

EMC OPTIMIZED CAN TRANSCEIVER

Check for Samples: SN65HVD1050

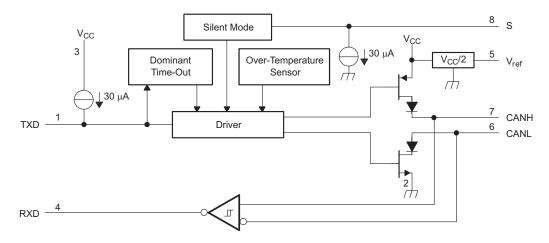
FEATURES

- Improved Replacement for the TJA1050
- High Electromagnetic Immunity (EMI)
- Very Low Electromagnetic Emissions (EME)
- Meets or Exceeds the Requirements of ISO 11898-2
- Bus-Fault Protection of –27 V to 40 V
- Dominant Time-Out Function
- Power-Up/Down Glitch-Free Bus Inputs and Outputs
 - High Input Impedance with Low V_{CC}
 - Monotonic Outputs During Power Cycling

APPLICATIONS

- Industrial Automation
 - DeviceNet[™] Data Buses (Vendor ID #806)
- SAE J2284 High Speed CAN for Automotive Applications
- SAE J1939 Standard Data Bus Interface
- ISO 11783 Standard Data Bus Interface
- NMEA 2000 Standard Data Bus Interface

DESCRIPTION


The SN65HVD1050 meets or exceeds the specifications of the ISO 11898 standard for use in applications employing a Controller Area Network (CAN).

As a CAN transceiver, this device provides differential transmit capability to the bus and differential receive capability to a CAN controller at signaling rates up to 1 megabit per second (Mbps)⁽¹⁾.

Designed for operation is especially harsh environments, the HVD1050 features cross-wire, over-voltage and loss of ground protection from -27 V to 40V, over-temperature shut down, a -12 V to 12 V common-mode range, and will withstand voltage transients from -200 V to 200 V according to ISO 7637.

(1) The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

FUNCTION BLOCK DIAGRAM

M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

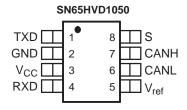
DeviceNet is a trademark of Open DeviceNet Vendors Association, Inc.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DESCRIPTION (CONTINUED)

Pin 8 provides for two different modes of operation: high-speed or silent mode. The high-speed mode of operation is selected by connecting S (pin 8) to ground.


If a high logic level is applied to the S pin of the SN65HVD1050, the device enters a listen-only silent mode during which the driver is switched off while the receiver remains fully functional.

In silent mode, all bus activity is passed by the receiver output to the local protocol controller. When data transmission is required, the local protocol controller reverses this low-current silent mode by placing a logic-low on the S pin to resume full operation.

A dominant-time-out circuit in the SN65HVD1050 prevents the driver from blocking network communication with a hardware or software failure. The time-out circuit is triggered by a falling edge on TXD (pin 1). If no rising edge is seen before the time-out constant of the circuit expires, the driver is disabled. The circuit is then reset by the next rising edge on TXD.

V_{ref} (pin 5) is available as a V_{CC}/2 voltage reference.

The SN65HVD1050 is characterized for operation from -40°C to 125°C.

Table 1. ORDERING INFORMATION

PART NUMBER	PACKAGE	MARKED AS	ORDERING NUMBER
CNICELIVIDADED	2010 0	\/D1050	SN65HVD1050D (rail)
SN65HVD1050	30IC-8	SOIC-8 VP1050 SN65HVD1050DR (re	

ABSOLUTE MAXIMUM RATINGS(1)

		UNIT
V_{CC}	Supply voltage (2)	−0.3 V to 7 V
	Voltage range at any bus terminal (CANH, CANL, V _{ref})	–27 V to 40 V
Io	Receiver output current	20 mA
V_{I}	Voltage input, transient pulse (3) (CANH, CANL)	-200 V to 200 V
V_{I}	Voltage input range (TXD, S)	-0.5 V to 6 V
T_{J}	Junction temperature	−55°C to 170°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Submit Documentation Feedback

⁽²⁾ All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

⁽³⁾ Tested in accordance with ISO 7637, test pulses 1, 2, 3a, 3b, 5, 6, and 7.

ELECTROSTATIC DISCHARGE PROTECTION(1)

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	VALUE
IEC Contact Discharge	IEC 61000-4-2	Bus terminals vs GND	±6 kV
Llumon Dady Madal	JEDEC Standard 22,	Bus terminals vs GND	±8 kV
Human Body Model	Test Method A114-C.01	All pins	±4 kV
Field-Induced-Charged Device Model	JEDEC Standard 22, Test Method C101	All pins	±1.5 kV
Machine Model	ANSI/ESDS5.2-1996		±200 V

⁽¹⁾ All typical values at 25°C.

RECOMMENDED OPERATING CONDITIONS

		·	MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		4.5		5.5	V
V _I or V _{IC}	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	(separately or common mode)	-12		12	V
V _{IH}	High-level input voltage	TVD C	2.1	5.5 5.5 2 12 1 V _{CC} 0 0.8 7 7 0 2 2 2 0 150	V	
V _{IL}	Low-level input voltage	TXD, S	0		0.8	V
V _{ID}	Differential input voltage	ge			7	V
	High-level output current	Driver	-70			- mA
ЮН		Receiver	-2			
	Landard and and	Driver			70	^
I _{OL}	Low-level output current	Receiver			V _{CC} 0.8 7 70 2	mA
T _J	Junction temperature	See Thermal Characteristics table, 1 Mbps minimum signaling rate with R $_{L}=54\Omega$	-40		150	°C
	Signaling Rate		20			kbps

SUPPLY CURRENT

over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
	CC 5-V Supply current Domin	Silent mode	S at V_{CC} , $V_I = V_{CC}$			6	10	
		Dominant V _I	$V_1 = 0 \text{ V. } 60 \Omega \text{ Load. S at } 0 \text{ V}$	4.75V < V _{CC} < 5.25V		50	70	
I _{CC}				4.5V < V _{CC} < 5.5V			75	mA
		Recessive	V _I = V _{CC} , No Load, S at 0 V			6	10	

DEVICE SWITCHING CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	MIN	TYP MAX	UNIT
	Total loop delay, driver input to receiver output,		4.75V < V _{CC} < 5.25V	90	190	
^t d(LOOP1)	recessive to dominant	Figure 9, S at	4.5V < V _{CC} < 5.5V	85	195	
	Total loop delay, driver input to receiver output,	0V	4.75V < V _{CC} < 5.25V	90	190	ns
^t d(LOOP2)	dominant to recessive		4.5V < V _{CC} < 5.5V	85	195	

Copyright © 2005–2010, Texas Instruments Incorporated

Submit Documentation Feedback

DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditiions (unless otherwise noted)

	PARAMETER		TEST CO	NDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
		CANH		4.75V < V _{CC} < 5.25V	2.9	3.4	4.5	
\/	Due cutaut voltage (Deminent)	CANH	$V_I = 0 \text{ V}, \text{ S at } 0 \text{ V}, \text{ R}_L$	4.5V < V _{CC} < 5.5V	2.75		5.2	.,
$V_{O(D)}$	Bus output voltage (Dominant)	CANII	= 60 Ω, See Figure 1 and Figure 2	4.75V < V _{CC} < 5.25V	0.8		1.5	V
		CANL		4.5V < V _{CC} < 5.5V			1.6	
			V _I = 3 V, S at 0 V, R _L	4.75V < V _{CC} < 5.25V	2	2.3	3	
$V_{O(R)}$	Bus output voltage (Recessive)		= 60Ω , See Figure 1 and Figure 2	4.5V < V _{CC} < 5.5V	1.8		3	V
			$V_I = 0 \ V, \ R_L = 60 \ \Omega, \ S$	4.75V < V _{CC} < 5.25V	1.5		3	
V	Differential output voltage (Dominant)		at 0 V, See Figure 1, Figure 2, and Figure 3	4.5V < V _{CC} < 5.5V	1.4		3	V
$V_{OD(D)}$	Differential output voltage (Doil	iii iai ii)	$V_I = 0 \text{ V}, R_L = 45 \Omega, S$ at 0 V, See Figure 1,	4.75V < V _{CC} < 5.25V	1.4		3	
				4.5V < V _{CC} < 5.5V	1.3		3	V
V	Differential output valtege (Dec	Differential output voltage (Recessive)		Figure 1 and Figure 2	-0.012		0.012	V
$V_{OD(R)}$	bilierential output voltage (Recessive)		$V_I = 3 V$, S at 0 V, No I	V _I = 3 V, S at 0 V, No Load			0.05	V
V	Steady state common-mode ou	tput		4.75V < V _{CC} < 5.25V	2	2.3	3	1/
V _{OC(ss)}	voltage		S at 0 V, Figure 8	4.5V < V _{CC} < 5.5V	1.9		3	V
$\Delta V_{OC(ss)}$	Change in steady-state commo output voltage	n-mode	o at o 1, 1 iguilo o			30		mV
I _{IH}	High-level input current, TXD in	put	V _I at V _{CC}	1	-2		2	
I _{IL}	Low-level input current, TXD inp	out	V _I at 0 V		-50		-10	μΑ
I _{O(off)}	Power-off TXD output current		V _{CC} at 0 V, TXD at 5 V				1	
			V _{CANH} = -12 V, CANL (Open, See Figure 11	-105	-72		mA
	Chart singuit stands, state and a		V _{CANH} = 12 V, CANL C	pen, SeeFigure 11		0.36	1	
I _{OS(ss)}	Short-circuit steady-state outpu	current	V _{CANL} = -12 V, CANH (Open, See Figure 11	-1	-0.5		
				V _{CANL} = 12 V, CANH Open, See Figure 11		71	105	
Co	Output capacitance		See receiver input capa	acitance				

⁽¹⁾ All typical values are at 25°C with a 5-V supply.

DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TE	ST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output			25	65	120	
t _{PHL}	Propagation delay time, high-to-low-level output	S at 0 V, See Figure 4	Figure 4	25	45	90	
t _r	Differential output signal rise time	S at 0 V, See Figure 4			25		ns
t _f	Differential output signal fall time				50		
t _{en}	Enable time from silent mode to dominant	See Figure 7	See Figure 7			1	μS
	Dominant time-out	↓V _I , See	4.75V < V _{CC} < 5.25V	300	450	700	μЅ
t _(dom)	Dominant time-out	Figure 10	$4.5V < V_{CC} < 5.5V$	280		90	

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST (CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V_{IT+}	Positive-going input threshold voltage	C at 0 V Can Tab	lo 4		800	900	
V _{IT} _	Negative-going input threshold voltage	S at 0 V, See Tab	S at 0 V, See Table 4		650		mV
V _{hys}	Hysteresis voltage (V _{IT+} – V _{IT-})			100	125		
V	I limb level autout valtage	$I_{O} = -2$ mA, See	4.75V < V _{CC} < 5.25V	4	4.6		
V _{OH}	High-level output voltage	Figure 6	4.5V < V _{CC} < 5.5V	3.8			V
V _{OL}	Low-level output voltage	I _O = 2 mA, See Fi	I _O = 2 mA, See Figure 6		0.2	0.4	V
I _{I(off)}	Power-off bus input current	Other pin at 0 V,	CANH or CANL = 5 V, Other pin at 0 V, V _{CC} at 0 V, TXD at 0 V		165	250	μΑ
I _{O(off)}	Power-off RXD leakage current	V _{CC} at 0 V, RXD a	at 5 V			20	μА
C _I	Input capacitance to ground, (CANH or CANL)	TXD at 3 V, V _I = 0.4 sin (4E6π	t) + 2.5 V		13		pF
C _{ID}	Differential input capacitance	TXD at 3 V, $V_I = 0$	0.4 sin (4E6πt)		5		
R _{ID}	Differential input resistance	TVD -+ 2 V C -+ 0	N/	30		80	1.0
R _{IN}	Input resistance, (CANH or CANL)	IAD at 3 V, S at 0	TXD at 3 V, S at 0 V		30	40	kΩ
R _{I(m)}	Input resistance matching [1 – (R _{IN (CANH)}) / R _{IN (CANL)})] x 100%	$V_{(CANH)} = V_{(CANL)}$		-3%	0%	3%	

⁽¹⁾ All typical values are at 25°C with a 5-V supply.

RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output		4.75V < V _{CC} < 5.25V	60	100	130	
			4.5V < V _{CC} < 5.5V	60		135	
t _{PHL}	Propagation delay time, high-to-low-level output	S at 0 V or V _{CC} , See	4.75V < V _{CC} < 5.25V	45	70	90	
		Figure 6	$4.5V < V_{CC} < 5.5V$	45		95	ns
t _r	Output signal rise time				8		
t _f	Output signal fall time				8		

S-PIN CHARACTERISTICS

over recommended operating conditiions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I_{IH}	High level input current	S at 2 V	20	40	70	^
$I_{\rm IL}$	Low level input current	S at 0.8 V	5	20	30	μΑ

VREF-PIN CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Vo	Reference output voltage	–50 μA < I _O < 50 μA	0.4 V _{CC}	0.5 V _{CC}	0.6 V _{CC}	V

Copyright © 2005–2010, Texas Instruments Incorporated

THERMAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
0	Junction-to-Air	Low-K thermal resistance ⁽¹⁾	211		
θ_{JA}	Junction-to-All	High-K thermal resistance	131		
θ_{JB}	Junction-to-Board Thermal Resistance		53		°C/W
θ_{JC}	Junction-to-Case Thermal Resistance		79		
P _D	Average power dissipation	V_{CC} = 5.0 V, T_j = 27°C, R_L = 60 Ω , S at 0 V, Input to TXD a 500 kHz, 50% duty cycle square wave. CL at RXD = 15 pF	112		mW
		V_{CC} = 5.5 V, T_{j} = 130°C, R_{L} = 45 $\Omega,$ S at 0 V, Input to TXD a 500 kHz, 50% duty cycle square wave. CL at RXD = 15 pF		170	
T _{J_shutdown}	Junction temperature, thermal shutdown ⁽²⁾		190		°C

- Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface-mount packages. Extended operation in thermal shutdown may affect device reliability, see APPLICATIONS INFORMATION.

FUNCTION TABLES

Table 2. DRIVER

INP	UTS	OUTI	BUS STATE	
TXD ⁽¹⁾	S ⁽¹⁾	CANH ⁽¹⁾	CANL ⁽¹⁾	
L	L or Open	Н	L	DOMINANT
Н	X	Z	Z	RECESSIVE
Open	X	Z	Z	RECESSIVE
X	Н	Z	Z	RECESSIVE

(1) H = high level; L = low level; X = irrelevant; ? = indeterminate; Z = high impedance

Table 3. RECEIVER

DIFFERENTIAL INPUTS V _{ID} = V(CANH) - V(CANL)	OUTPUT RXD ⁽¹⁾	BUS STATE
V _{ID} ≥ 0.9 V	L	DOMINANT
$0.5 \text{ V} < \text{V}_{\text{ID}} < 0.9 \text{ V}$?	?
V _{ID} ≤ 0.5 V	Н	RECESSIVE
Open	Н	RECESSIVE

(1) H = high level; L = low level; X = irrelevant; ? = indeterminate; Z = high impedance

Submit Documentation Feedback

PARAMETER MEASUREMENT INFORMATION

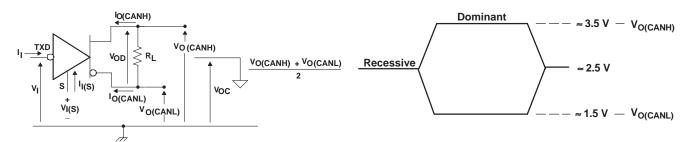


Figure 1. Driver Voltage, Current, and Test Definition

Figure 2. Bus Logic State Voltage Definitions

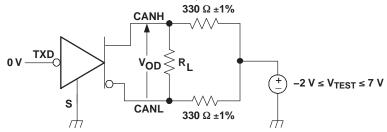


Figure 3. Driver V_{OD} Test Circuit

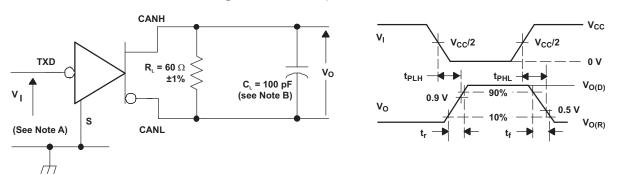


Figure 4. Driver Test Circuit and Voltage Waveforms

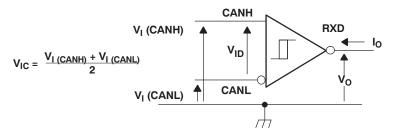
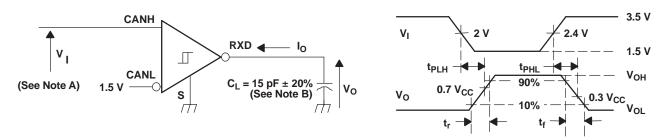
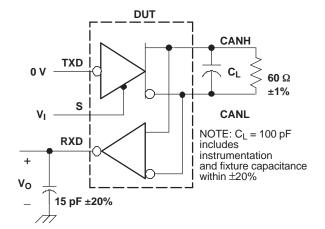



Figure 5. Receiver Voltage and Current Definitions

PARAMETER MEASUREMENT INFORMATION (continued)



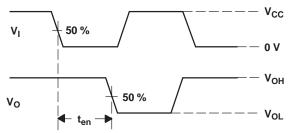
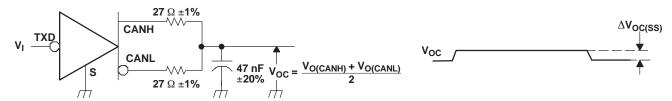

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 125 kHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 6ns, $Z_O =$ 50 Ω .
- B. C_L includes instrumentation and fixture capacitance within ±20%.

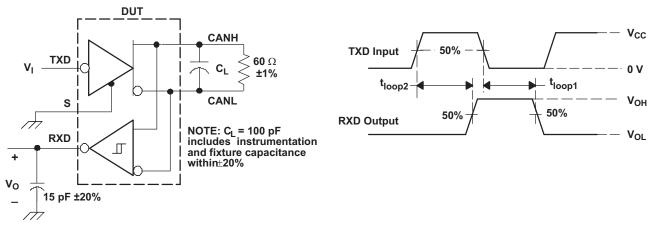
Figure 6. Receiver Test Circuit and Voltage Waveforms

Table 4. Differential Input Voltage Threshold Test

	INPUT			OUTPUT	
V _{CANH}	V _{CANL}	V _{ID}	R		
–11.1 V	–12 V	900 mV	L	V _{OL}	
12 V	11.1 V	900 mV	L		
-6 V	-12 V	6 V	L		
12 V	6 V	6 V	L		
–11.5 V	-12 V	500 mV	Н	V _{OH}	
12 V	11.5 V	500 mV	Н		
-12 V	-6 V	6 V	Н		
6 V	12 V	6 V	Н		
Open	Open	X	Н		



NOTE: All V_I input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 6$ ns, Pulse Repetition Rate (PRR) = 25 kHz, 50% duty cycle


Figure 7. t_{en} Test Circuit and Waveform

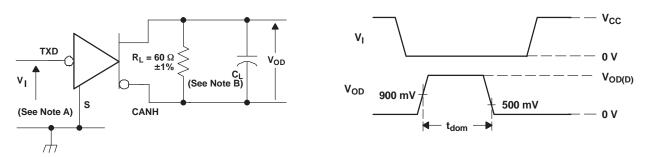

NOTE: All V_1 input pulses are from 0 V to V_{CC} and supplied by a generator having the following characteristics: t_f or $t_f \le 6$ ns. Pulse Repetition Rate (PRR) = 125 kHz, 50% duty cycle.

Figure 8. Common Mode Output Voltage Test and Waveforms

All V_I input pulses are from 0 V to V_{CC} and supplied by a generator having the following characteristics: t_f or $t_f \le 6$ ns. Pulse Repetition Rate (PRR) = 125 kHz, 50% duty cycle.

Figure 9. $t_{(LOOP)}$ Test Circuit and Waveform

- All V_I input pulses are from 0 V to V_{CC} and supplied by a generator having the following characteristics: t_r or $t_f \le 6$ ns. Pulse Repetition Rate (PRR) = 500 Hz, 50% duty cycle.
- C_L = 100 pF includes instrumentation and fixture capacitance within ±20%.

Figure 10. Dominant Time-Out Test Circuit and Waveforms

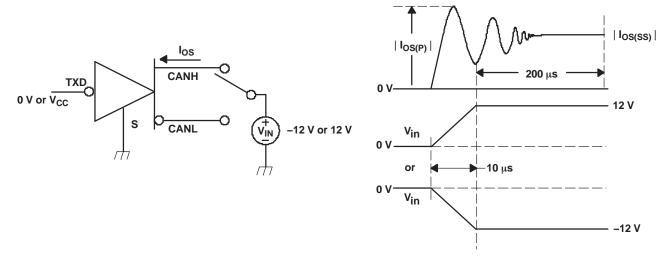
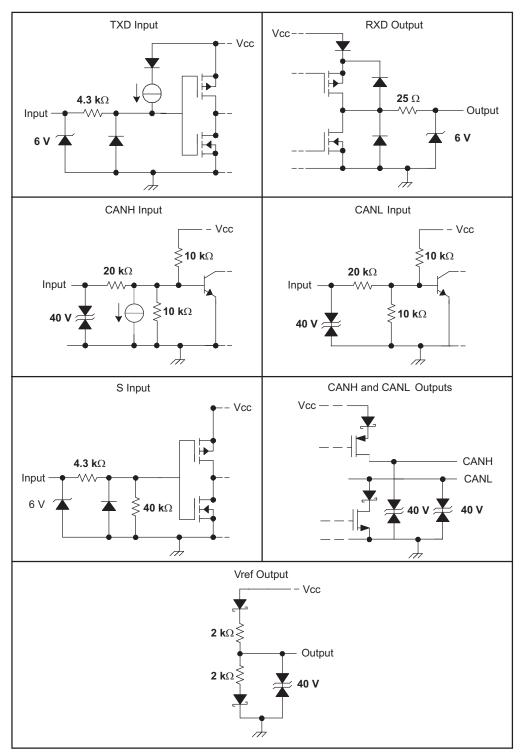


Figure 11. Driver Short-Circuit Current Test and Waveform

DEVICE INFORMATION


Table 5. Parametric Cross Reference With the TJA1050

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccc} I_{O(SC)} & Short-circuit output current & Driver I_{OS(SS)} \\ V_{O(dom)} & Dominant output voltage & Driver V_{O(D)} \\ V_{i(dif)(th)} & Differential input voltage & Receiver V_{IT} and recommended T_{O(SC)} \\ \end{array}$	
$\begin{array}{ccc} V_{O(dom)} & \text{Dominant output voltage} & \text{Driver V}_{O(D)} \\ V_{i(dif)(th)} & \text{Differential input voltage} & \text{Receiver V}_{IT} \text{ and recommended} \end{array}$	
$V_{i(dif)(th)}$ Differential input voltage Receiver V_{IT} and recommended	J
\(\frac{1}{2}\)	
M. Differential insert heart area in	V_{ID}
$V_{i(dif)(hys)}$ Diffrential input hysteresis Receiver V_{hys}	
$V_{O(reces)}$ Recessive output voltage Driver $V_{O(R)}$	
$V_{O(dif)(bus)}$ Differential bus voltage Driver $V_{OD(D)}$ and $V_{OD(R)}$	
$R_{i(cm)}$ CANH, CANL input resistance Receiver R_{IN}	
$R_{i(dif)}$ Differential input resistance Receiver R_{ID}	
$R_{i(cm)\ (m)}$ Input resistance matching Receiver $R_{i\ (m)}$	
C _i Input capacitance to ground Receiver C _I	
$C_{i(dif)}$ Differential input capacitance Receiver C_{ID}	
RECEIVER SECTION	
I _{OH} High-level output current Recommended I _{OH}	
I _{OL} Low-level output current Recommended I _{OL}	
Vref PIN SECTION	
V _{ref} Reference output voltage V _O	
TIMING SECTION	
$t_{d(TXD\text{-BUSon})}$ Delay TXD to bus active Driver t_{PLH}	
$t_{d(TXD\text{-BUSoff})}$ Delay TXD to bus inactive Driver t_{PHL}	
t _{d(BUSon-RXD)} Delay bus active to RXD Receiver t _{PHL}	
$t_{d(BUSoff\text{-RXD})}$ Delay bus inactive to RXD Receiver t_{PLH}	
$t_{d(TXD-BUSon)} + t_{d(BUSon-RXD)}$ Device t_{LOOP1}	
$t_{d(TXD-BUSoff)} + t_{d(BUSoff-RXD)}$ Device t_{LOOP2}	
$t_{dom(TXD)}$ Dominant time out Driver $t_{(dom)}$	
S PIN SECTION	
V_{IH} High-level input voltage Recommended V_{IH}	
V_{IL} Low-level input voltage Recommended V_{IL}	
I _{IH} High-level input current I _{IH}	
I _{IL} Low-level input current I _{IL}	

⁽¹⁾ From TJA1050 Product Specification, Philips Semiconductors, 2002 May 16.

Equivalent Input and Output Schematic Diagrams

TYPICAL CHARACTERISTICS

RECESSIVE-TO-DOMINANT LOOP TIME

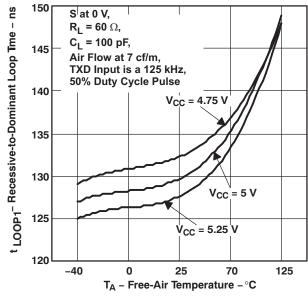


Figure 12.

SUPPLY CURRENT (RMS) vs SIGNALING RATE

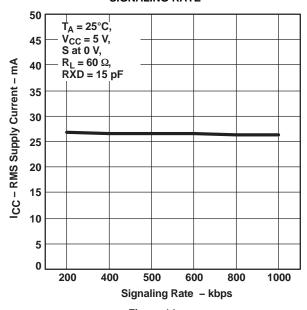


Figure 14.

DOMINANT-TO-RECESSIVE LOOP TIME vs FREE-AIR TEMPERATURE (across V_{CC})

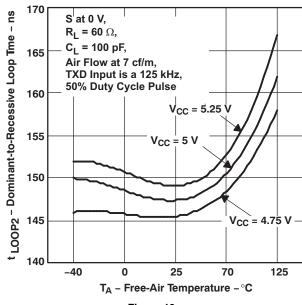


Figure 13.

DRIVER LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT

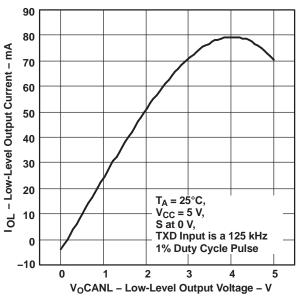


Figure 15.

TYPICAL CHARACTERISTICS (continued)

DRIVER HIGH-LEVEL OUTPUT VOLTAGE VS HIGH-LEVEL OUTPUT CURRENT -80 $T_A = 25 C$ V_{CC} = 5 V, S at 0 V, IOH - High-Level Output Current - mA -70 TXD Input is a 125 kHz 1% Duty Cycle Pulse -60 -50 -40 -30 -20 -10 -0 0 2 3 4 5

Figure 16.

VoCANH - High-Level Output Voltage - V

DRIVER OUTPUT CURRENT vs SUPPLY VOLTAGE

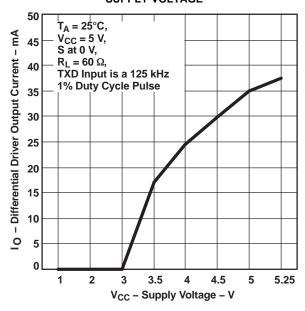
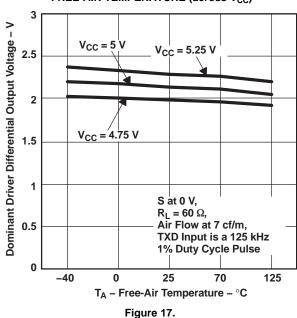



Figure 18.

DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE (across V_{CC})

RECEIVER OUTPUT VOLTAGE

vs DIFFERENTIAL INPUT VOLTAGE

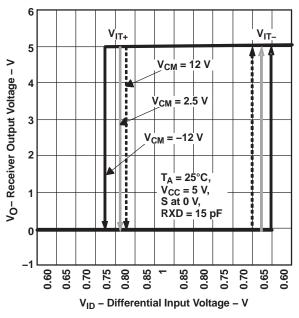


Figure 19.

TYPICAL CHARACTERISTICS (continued)

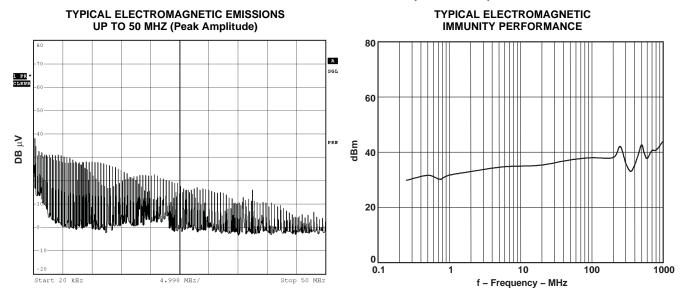


Figure 20. Frequency Spectrum of Common-Mode Emissions

Figure 21. Direct Power Injection (DPI) Response vs Frequency

APPLICATION INFORMATION

Thermal Shutdown

The SN65HVD1050 has a thermal shutdown feature that turns off the driver outputs when the junction temperature nears 190°C. This shutdown prevents catastrophic failure from bus shorts, but does not protect the circuit from possible damage. The user should strive to maintain recommended operating conditions and not exceed absolute-maximum ratings at all times. If an SN65HVD1050 is subjected to many, or long-duration faults that can put the device into thermal shutdown, it should be replaced.

Bus Loading

Q: How many HVD1050 nodes can be connected on a bus?

A: In the CAN standard ISO 11898-2 the driver differential output is specified with a 60Ω load (must be greater than 1.5V) and with a fully-loaded bus (must be greater than 1.2V). The HVD1050 is specified to meet the 1.5V requirement with a 60Ω load, and 1.4V with a 45Ω load. The differential input resistance of the HVD1050 is a minimum of $30k\Omega$. If 167 transceivers are in parallel on a bus, this is equivalent to a 180Ω differential load. That transceiver load of 180Ω in parallel with the 60Ω (two 120Ω termination resistors) gives a total 45Ω . Therefore, the HVD1050 supports over 167 transceivers on a single bus segment, with margin to the 1.2V CAN requirement.

Dominant Time-Out Feature

A dominant-time-out circuit in the SN65HVD1050 prevents the driver from blocking network communication in the event of a hardware or software failure of the local CAN controller. The time-out circuit is triggered by a falling edge on TXD (pin 1). If no rising edge is seen before the time-out constant of the circuit expires, the driver is disabled. The circuit is then reset by the next rising edge on TXD. This feature prevents a faulty local CAN controller from corrupting the entire network with a "stuck" dominant state. The dominant time-out timer is selected to pass all normal CAN messages; however, non-standard applications may inadvertently trigger the dominant time-out if long strings of dominant bits are attempted at slow data rates.

Submit Documentation Feedback

REVISION HISTORY

CI	nanges from Revision A (May 2007) to Revision B	Page
•	Deleted sentence, "The device is also qualified for use in ISO 11898-2 automotive applications in accordance with AEC-Q100." and footnote, "The device is available with Q100 qualification as the SN65HVD1050Q."	1
•	Changed V _{CC} min/max range from 4.75-5.25V to 4.5-5.5V	3
•	Changed V _{IH} max from 5.25V to 5.5V	3
•	Added rows for various parameters showing parameters with V _{CC} ±5% and ±10%	3
•	Added Signaling Rate spec, min 20kbps	3
•	Changed V _{IH} min from 2 to 2.1V	3
•	Changed Bus output voltage (Dominant) CANH 4.5V < V _{CC} < 5.5V from 4.75 to 5.2	4
•	Added Bus Loading application discussion.	16
•	Added Dominant Time-Out Feature discussion.	16

PACKAGE OPTION ADDENDUM

www.ti.com 2-Dec-2009

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN65HVD1050D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD1050DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD1050DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65HVD1050DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

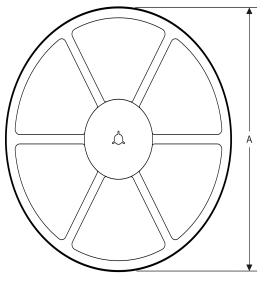
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN65HVD1050:

• Automotive: SN65HVD1050-Q1

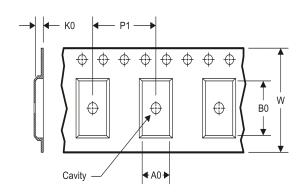
Enhanced Product: SN65HVD1050-EP

NOTE: Qualified Version Definitions:


- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

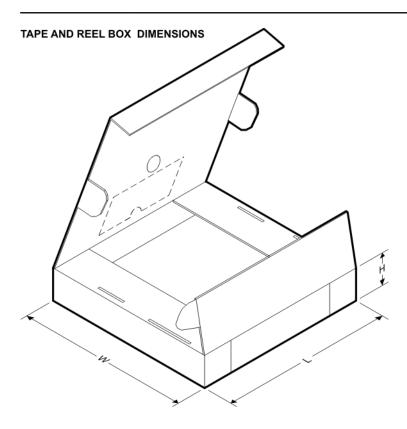
24-Mar-2012 www.ti.com


TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


TAPE AND REEL INFORMATION

*All dimensions are nominal

All difference are fremmal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65HVD1050DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65HVD1050DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

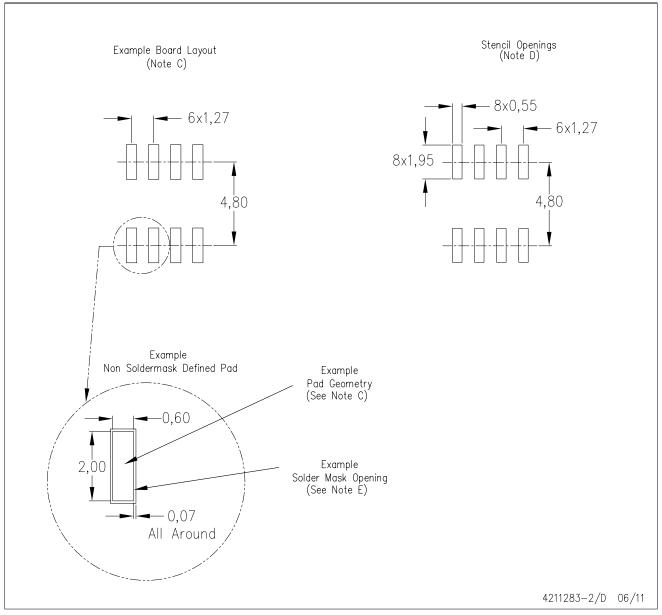
www.ti.com 24-Mar-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65HVD1050DR	SOIC	D	8	2500	346.0	346.0	29.0
SN65HVD1050DR	SOIC	D	8	2500	346.0	346.0	29.0

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Applications

Automotive and Transportation www.ti.com/automotive

e2e.ti.com

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

		•	
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Products

Audio

Wireless Connectivity www.ti.com/wirelessconnectivity

www.ti.com/audio

TI E2E Community Home Page

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated