] SMART START [™] Solutions for Your Success [™] SPM [®] STEALTH [™] SuperSOT [™] -3 SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -8 SuperSOT [™] -8 SuprET [®] Sync-Lock [™] [®] *	The Power Franchise [®] TinyBoost [™] TinyBuck [™] TinyCalc [™] TinyCogic [®] TINYOPTO [™] TinyPOwer [™] TinyPWM [™] TinyPWM [™] TinyPWM [™] TinyPWM [™] TinyPWM [™] TinyPWM [™] UNCOURENT [®] WFODES [™] WFODES [™] Ultra FRFET [™] VisualMax [™] VoltagePlus [™] XS [™]
---	--	---	--

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.