# DS90C3201

DS90C3201 3.3V 8 MHz to 135 MHz Dual FPD-Link Transmitter



Literature Number: SNLS192C



September 18, 2008

# DS90C3201 3.3V 8 MHz to 135 MHz Dual FPD-Link Transmitter

## **General Description**

The DS90C3201 is a 3.3V single/dual FPD-Link 10-bit color transmitter is designed to be used in Liquid Crystal Display TVs, LCD Monitors, Digital TVs, and Plasma Display Panel TVs. The DS90C3201 is designed to interface between the digital video processor and the display device using the lowpower, low-EMI LVDS (Low Voltage Differential Signaling) interface. The DS90C3201 converts up to 70 bits of LVCMOS/ LVTTL data into ten LVDS data streams. The transmitter can be programmed clocking data with rising edge or falling edge clock. Optional two-wire serial programming allows fine tuning in development and production environments. At a transmitted clock frequency of 135 MHz, 70 bits of LVCMOS/ LVTTL data are transmitted at an effective rate of 945 Mbps per LVDS channel. Using a 135 MHz clock, the data throughput is 9.45Gbit/s (945Mbytes/s). This allows the dual 10-bit LVDS Transmitter to support HDTV resolutions.

## **Features**

- Up to 9.45Gbit/s data throughput
- 8 MHz to 135 MHz input clock support
- Supports up to QXGA panel resolutions
- Supports HDTV resolutions and frame rates up to 1920 x 1080p
- LVDS 30-bit, 24-bit or 18-bit color data outputs
- Supports single pixel and dual pixel interfaces
- Supports spread spectrum clocking
- Two-wire serial communication interface
- Programmable clock edge and control strobe select
- Power down mode
- +3.3V supply voltage
- 128-pin TQFP
- Compliant to TIA/EIA-644-A-2001 LVDS Standard

## **Block Diagram**

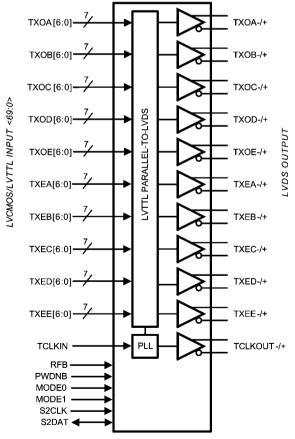



FIGURE 1. Transmitter Block Diagram

2014720

## **Typical Application Diagram**

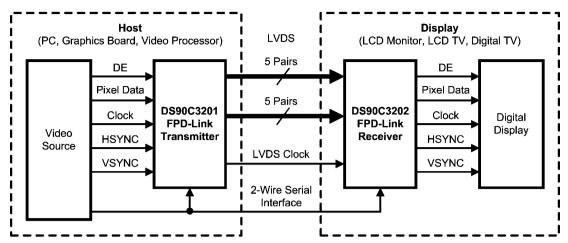



FIGURE 2. LCD Panel Application Diagram

20147202

## **Functional Description**

The DS90C3201 and DS90C3202 are a dual 10-bit color Transmitter and Receiver FPD-Link chipset designed to transmit data at clocks speeds from 8 to 135 MHz. DS90C3201 and DS90C3202 are designed to interface between the digital video processor and the display using a LVDS interface. The DS90C3201 transmitter serializes 2 channels of video data (10-bit each for RGB for each channel, totaling 60 bits) and control signals (HSYNC, VSYNC, DE and two user-defined signals) along with clock signal to 10 channels of LVDS signals and transmits them. The DS90C3202 receiver converts 10 channels of LVDS signals into parallel signals and outputs 2 channels of video data (10-bit each for RGB for each channel, totaling 60 bits) and control signals (HSYNC, VSYNC, DE and two user-defined signals) along with clock signal. The dual high speed LVDS channels supports single pixel in-single pixel out and dual pixel in-dual pixel out transmission modes. The FPD-Link chipset is suitable for a variety of display applications including LCD Monitors, LCD TV, Digital TV, and DLP TV, and Plasma Display Panels.

Using a true 10-bit color depth system, the 30-bit RGB color produces over 1.07 billion colors to represent High Definition (HD) displays in their most natural color, surpassing the maximum 16.7 million colors achieved by 6/8-bit color conventionally used for large-scale LCD televisions and LCD monitors.

#### **LVDS TRANSMITTER**

The LVDS Transmitter serializes LVCMOS/LVTTL RGB video data and control signal timing into LVDS data streams.

#### SINGLE PIXEL AND DUAL PIXEL INTERFACE

The DS90C3201 LVDS ports support two modes: Single Pixel mode (30-bit LVDS output) and Dual Pixel mode (2 x 30-bit LVDS output). For Single Pixel mode, the Odd LVDS ports for 10-bit RGB data are utilized. For the Dual Pixel mode, both Odd and Even LVDS ports are utilized for 10-bit RGB data.

#### **SELECTABLE INPUT DATA STROBE**

The Transmitter input data edge strobe can be latched on the rising or falling edges of input clock signal. The dedicated RFB pin is used to program input strobe select on the rising edge of TCLK IN or the falling edge of TCLK IN.

#### 2-WIRE SERIAL COMMUNICATION INTERFACE

Optional Two-wire serial interface programming allows fine tuning in development and production environments. The Two-wire serial interface provides several capabilities to reduce EMI and to customize output timing. These capabilities are selectable/programmable via Two-wire serial interface: Programmable LVDS Swing Control, Adjustable Input Setup/Hold Control, Input/Output Channel Control.

### PROGRAMMABLE LVDS SWING CONTROL

Programmable LVDS amplitude ( $V_{OD}$ ) and LVDS offset voltage ( $V_{OS}$ ) of the differential signals can be adjusted for better impedance matching for noise and EMI reduction. The low level LVDS swing mode and offset voltage can be controlled via Two-wire serial interface.

### ADJUSTABLE INPUT SETUP/HOLD CONTROL

Programmable LVCMOS/LVTTL Data Input Setup and Hold Times can be adjusted with respect to TCLK IN for convenient interface with a variety of graphic controllers and video processors. Feature is controlled via Two-wire serial interface.

### INPUT/OUTPUT CHANNEL CONTROL

Full independent control for input/output channels can be disabled to minimize power supply line noise and overall power dissipation. Feature is configured via Two-wire serial interface.

## **Absolute Maximum Ratings** (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V<sub>DD</sub>) -0.3V to +4VLVCMOS/LVTTL Input -0.3V to  $(V_{DD} + 0.3V)$ Voltage LVCMOS/LVTTL Output -0.3V to  $(V_{DD} + 0.3V)$ Voltage LVDS Output Voltage -0.3V to  $(V_{DD} + 0.3V)$ LVDS Short Circuit Duration Continuous Junction Temperature +150°C Storage Temperature -65°C to +150°C Lead Temperature (Soldering, 10 sec.) +260°C Maximum Package Power Dissipation Capacity @ 25°C 128 TQFP Package:

Package Derating: 25.6mW/°C above +25°C ESD Rating:

(HBM, 1.5kΩ, 100pF) > 2 kV(EIAJ, 0Ω, 200pF) > 200 V

# Recommended Operating Conditions

|                                          | Min  | Nom | Max      | Units      |
|------------------------------------------|------|-----|----------|------------|
| Supply Voltage (V <sub>DD</sub> )        | 3.15 | 3.3 | 3.6      | V          |
| Operating Free Air                       |      |     |          |            |
| Temperature (T <sub>A</sub> )            | 0    | +25 | +70      | °C         |
| Supply Noise Voltage (V <sub>P-P</sub> ) |      |     | ±100     | $mV_{P-P}$ |
| Transmitter Input Range                  | 0    |     | $V_{DD}$ | V          |
| Input Clock Frequency (f)                | 8    |     | 135      | MHz        |
| TCLKIN Period (T <sub>CIP</sub> )        | 7.4  |     | 125      | ns         |

## Electrical Characteristics (Notes 2, 3, 5)

Over recommended operating supply and temperature ranges unless otherwise specified.

| Symbol           | l Parameter                                                   | Conditions                                                                                                 | Min      | Тур  | Max      | Units |
|------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------|------|----------|-------|
| LVCMOS           | S/LVTTL DC SPECIFICATIONS (Tx                                 | inputs, control inputs)                                                                                    |          |      |          |       |
| V <sub>IH</sub>  | High Level Input Voltage                                      |                                                                                                            | 2.0      |      | $V_{DD}$ | V     |
| V <sub>IL</sub>  | Low Level Input Voltage                                       |                                                                                                            | 0        |      | 0.8      | V     |
| V <sub>CL</sub>  | Input Clamp Voltage                                           | I <sub>CL</sub> = -18mA                                                                                    |          | -0.8 | -1.5     | V     |
| I <sub>IN</sub>  | Input Current                                                 | $0V \le V_{IN} \le V_{DD}$                                                                                 |          |      | +10      | μA    |
|                  |                                                               | $V_{IN} = 0V$                                                                                              | -10      | 0    |          | μA    |
| LVDS TR          | ANSMITTER DC SPECIFICATIONS                                   | 6                                                                                                          | <u>'</u> |      |          | ,     |
| V <sub>OD</sub>  | Differential Output Voltage<br>(Programmable register)        | $R_L$ = 100 $\Omega$ , Register addr 28d/1ch<br>bit [5] (TXE) = 0b,<br>bit [4] (TXO) = 0b (Default)        | 200      | 400  | 620      | mV    |
|                  |                                                               | $R_L$ = 100 $\Omega$ , Register addr 28d/1ch<br>bit [5] (TXE) = 1b,<br>bit [4] (TXO) = 1b                  | 100      | 250  | 400      | mV    |
| $\Delta V_{OD}$  | Change in V <sub>OD</sub> between complimentary output states | $R_L = 100\Omega$                                                                                          |          |      | 50       | mV    |
| V <sub>OS</sub>  | Offset Voltage (Programmable register)                        | $R_L$ = 100 $\Omega$ , Register addr 28d/1ch<br>bit [3:2] (TXE) = 00b,<br>bit [1:0] (TXO) = 00b, (Default) | 1.0      | 1.2  | 1.5      | V     |
|                  |                                                               | $R_L = 100\Omega$ , Register addr 28d/1ch<br>bit [3:2] (TXE) = 01b,<br>bit [1:0] (TXO) = 01b               | 0.8      | 1.0  | 1.2      | V     |
|                  |                                                               | $R_L$ = 100 $\Omega$ , Register addr 28d/1ch<br>bit [3:2] (TXE) = 10b,<br>bit [1:0] (TXO) = 10b            | 0.6      | 0.8  | 1.0      | V     |
| ΔV <sub>OS</sub> | Change in V <sub>OS</sub> between complimentary output states |                                                                                                            |          |      | 50       | mV    |
| I <sub>os</sub>  | Output Short Circuit Current                                  | V <sub>OUT</sub> = 0V                                                                                      |          |      | -50      | mA    |

| Symbol   | Parameter                                        | Condi                                                                       | Conditions  |    |     | Max | Units |
|----------|--------------------------------------------------|-----------------------------------------------------------------------------|-------------|----|-----|-----|-------|
| TRANSMIT | TTER SUPPLY CURRENT                              |                                                                             |             |    |     |     | 2     |
| ICCTW    | Transmitter Supply Current                       | $R_L = 100\Omega$                                                           | f = 8 MHz   | 20 | 60  | 95  | mA    |
|          | Worst Case<br>(Figures 2, 4) (Note 8)            | C <sub>L</sub> = 5pF,<br>Worst Case Pattern<br>Default Register<br>Settings | f = 135 MHz | 65 | 150 | 235 | mA    |
| ICCTG    | Transmitter Supply Current                       | $R_L = 100\Omega$                                                           | f = 8 MHz   | 15 | 55  | 90  | mA    |
|          | Incremental Test Pattern (Figures 3, 4) (Note 9) | C <sub>L</sub> = 5pF,<br>Worst Case Pattern<br>Default Register<br>Settings | f = 135 MHz | 40 | 110 | 175 | mA    |
| ICCTZ    | Transmitter Supply Current                       | PDWNB = Low                                                                 | •           |    |     | 2   | mA    |
|          | Power Down                                       | $R_L = 100\Omega$ , $C_L = 5pF$ , Default Register Setti                    |             |    |     |     |       |

**Note 1:** "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

## **Recommended Transmitter Input Characteristics**

Over recommended operating supply and temperature ranges unless otherwise specified.

| Symbol              | Parameter                          | Min                  | Тур                  | Max                  | Units |
|---------------------|------------------------------------|----------------------|----------------------|----------------------|-------|
| T <sub>CIT</sub>    | TCLK IN Transition Time (Figure 6) |                      |                      | (Note 4)             | ns    |
| T <sub>CIP</sub>    | TCLK IN Period (Figure 7)          | 7.4                  | Т                    | 125.0                | ns    |
| T <sub>CIH</sub>    | TCLK IN High Time (Figure 7)       | 0.30T <sub>CIP</sub> | 0.50T <sub>CIP</sub> | 0.70T <sub>CIP</sub> | ns    |
| T <sub>CIL</sub>    | TCLK IN Low Time (Figure 7)        | 0.30T <sub>CIP</sub> | 0.50T <sub>CIP</sub> | 0.70T <sub>CIP</sub> | ns    |
| T <sub>XIT</sub>    | TxIN Transition Time               | (Note 4)             |                      | (Note 4)             | ns    |
| TJIT <sub>RMS</sub> | TCLK IN Jitter (RMS)               |                      | ±200                 |                      | ps    |

Note 4: Less than 5ns or 30% of TCIP, which ever is less.

Note 2: Typical values are given for  $V_{DD}$  = 3.3V and T  $_{A}$  = +25°C.

Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise specified.

## **Transmitter Switching Characteristics**

Over recommended operating supply and temperature ranges unless otherwise specified.

| Symbol       | Parameter                                                                     |                                  | Min        | Тур       | Max         | Units       |
|--------------|-------------------------------------------------------------------------------|----------------------------------|------------|-----------|-------------|-------------|
| LLHT         | LVDS Low-to-High Transition Time (Figu                                        | re 5)                            |            | 0.6       | 1.5         | ns          |
| LHLT         | LVDS High-to-Low Transition Time (Figu                                        | re 5)                            |            | 0.6       | 1.5         | ns          |
| TPPos1       | Transmitter Output Pulse Position for bit                                     | -0.2                             | 0          | +0.2      | UI (Note 7) |             |
| TPPos0       | Transmitter Output Pulse Position for bit                                     | 0 (2nd bit) ( <i>Figure 13</i> ) | 1 UI – 0.2 | 1         | 1 UI + 0.2  | UI (Note 7) |
| TPPos6       | Transmitter Output Pulse Position for bit                                     | 6 (3rd bit) ( <i>Figure 13</i> ) | 2 UI – 0.2 | 2         | 2 UI + 0.2  | UI (Note 7) |
| TPPos5       | Transmitter Output Pulse Position for bit                                     | 5 (4th bit) ( <i>Figure 13</i> ) | 3 UI – 0.2 | 3         | 3 UI + 0.2  | UI (Note 7) |
| TPPos4       | Transmitter Output Pulse Position for bit                                     | 4 (5th bit) ( <i>Figure 13</i> ) | 4 UI – 0.2 | 4         | 4 UI + 0.2  | UI (Note 7) |
| TPPos3       | Transmitter Output Pulse Position for bit                                     | 3 (6th bit) ( <i>Figure 13</i> ) | 5 UI – 0.2 | 5         | 5 UI + 0.2  | UI (Note 7) |
| TPPos2       | Transmitter Output Pulse Position for bit                                     | 2 (7th bit) ( <i>Figure 13</i> ) | 6 UI – 0.2 | 6         | 6 UI + 0.2  | UI (Note 7) |
| TSTC         | Required TxIN Setup to TCLK IN (Figure                                        | 7)                               | 1.5        | 0.69      |             | ns          |
|              | Register addr 26d/19h bit [2:0] = 000b (D                                     | efault)                          |            |           |             |             |
| THTC         | Required TxIN Hold to TCLK IN (Figure 2                                       | 7)                               | 1.5        | 0.70      |             | ns          |
|              | Register addr 26d/19h bit [2:0] = 000b (D                                     | efault)                          |            |           |             |             |
| TSTC/THTC    | Register addr 26d/19h bit [2:0] = 001b (F                                     | igure 12)                        |            | 0.5/      |             | ns          |
| Programmable | Decrease TSTC ~400ps from Default;                                            |                                  |            | 1.0       |             |             |
| adjustment   | Increase THTC ~400ps from Default                                             |                                  |            |           |             |             |
|              | Register addr 26d/19h bit [2:0] = 010b,                                       |                                  | 0/         |           | ns          |             |
|              | Decrease TSTC ~800ps from default;                                            |                                  | 1.5        |           |             |             |
|              | Increase THTC ~800ps from Default                                             |                                  |            |           |             |             |
|              | Register addr 26d/19h bit [2:0] = 011b,                                       |                                  | -0.5/      |           | ns          |             |
|              | Decrease TSTC ~1200ps from Default;<br>Increase THTC ~1200ps from Default     |                                  | 2.0        |           |             |             |
|              | <u>'</u>                                                                      |                                  |            | 1.5/      |             | no          |
|              | Register addr 26d/19h bit [2:0] = 111b,<br>Increase TSTC ~800ps from Default; |                                  |            | 1.5/<br>0 |             | ns          |
|              | Decrease THTC ~800ps from Default                                             |                                  |            | O         |             |             |
|              | Register addr 26d/19h bit [2:0] = 110b,                                       |                                  |            | 1.4/      |             | ns          |
|              | Increase TSTC ~600ps from Default;                                            |                                  |            | 0         |             | 1.0         |
|              | Decrease THTC ~600ps from Default                                             |                                  |            |           |             |             |
|              | Register addr 26d/19h bit [2:0] = 101b,                                       |                                  |            | 1.1/      |             | ns          |
|              | Increase TSTC ~400ps from Default;                                            |                                  |            | 0.3       |             |             |
|              | Decrease THTC ~400ps from Default                                             |                                  |            |           |             |             |
|              | Register addr 26d/19h bit [2:0] = 100b,                                       |                                  |            | 0.9/      |             | ns          |
|              | Increase TSTC ~200ps from Default;                                            |                                  |            | 0.5       |             |             |
|              | Decrease THTC ~200ps from Default                                             |                                  |            |           |             |             |
| TCCD         | Transmitter TCLKIN (LVTTL) to                                                 | f = 135 MHz                      | 10         |           | 20          | ns          |
|              | CLKOUT (LVDS) Latency                                                         | f = 85 MHz (Note 6)              | 20         |           | 30          | ns          |
|              | (Figure 7) (Note 11)                                                          | f = 65 MHz (Note 6)              | 25         |           | 40          | ns          |
|              |                                                                               | f = 40 MHz (Note 6)              | 40         |           | 50          | ns          |
|              |                                                                               | f = 25 MHz (Note 6)              | 60         |           | 70          | ns          |
|              |                                                                               | f = 8 MHz                        | 180        |           | 200         | ns          |
| TPPLS        | Transmitter Phase Lock Loop Set (Figure                                       | e <i>8</i> )                     |            |           | 10          | ms          |
| TPDD         | Transmitter Powerdown Delay (Figure 9)                                        |                                  |            |           | 100         | ns          |

**Note 5:** The Minimum and Maximum Limits are based on statistical analysis of the device performance over process, voltage and temperature ranges. This parameter is functional tested only on Automatic Test Equipment (ATE).

Note 6: Specification is guaranteed by characterization.

Note 7: A Unit Interval (UI) is defined as 1/7th of an ideal clock period (TCIP/7). E.g. For an 11.76ns clock period (85MHz), 1 UI = 1.68ns (Figure 11)

Note 8: The worst case test pattern produces a maximum toggling of digital circuits, LVDS I/O and LVCMOS/LVTTL I/O.

Note 9: The incremental test pattern tests device power consumption for a "typical" LCD display pattern.

Note 10: Figures 2, 4, 7 show a falling edge data strobe (TCLK IN).

Note 11: The typical transmitter TCCD latency is: 1.786\*T + 4.19 ns - 2 UI, where T = TCLK IN period.

## **Two-Wire Serial Communication Interface**

Over recommended operating supply and temperature ranges unless otherwise specified.

| Symbol          | Parameter                     | Conditions                          | Min | Тур | Max | Units |
|-----------------|-------------------------------|-------------------------------------|-----|-----|-----|-------|
| f <sub>SC</sub> | S2CLK Clock Frequency         |                                     |     |     | 400 | kHz   |
| SC:LOW          | Clock Low Period              | $R_P = 4.7 K\Omega$ , $C_L = 50 pF$ | 1.5 |     |     | us    |
| SC:HIGH         | Clock High Period             | $R_P = 4.7K\Omega$ , $C_L = 50pF$   | 0.6 |     |     | us    |
| SCD:TR          | S2CLK and S2DAT Rise Time     | $R_P = 4.7K\Omega$ , $C_L = 50pF$   |     |     | 0.3 | us    |
| SCD:TF          | S2CLK and S2DAT Fall Time     | $R_P = 4.7K\Omega$ , $C_L = 50pF$   |     |     | 0.3 | us    |
| SU:STA          | Start Condition Setup Time    | $R_P = 4.7K\Omega$ , $C_L = 50pF$   | 0.6 |     |     | us    |
| HD:STA          | Start Condition Hold Time     | $R_P = 4.7K\Omega$ , $C_L = 50pF$   | 0.6 |     |     | us    |
| HD:STO          | Stop Condition Hold Time      | $R_P = 4.7K\Omega$ , $C_L = 50pF$   | 0.6 |     |     | us    |
| SC:SD           | Clock Falling Edge to Data    | $R_P = 4.7K\Omega$ , $C_L = 50pF$   | 0   |     |     | us    |
| SD:SC           | Data to Clock Rising Edge     | $R_P = 4.7K\Omega$ , $C_L = 50pF$   | 0.1 |     |     | us    |
| SCL:SD          | S2CLK Low to S2DAT Data Valid | $R_P = 4.7K\Omega$ , $C_L = 50pF$   | 0.1 |     | 0.9 | us    |
| BUF             | Bus Free Time                 | $R_P = 4.7K\Omega$ , $C_L = 50pF$   | 13  |     |     | us    |

## **AC Timing Diagrams**

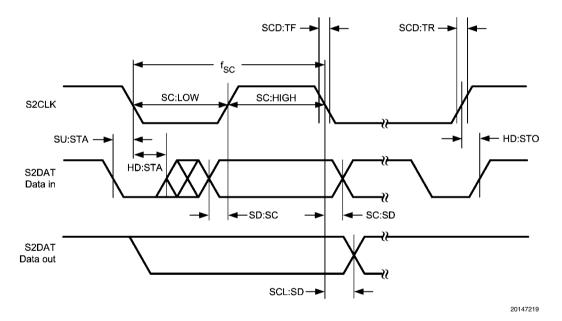



FIGURE 1. Two-Wire Serial Communication Interface Timing Diagram

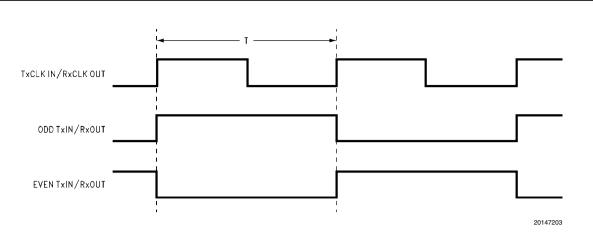
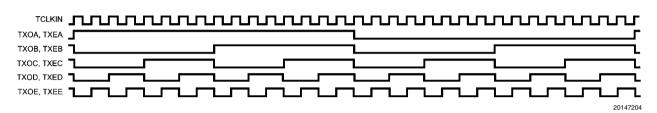




FIGURE 2. "Worst Case" Test Pattern



**FIGURE 3. Incremental Test Pattern** 

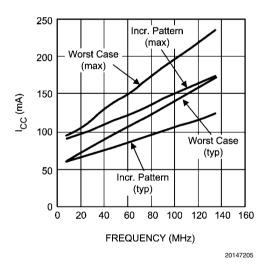
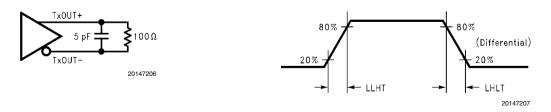
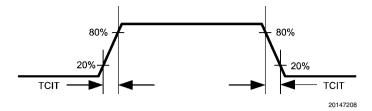





FIGURE 4. Typical and Max ICC with Worst Case and Incremental Test Pattern



**FIGURE 5. LVDS Transition Times** 



**FIGURE 6. Input Clock Transition Time** 

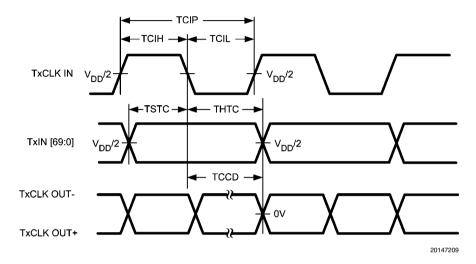



FIGURE 7. Input Setup/Hold Time, High/Low Time, and Clock In to Clock Out Latency

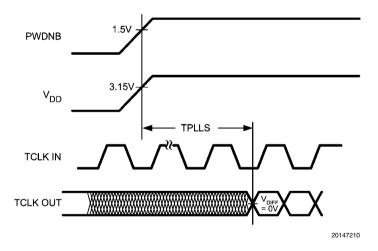



FIGURE 8. Phase Lock Loop Set Time

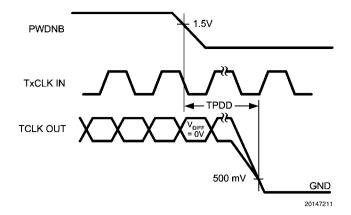



FIGURE 9. Transmitter Powerdown Delay

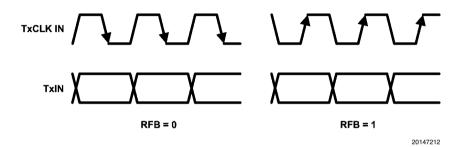



FIGURE 10. LVTLL Input Programmable Strobe Select

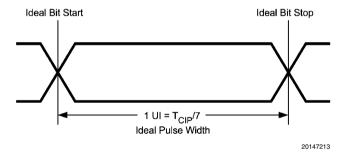



FIGURE 11. Serializer Ideal Pulse Width

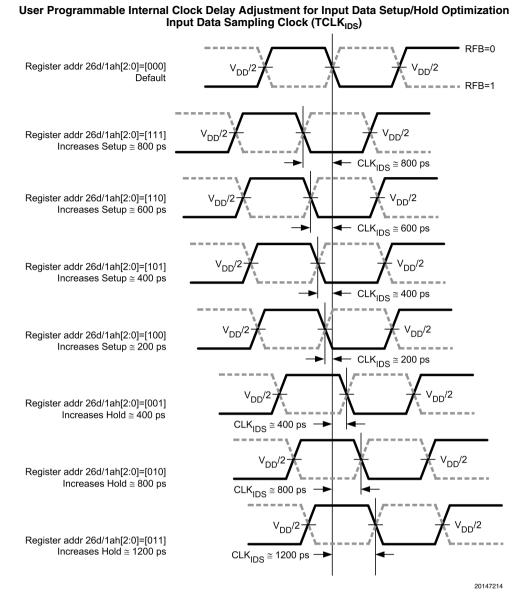



FIGURE 12. Input Data Sampling Clock

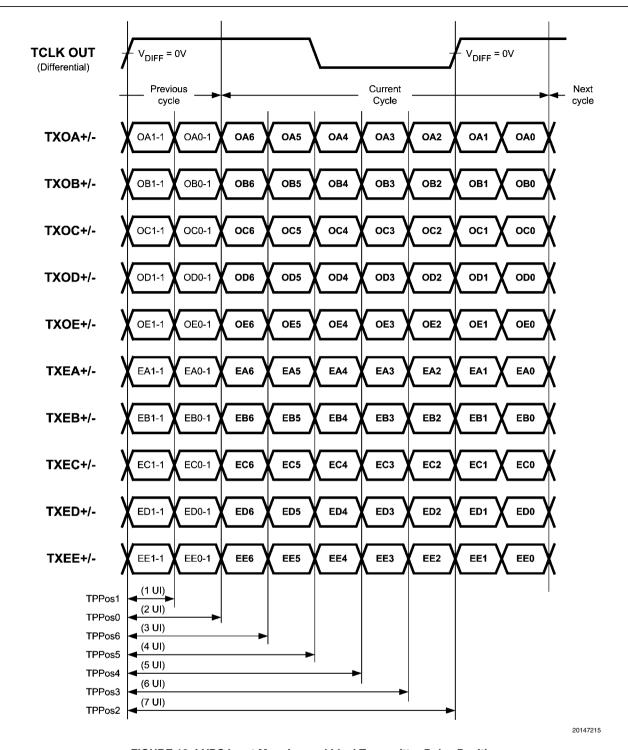



FIGURE 13. LVDS Input Mapping and Ideal Transmitter Pulse Position

11

#### **Pin Diagram** DS90C3201 Transmitter TXOC3 TXOD6 TXOD0 TX0E5 TXOB1 TXOC4 VDDT1 TXOD3 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 TXOB5 -64 - RESRVD MODE1 TXOB6 -98 63 TXOA0 -99 62 - VSSL TXOA1 -100 61 - VDDL TXOA2 -101 60 TXOA-TXOA3 102 59 - TXOA+ **–** тхов-TXOA4 — 103 58 TXOA5 - 104 57 TXOB+ TXOA6 - 105 56 - TXOC-VDDT2 → 106 - TXOC+ VDDT3 - 107 - TXOD-54 - TXOD+ VSST2 **→** 108 53 - TXOE-VSST3 -109 52 TXEE0 -1**1**0 51 TXOE+ TXEE1 -111 50 - VSSL TXEE2 - 112 49 - VDDL DS90C3201 TXEE3 - 113 48 - TCLKOUT-TXEE4 - 114 47 - TCLKOUT+ TXEE5 - 115 TXEA-TXEA+ TXEE6 - 116 45 TXEB-VDDE0 - 117 44 VSSE0 -118 43 TXEB+ TXED0 -119 42 TXEC-TXED1 -120 41 TXEC+ TXED2 - 121 40 TXED-TXED3 - 122 39 - TXED+ TXED4 - 123 38 TXEE-TXED5 - 124 37 - TXEE+ TXED6 - 125 36 - VSSL TXEC0 - 126 - VDDL 35 TXEC1 - 127 34 - MODE0 TXEC2 -128 33 - RFB 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 S2CLK -PWDNB-TXEB5 VDDT0 TXEB2 TXEB6 VDDE1 TXEA0 TXEA1 TXEA2 TXEA3 TXEA4 TXEA5 TXEA6 VDDP1 VSSP0 . Iddy TXEB0 TXEB3 TXEB4 VSSE1 VSSP1 VSSI TXEB1 20147216

# DS90C3201 Pin Descriptions

| Pin No. | Pin Name | I/O  | Pin Type             | Description                                                                     |
|---------|----------|------|----------------------|---------------------------------------------------------------------------------|
| 1       | TXEC3    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 2       | TXEC4    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 3       | TXEC5    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 4       | TXEC6    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 5       | TXEB0    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 6       | TXEB1    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 7       | TXEB2    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 8       | TXEB3    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 9       | TXEB4    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 10      | TXEB5    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 11      | TXEB6    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 12      | VDDE1    | VDD  | DIGITAL              | Power supply for digital circuitry                                              |
| 13      | VSSE1    | GND  | DIGITAL              | Ground pin for digital circuitry                                                |
| 14      | TXEA0    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 15      | TXEA1    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 16      | TXEA2    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 17      | TXEA3    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 18      | TXEA4    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 19      | TXEA5    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 20      | TXEA6    | I/P  | LVTTL I/P (pulldown) | LVTTL level data input                                                          |
| 21      | VDDP1    | VDD  | PLL                  | Power supply for PLL circuitry                                                  |
| 22      | VSSP1    | GND  | PLL                  | Ground pin for PLL circuitry                                                    |
| 23      | VSSP0    | GND  | PLL                  | Ground pin for PLL circuitry                                                    |
| 24      | VDDP0    | VDD  | PLL                  | Power supply for PLL circuitry                                                  |
| 25      | VDDT0    | VDD  | TX LOGIC             | Power supply for logic                                                          |
| 26      | VSST0    | GND  | TX LOGIC             | Ground pin for logic                                                            |
| 27      | TCLKIN   | I/P  | LVTTL I/P (pulldown) | LVTTL level data clock input                                                    |
| 28      | VDDI     | VDD  | DIGITAL              | Power supply for digital circuitry                                              |
| 29      | VSSI     | GND  | DIGITAL              | Ground pin for digital circuitry                                                |
| 30      | PWDNB    | I/P  | LVTTL I/P (pulldown) | Powerdown Bar (Active LOW) 0 = DEVICE DISABLED 1 = DEVICE ENABLED               |
| 31      | S2CLK    | I/P  | DIGITAL              | Two-wire Serial interface - clock                                               |
| 32      | S2DAT    | I/OP | DIGITAL              | Two-wire Serial interface - data                                                |
| 33      | RFB      | VDD  | LVTTL I/P (pulldown) | Rising Falling Bar ( <i>Figure 10</i> )  0 = FALLING EDGE  1 = RISING EDGE      |
| 34      | MODE0    | I/P  | LVTTL I/P (pulldown) | "EVEN" bank enable 0 = LVDS EVEN OUTPUTS DISABLED 1 = LVDS EVEN OUTPUTS ENABLED |
| 35      | VDDL     | VDD  | ANALOG               | Power supply for analog circuitry                                               |
| 36      | VSSL     | GND  | ANALOG               | Ground pin for analog circuitry                                                 |
| 37      | TXEE+    | O/P  | LVDS O/P             | Positive LVDS differential data output                                          |
| 38      | TXEE -   | O/P  | LVDS O/P             | Negative LVDS differential data output                                          |
| 39      | TXED+    | O/P  | LVDS O/P             | Positive LVDS differential data output                                          |
| 40      | TXED -   | O/P  | LVDS O/P             | Negative LVDS differential data output                                          |
| 41      | TXEC+    | O/P  | LVDS O/P             | Positive LVDS differential data output                                          |
| 42      | TXEC -   | O/P  | LVDS O/P             | Negative LVDS differential data output                                          |
| 43      | TXEB+    | O/P  | LVDS O/P             | Positive LVDS differential data output                                          |

| ı No. | Pin Name  | I/O | Pin Type             | Description                            |
|-------|-----------|-----|----------------------|----------------------------------------|
| 44    | TXEB -    | O/P | LVDS O/P             | Negative LVDS differential data output |
| 45    | TXEA+     | O/P | LVDS O/P             | Positive LVDS differential data output |
| 46    | TXEA -    | O/P | LVDS O/P             | Negative LVDS differential data output |
| 47    | TCLKOUT+  | O/P | LVDS O/P             | Positive LVDS differential data output |
| 48    | TCLKOUT - | O/P | LVDS O/P             | Negative LVDS differential data output |
| 49    | VDDL      | VDD | ANALOG               | Power supply for analog circuitry      |
| 50    | VSSL      | GND | ANALOG               | Ground pin for analog circuitry        |
| 51    | TXOE+     | O/P | LVDS O/P             | Positive LVDS differential data output |
| 52    | TXOE -    | O/P | LVDS O/P             | Negative LVDS differential data output |
| 53    | TXOD+     | O/P | LVDS O/P             | Positive LVDS differential data output |
| 54    | TXOD -    | O/P | LVDS O/P             | Negative LVDS differential data output |
| 55    | TXOC+     | O/P | LVDS O/P             | Positive LVDS differential data output |
| 56    | TXOC -    | O/P | LVDS O/P             | Negative LVDS differential data output |
| 57    | TXOB+     | O/P | LVDS O/P             | Positive LVDS differential data output |
| 58    | TXOB -    | O/P | LVDS O/P             | Negative LVDS differential data output |
| 59    | TXOA+     | O/P | LVDS O/P             | Positive LVDS differential data output |
| 60    | TXOA -    | O/P | LVDS O/P             | Negative LVDS differential data output |
| 61    | VDDL      | VDD | ANALOG               | Power supply for analog circuitry      |
| 62    | VSSL      | GND | ANALOG               | Ground pin for analog circuitry        |
| 63    | MODE1     | I/P | LVTTL I/P (pulldown) | "ODD" bank enable                      |
|       |           |     | ,                    | 0 = LVDS ODD OUTPUTS DISABLED          |
|       |           |     |                      | 1 = LVDS ODD OUTPUTS ENABLED           |
| 64    | RESRVD    | I/P | LVTTL I/P (pulldown) | Tie to VSS for correct functionality   |
| 65    | TXOE0     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 66    | TXOE1     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 67    | TXOE2     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 68    | TXOE3     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 69    | TXOE4     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 70    | TXOE5     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 71    | TXOE6     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 72    | VDD00     | VDD | DIGITAL              | Power supply for digital circuitry     |
| 73    | VSSO0     | GND | DIGITAL              | Ground pin for digital circuitry       |
| 74    | TXOD0     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 75    | TXOD1     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 76    | TXOD2     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 77    | TXOD3     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 78    | TXOD4     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 79    | TXOD5     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 80    | TXOD6     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 81    | VDDT1     | VDD | TX LOGIC             | Power supply for logic                 |
| 82    | VSST1     | GND | TX LOGIC             | Ground pin for logic                   |
| 83    | TXOC0     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 84    | TXOC1     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
|       |           | I/P | <del>'</del>         | ·                                      |
| 85    | TXOC2     | +   | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 86    | TXOC3     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 87    | TXOC4     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 88    | TXOC5     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
|       | TXOC6     | I/P | LVTTL I/P (pulldown) | LVTTL level data input                 |
| 90    | VDDO1     | VDD | DIGITAL              | Power supply for digital circuitry     |

| Pin No. | Pin Name | I/O | Pin Type             | Description                        |
|---------|----------|-----|----------------------|------------------------------------|
| 92      | TXOB0    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 93      | TXOB0    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 94      | TXOB1    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 95      | TXOB2    | 1/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 96      | TXOB3    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 97      | TXOB4    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 98      | TXOB5    | 1/P | LVTTL I/P (pulldown) | ·                                  |
| 99      | TXOA0    | I/P | **                   | LVTTL level data input             |
|         |          | 1/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 100     | TXOA1    | 1/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 101     | TXOA2    |     | LVTTL I/P (pulldown) | LVTTL level data input             |
| 102     | TXOA3    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 103     | TXOA4    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 104     | TXOA5    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 105     | TXOA6    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 106     | VDDT2    | VDD | TX LOGIC             | Power supply for logic             |
| 107     | VDDT3    | VDD | TX LOGIC             | Power supply for logic             |
| 108     | VSST2    | GND | TX LOGIC             | Ground pin for logic               |
| 109     | VSST3    | GND | TX LOGIC             | Ground pin for logic               |
| 110     | TXEE0    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 111     | TXEE1    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 112     | TXEE2    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 113     | TXEE3    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 114     | TXEE4    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 115     | TXEE5    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 116     | TXEE6    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 117     | VDDE0    | VDD | DIGITAL              | Power supply for digital circuitry |
| 118     | VSSE0    | GND | DIGITAL              | Ground pin for digital circuitry   |
| 119     | TXED0    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 120     | TXED1    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 121     | TXED2    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 122     | TXED3    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 123     | TXED4    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 124     | TXED5    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 125     | TXED6    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 126     | TXEC0    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 127     | TXEC1    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |
| 128     | TXEC2    | I/P | LVTTL I/P (pulldown) | LVTTL level data input             |

# Two-Wire Serial Communication Interface Description

The DS90C3201 operates as a slave on the Serial Bus, so the S2CLK line is an input (no clock is generated by the DS90C3201) and the S2DAT line is bi-directional. DS90C3201 has a fixed 7bit slave address. The address is not user configurable in anyway.

A zero in front of the register address is required. For example, to access register 0x0Fh, "0F" is the correct way of accessing the register.

# COMMUNICATING WITH THE DS90C3201 CONTROL REGISTERS

There are 32 data registers (one byte each) in the DS90C3201, and can be accessed through 32 addresses. All registers are predefined as read only or read and write. The DS90C3201 slave state machine does not require an internal clock and it supports only byte read and write. Page mode is not supported. The 7-bit binary address is 0111111 All seven bits are hardwired internally.

Reading the DS90C3201 can take place either of three ways:

- If the location latched in the data register addresses is correct, then the read can simply consist of a slave address byte, followed by retrieving the data byte.
- If the data register address needs to be set, then a slave address byte, data register address will be sent first, then the master will repeat start, send the slave address byte and data byte to accomplish a read.
- When performing continuous read operations, another write (or read) instruction in between reads needs to be completed in order for the two-wire serial interface module to read repeatedly.

The data byte has the most significant bit first. At the end of a read, the DS90C3201 can accept either Acknowledge or No Acknowledge from the Master (No Acknowledge is typically used as a signal for the slave that the Master has read its last byte).

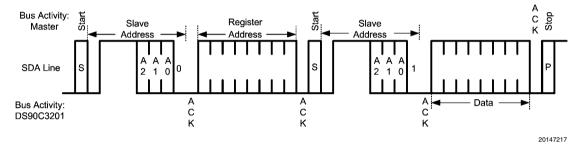



FIGURE 14. Byte Read

The master must generate a Start by sending the 7-bit slave address plus a 0 first, and wait for acknowledge from DS90C3201. When DS90C3201 acknowledges (the 1st ACK) that the master is calling, the master then sends the data register address byte and waits for acknowledge from the slave. When the slave acknowledges (the 2nd ACK), the master repeats the "Start" by sending the 7-bit slave address plus a 1 (indicating that READ operation is in progress) and waits for

acknowledge from DS90C3201. After the slave responds (the 3rd ACK), the slave sends the data to the bus and waits for acknowledge from the master. When the master acknowledges (the 4th ACK), it generates a "Stop". This completes the "READ".

A **Write** to the DS90C3201 will always include the slave address, data register address byte, and a data byte.

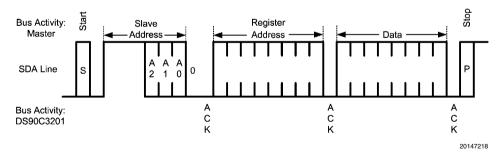
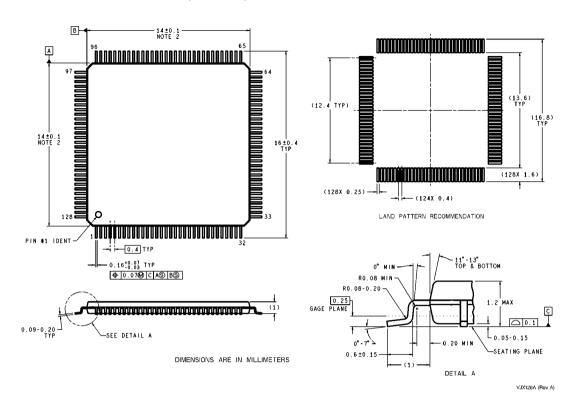



FIGURE 15. Byte Write

The master must generate a "Start" by sending the 7-bit slave address plus a 0 and wait for acknowledge from DS90C3201. When DS90C3201 acknowledges (the 1st ACK) that the master is calling, the master then sends the data register address byte and waits for acknowledge from the slave. When the

slave acknowledges (the 2nd ACK), the master sends the data byte and wait for acknowledge from the slave. When the slave acknowledges (the 3rd ACK), the master generates a "Stop". This completes the "WRITE".


# DS90C3201 Two-Wire Serial Interface Register Table

| Address | R/W | RESET | Bit # | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default Value |
|---------|-----|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 0d/0h   | R   | PWDN  | [7:0] | Vender ID low byte[7:0] = 05h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0000_0101     |
| 1d/1h   | R   | PWDN  | [7:0] | Vender ID high byte[15:8] =13h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0001_0011     |
| 2d/2h   | R   | PWDN  | [7:0] | Device ID low byte[7:0] = 27h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0010_0111     |
| 3d/3h   | R   | PWDN  | [7:0] | Device ID high byte 15:8] = 67h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0110_0111     |
| 4d/4h   | R   | PWDN  | [7:0] | Device revision [7:0] = 00h to begin with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0000_0000     |
| 5d/5h   | R   | PWDN  | [7:0] | Low frequency limit, 8Mhz = 8h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0000_1000     |
| 6d/6h   | R   | PWDN  | [7:0] | High frequency limit 135Mhz = 87h = 0000_0000_1000_0111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000_0111     |
| 7d/7h   | R   | PWDN  | [7:0] | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000_0000     |
| 8d/8h   | R   | PWDN  | [7:0] | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000_0000     |
| 9d/9h   | R   | PWDN  | [7:0] | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000_0000     |
| 10d/ah  | R   | PWDN  | [7:0] | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000_0000     |
| 11d/bh  | R   | PWDN  | [7:0] | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000_0000     |
|         |     |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| 20d/14h | R/W | PWDN  | [7:0] | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000_0000     |
| 21d/15h | R/W | PWDN  | [7:0] | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000_0000     |
| 22d/16h | R/W | PWDN  | [7:0] | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000_0000     |
| 23d/17h | R/W | PWDN  | [7:0] | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000_0000     |
| 24d/18h | R/W | PWDN  | [7:0] | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000_0000     |
| 25d/19h | R/W | PWDN  | [7:0] | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000_0000     |
| 26d/1ah | R/W | PWDN  | [7:3] | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000_0000     |
|         |     |       | [2:0] | LVTTL input delay control for TCLK channel, 000 is Default which means no delays add to TCLK, two buffer delay per step adjustment for Tsetup; while single buffer step adjustment for Thold  [111]: move internal clock early by 4 buffer delays (increases setup time)  [110]: move internal clock early by 3 buffer delays (increases setup time)  [101]: move internal clock early by 2 buffer delays (increases setup time)  [100]: move internal clock early by 1 buffer delays (increases setup time)  [001]: move internal clock late by 2 buffer delays (increases hold time)  [010]: move internal clock late by 4 buffer delays (increases hold time)  [011]: move internal clock late by 6 buffer delays (increases hold time) |               |
|         |     |       |       | hold time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |

| Address   | R/W | RESET | Bit # | Description                                                                                                                                       | Default Valu |
|-----------|-----|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 28d/1ch F | R/W | PWDN  | [7]   | Vod adjustment for TCLK channel 0: TCLK Vod is the same as TXE EVEN BANK (Default) 1: TCLK Vod is the same as TXO ODD BANK                        | 0000_0000    |
|           |     |       | [6]   | Vos adjustment for TCLK channel 0: TCLK Vos is the same as TXE EVEN BANK (Default) 1: TCLK Vos is the same as TXO ODD BANK                        |              |
|           |     |       | [5]   | Vod adjustment for TXE EVEN BANK 0: Vod set at 400mV ( Default) 1: Vod set at 250mv                                                               |              |
|           |     |       | [4]   | Vod adjustment for TXO ODD BANK 0: Vod set at 400mV ( Default) 1: Vod set at 250mv                                                                |              |
|           |     |       | [3:2] | Vos adjustment for TXE EVEN BANK 11: NA 10: LVDS DR O/P Vos set at 0.8V 01: LVDS DR O/P Vos set at 1.0V 00: LVDS DR O/P Vos set at 1.2V (Default) |              |
|           |     |       | [1:0] | Vos adjustment for TXO ODD BANK 11: NA 10: LVDS DR O/P Vos set at 0.8V 01: LVDS DR O/P Vos set at 1.0V 00: LVDS DR O/P Vos set at 1.2V (Default)  |              |
| 29d/1dh   | R/W | PWDN  | [7:5] | Reserved                                                                                                                                          | 0000_0000    |
|           |     |       | [4]   | I/O disable control for TXE EVEN BANK channel E,<br>1: Disable, 0: Enable (Default)                                                               |              |
|           |     |       | [3]   | I/O disable control for TXE EVEN BANK channel D,<br>1: Disable, 0: Enable (Default)                                                               |              |
|           |     |       | [2]   | I/O disable control for TXE EVEN BANK channel C,<br>1: Disable, 0: Enable (Default)                                                               |              |
|           |     |       | [1]   | I/O disable control for TXE EVEN BANK channel B,<br>1: Disable, 0: Enable (Default)                                                               |              |
|           |     |       | [0]   | I/O disable control for TXE EVEN BANK channel A, 1: Disable, 0: Enable (Default)                                                                  |              |
| 30d/1eh   | R/W | PWDN  | [7:5] | Reserved                                                                                                                                          | 0000_0000    |
|           |     |       | [4]   | I/O disable control for TXO ODD BANK channel E,<br>1: Disable, 0: Enable (Default)                                                                |              |
|           |     |       | [3]   | I/O disable control for TXO ODD BANK channel D,<br>1: Disable, 0: Enable (Default)                                                                |              |
|           |     |       | [2]   | I/O disable control for TXO ODD BANK channel C,<br>1: Disable, 0: Enable (Default)                                                                |              |
|           |     |       | [1]   | I/O disable control for TXO ODD BANK channel B, 1 Disable, 0: Enable (Default)                                                                    |              |
|           |     |       | [0]   | I/O disable control for TXO ODD BANK channel A, 1: Disable, 0: Enable (Default)                                                                   |              |

| Address | R/W | RESET | Bit # | Description                                                                                                         | <b>Default Value</b> |
|---------|-----|-------|-------|---------------------------------------------------------------------------------------------------------------------|----------------------|
| 31d/1fh | R/W | PWDN  | [7:6] | 11: LVDS O/Ps available as long as "NO CLK" is at HIGH regardless PLL lock or not                                   | 0000_0000            |
|         |     |       |       | 10: LVDS O/Ps available after 1K of TCLK cycles detected & PLL generated strobes are within 0.5UI respect to REFCLK |                      |
|         |     |       |       | 01: LVDS O/Ps available after 2K of TCLK cycles detected                                                            |                      |
|         |     |       |       | 00: Default ; LVDS O/Ps available after 1K of TCLK cycles detected                                                  |                      |
|         |     |       | [5]   | 0: Default; to select the size of wait counter between 1K or 2K, Default is 1K                                      |                      |
|         |     |       | [0:4] | Reserved                                                                                                            |                      |

# Physical Dimensions inches (millimeters) unless otherwise noted



128-Pin TQFP Package Order Number DS90C3201VS NS Package Number VJX128A

## **Notes**

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

| Products                       |                              | Design Support          |                                |
|--------------------------------|------------------------------|-------------------------|--------------------------------|
| Amplifiers                     | www.national.com/amplifiers  | WEBENCH                 | www.national.com/webench       |
| Audio                          | www.national.com/audio       | Analog University       | www.national.com/AU            |
| Clock Conditioners             | www.national.com/timing      | App Notes               | www.national.com/appnotes      |
| Data Converters                | www.national.com/adc         | Distributors            | www.national.com/contacts      |
| Displays                       | www.national.com/displays    | Green Compliance        | www.national.com/quality/green |
| Ethernet                       | www.national.com/ethernet    | Packaging               | www.national.com/packaging     |
| Interface                      | www.national.com/interface   | Quality and Reliability | www.national.com/quality       |
| LVDS                           | www.national.com/lvds        | Reference Designs       | www.national.com/refdesigns    |
| Power Management               | www.national.com/power       | Feedback                | www.national.com/feedback      |
| Switching Regulators           | www.national.com/switchers   |                         |                                |
| LDOs                           | www.national.com/ldo         |                         |                                |
| LED Lighting                   | www.national.com/led         |                         |                                |
| PowerWise                      | www.national.com/powerwise   |                         |                                |
| Serial Digital Interface (SDI) | www.national.com/sdi         |                         |                                |
| Temperature Sensors            | www.national.com/tempsensors |                         |                                |
| Wireless (PLL/VCO)             | www.national.com/wireless    |                         |                                |

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2008 National Semiconductor Corporation

For the most current product information visit us at www.national.com



National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com

#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

## Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

TI E2E Community Home Page <u>e2e.ti.com</u>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated