DS90UH926Q 720p 24-bit Color FPD-Link III Deserializer with HDCP

## DS90UH926Q

## 720p 24-bit Color FPD-Link III Deserializer with HDCP

### **General Description**

The DS90UH926Q deserializer, in conjunction with the DS90UH925Q serializer, provides a solution for secure distribution of content-protected digital video within automotive entertainment systems. This chipset translates a parallel RGB Video Interface into a single pair high-speed serialized interface. The digital video data is protected using the industry standard HDCP copy protection scheme. The serial bus scheme, FPD-Link III, supports full duplex of high speed forward data transmission and low speed backchannel communication over a single differential link. Consolidation of video data and control over a single differential pair reduces the interconnect size and weight, while also eliminating skew issues and simplifying system design.

The DS90UH926Q deserializer recovers the RGB data, three video control signals and four synchronized I2S audio signals. It extracts the clock from a high speed serial stream. An output LOCK pin provides the link status if the incoming data stream is locked, without the use of a training sequence or special SYNC patterns, as well as a reference clock.

The DS90UH926Q deserializer has a 31-bit parallel LVCMOS output interface to accommodate the RGB, video control, and audio data.

An adaptive equalizer optimizes the maximum cable reach. EMI is minimized by output SSC generation (SSCG) and enhanced progressive turn-on (EPTO) features.

The HDCP cipher engine is implemented in both the serializer and deserializer. HDCP keys are stored in on-chip memory.

### Features

- Integrated HDCP cipher engine with on-chip key storage
- Bidirectional control interface channel interface with I2C compatible serial control bus
- Supports high definition (720p) digital video format
- RGB888 + VS, HS, DE and synchronized I2S audio supported
- 5 to 85 MHz PCLK supported
- Single 3.3V Operation with 1.8V or 3.3V compatible LVCMOS I/O interface
- AC-coupled STP Interconnect up to 10 meters
- Parallel LVCMOS video outputs
- I2C compatible serial control bus for configuration
- DC-balanced & scrambled Data w/ Embedded Clock
- Adaptive cable equalization
- Supports HDCP repeater application
- @ SPEED Link BIST Mode and LOCK status pin
- Image Enhancement (White Balance and Dithering) and Internal pattern generation
- EMI Minimization (SSCG and EPTO)
- Low power modes minimize power dissipation
- Automotive grade product: AEC-Q100 Grade 2 qualified
- >8kV HBM and ISO 10605 ESD rating
- Backward compatible modes

### **Applications**

- Automotive Display for Navigation
- Rear Seat Entertainment Systems



## **Applications Diagram**





| Pin Name   | Pin #           | I/O, Type    | Description                                                                |
|------------|-----------------|--------------|----------------------------------------------------------------------------|
| LVCMOS Par | allel Interface |              |                                                                            |
| R[7:0]     | 33, 34, 35, 36, | O, LVCMOS    | RED Parallel Interface Data Output Pins                                    |
|            | 37, 39, 40, 41  | w/ pull down | Leave open if unused                                                       |
|            |                 |              | R0 can optionally be used as GPIO0 and R1 can optionally be used as GPIO1  |
| G[7:0]     | 20, 21, 22, 23, | O, LVCMOS    | GREEN Parallel Interface Data Output Pins                                  |
|            | 25, 26, 27, 28  | w/ pull down | Leave open if unused                                                       |
|            |                 |              | G0 can optionally be used as GPIO2 and G1 can optionally be used as GPIO3. |

2

|                      | Dim #           |              | Description                                                                                                                         |
|----------------------|-----------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                      |                 |              |                                                                                                                                     |
| B[7:0]               | 9, 10, 11, 12,  | O, LVCMOS    | BLUE Parallel Interface Data Output Pins                                                                                            |
|                      | 14, 17, 10, 19  | w/ puil down | B0 can ontionally be used as GPO_REG4 and B1 can ontionally be used as I2S_DB or                                                    |
|                      |                 |              | GPO_REG5.                                                                                                                           |
| HS                   | 8               | O, LVCMOS    | Horizontal Sync Output Pin                                                                                                          |
|                      |                 | w/ pull down | Video control signal pulse width must be 3 PCLKs or longer to be transmitted when the                                               |
|                      |                 |              | Control Signal Filter is enabled. There is no restriction on the minimum transition pulse                                           |
|                      |                 |              |                                                                                                                                     |
|                      |                 |              | See Table 9                                                                                                                         |
| VS                   | 7               | O, LVCMOS    | Vertical Sync Output Pin                                                                                                            |
|                      |                 | w/ pull down | Video control signal is limited to 1 transition per 130 PCLKs. Thus, the minimum pulse width                                        |
|                      |                 |              | is 130 PCLKs.                                                                                                                       |
| DE                   | 6               | O, LVCMOS    | Data Enable Output Pin                                                                                                              |
|                      |                 | w/ pull down | Video control signal pulse width must be 3 PCLKs or longer to be transmitted when the                                               |
|                      |                 |              | Control Signal Filter is enabled. There is no restriction on the minimum transition pulse                                           |
|                      |                 |              | PCI Ks                                                                                                                              |
|                      |                 |              | See Table 9                                                                                                                         |
| PCLK                 | 5               | O, LVCMOS    | Pixel Clock Output Pin. Strobe edge set by RFB configuration register. See Table 9                                                  |
|                      |                 | w/ pull down |                                                                                                                                     |
| I2S_CLK,             | 1, 30, 45       | O, LVCMOS    | Digital Audio Interface Data Output Pins                                                                                            |
| I2S_WC,              |                 | w/ pull down | Leave open if unused                                                                                                                |
| I2S_DA               |                 |              | I2S_CLK can optionally be used as GPO_REG8, I2S_WC can optionally be used as GPO_REG7 and I2S_DA can optionally be used as GPO_REG6 |
| MCLK                 | 60              |              | 12S Master Clock Output v1, v2, or v4 of 12S, CLK Frequency                                                                         |
| MOLIN                |                 | w/ pull down |                                                                                                                                     |
| <b>Optional Para</b> | allel Interface |              |                                                                                                                                     |
| I2S_DB               | 18              | O, LVCMOS    | Second Channel Digital Audio Interface Data Output pin at 18-bit color mode and set by                                              |
|                      |                 | w/ pull down | MODE_SEL or configuration register                                                                                                  |
|                      |                 |              | Leave open if unused                                                                                                                |
|                      | 07 00 10 11     |              | I2S_B can optionally be used as BI or GPO_REG5.                                                                                     |
| GPI0[3:0]            | 27, 28, 40, 41  |              | Standard General Purpose IOs.                                                                                                       |
|                      |                 | w/ pull down | See Table 9                                                                                                                         |
|                      |                 |              | Leave open if unused                                                                                                                |
|                      |                 |              | Shared with G1, G0, R1 and R0.                                                                                                      |
| GPO_REG              | 1, 30, 45, 18,  | O, LVCMOS    | General Purpose Outputs and set by configuration register. See <i>Table 9</i>                                                       |
| [8:4]                | 19              | w/ pull down | Shared with I2S_CLK, I2S_WC, I2S_DA, I2S_DB or B1, B0.                                                                              |
| INTB_IN              | 16              | Input,       | Interrupt Input                                                                                                                     |
|                      |                 | pull-down    |                                                                                                                                     |
| Optional Para        | allel Interface | P            |                                                                                                                                     |
| PDB                  | 59              | I, LVCMOS    | Power-down Mode Input Pin                                                                                                           |
|                      |                 | w/ pull-down | PDB = H, device is enabled (normal operation)                                                                                       |
|                      |                 |              | Refer to "Power Up Requirements and PDB Pin" in the Applications Information Section.                                               |
|                      |                 |              | PDB = L, device is powered down.                                                                                                    |
|                      |                 |              | the PLL is shutdown and IDD is minimized                                                                                            |
| OEN                  | 31              | Input,       | Output Enable Pin.                                                                                                                  |
|                      |                 | LVCMOS w/    | See Table 3                                                                                                                         |
|                      |                 | pull-down    |                                                                                                                                     |
| OSS_SEL              | 46              | Input,       | Output Sleep State Select Pin.                                                                                                      |
|                      |                 | LVCMOS W/    | See Tadie 3                                                                                                                         |
|                      | 1               |              |                                                                                                                                     |

| Pin Name          | Pin #                | I/O, Type    | Description                                                                               |
|-------------------|----------------------|--------------|-------------------------------------------------------------------------------------------|
| MODE_SEL          | 15                   | I, Analog    | Device Configuration Select. See Table 4                                                  |
| IDx               | 56                   | I, Analog    | I2C Serial Control Bus Device ID Address Select                                           |
|                   |                      |              | External pull-up to V <sub>DD33</sub> is required under all conditions, DO NOT FLOAT.     |
|                   |                      |              | Connect to external pull-up and pull-down resistor to create a voltage divider.           |
|                   |                      |              | See Figure 19                                                                             |
| SCL               | 3                    | I/O,         | I2C Clock Input / Output Interface                                                        |
|                   |                      | LVCMOS       | Must have an external pull-up to V <sub>DD33</sub> , DO NOT FLOAT.                        |
|                   |                      | Open Drain   | Recommended pull-up: 4.7kΩ.                                                               |
| SDA               | 2                    | I/O,         | I2C Data Input / Output Interface                                                         |
|                   |                      | LVCMOS       | Must have an external pull-up to V <sub>DD33</sub> , DO NOT FLOAT.                        |
|                   |                      | Open Drain   | Recommended pull-up: 4.7kΩ.                                                               |
| BISTEN            | 44                   | I, LVCMOS    | BIST Enable Pin.                                                                          |
|                   |                      | w/ pull-down | 0: BIST Mode is disabled.                                                                 |
|                   |                      |              | 1: BIST Mode is enabled.                                                                  |
| BISTC             | 16                   | I, LVCMOS    | BIST Clock Select.                                                                        |
|                   |                      | w/ pull-down | Shared with INTB_IN                                                                       |
|                   |                      |              | 0: PCLK; 1: 33 MHz                                                                        |
| Status            |                      | 1            |                                                                                           |
| LOCK              | 32                   | O, LVCMOS    | LOCK Status Output Pin                                                                    |
|                   |                      | w/ pull down | 0: PLL is unlocked, RGB[7:0], I2S[2:0], HS, VS, DE and PCLK output states are controlled  |
|                   |                      |              | by OEN. May be used as Link Status or Display Enable                                      |
|                   |                      |              | 1: PLL is Locked, outputs are active                                                      |
| PASS              | 42                   | O, LVCMOS    | PASS Output Pin                                                                           |
|                   |                      | w/ pull down | 0: One or more errors were detected in the received payload                               |
|                   |                      |              | 1: ERROR FREE Transmission                                                                |
|                   | <br>Carial Interface |              | Leave Open in unused. House to test point (pad) recommended                               |
|                   |                      |              |                                                                                           |
| RIN+              | 49                   | I, LVDS      | The intergeneration should be AC Coupled to this pin with a 0.1 UE conseitor              |
|                   | 50                   |              | The interconnection should be AC Coupled to this pin with a 0.1 µF capacitor.             |
| RIN-              | 50                   | I, LVDS      | Inverting input.                                                                          |
|                   |                      |              |                                                                                           |
| CMLOUTP           | 52                   | O, LVDS      | I rue CML Output                                                                          |
|                   | 50                   |              |                                                                                           |
| CMLOUTN           | 53                   | O, LVDS      | Inverting CML Output                                                                      |
|                   | <b>F1</b>            | A            |                                                                                           |
| CMF               | 51                   | Analog       | Common Mode Filter. Connect 0.1 µF capacitor to GND                                       |
| Power and G       | iround               | 1 -          |                                                                                           |
| VDD33_A,          | 48, 29               | Power        | Power to on-chip regulator <b>3.0 V – 3.6 V</b> . Requires 4.7 uF to GND at each VDD pin. |
| VDD33_B           |                      | _            |                                                                                           |
| V <sub>DDIO</sub> | 13, 24, 38           | Power        | LVCMOS I/O Power <b>1.8 V ±5% OR 3.0 V – 3.6 V</b> . Requires 4.7 uF to GND at each VDDIO |
|                   |                      |              | pin.                                                                                      |
| GND               | DAP                  | Ground       | DAP is the large metal contact at the bottom side, located at the center of the LLP       |
|                   |                      |              | package. Connect to the ground plane (GND) with at least 9 vias.                          |
| Regulator Ca      |                      |              |                                                                                           |
| CAPR12,           | 55, 57, 58           | CAP          | Decoupling capacitor connection for on-chip regulator. Requires a 4.7uF to GND at each    |
| CAPP12,           |                      |              | ICAP pin.                                                                                 |
| CAPI25            |                      | 045          |                                                                                           |
| CAPL12            | 4                    |              | Decoupling capacitor connection for on-chip regulator. Requires two 4./uF to GND at this  |
| Others            |                      |              | ТОАГ РШ.                                                                                  |
| NO                | <b>F</b> 4           |              | No compact This sin may be left as a subject to any law b                                 |
|                   | 54                   |              | INO CONTRECT. THIS PIN MAY DE LETT OPEN OF TIED TO ANY IEVEI.                             |
| RES[1:0]          | 43.47                | GND          | Heserved. The to Ground.                                                                  |
|                   |                      |              |                                                                                           |

The VDD ( $V_{DD33}$  and  $V_{DDIO}$ ) supply ramp should be faster than 1.5 ms with a monotonic rise.

## **Block Diagram**



## **Ordering Information**

| NSID          | Package Description                          | Quantity | SPEC | Package ID |
|---------------|----------------------------------------------|----------|------|------------|
| DS90UH926QSQE | 60-pin LLP, 9.0 X 9.0 X 0.8 mm, 0.5 mm pitch | 250      | NOPB | SQA60B     |
| DS90UH926QSQ  | 60-pin LLP, 9.0 X 9.0 X 0.8 mm, 0.5 mm pitch | 1000     | NOPB | SQA60B     |
| DS90UH926QSQX | 60-pin LLP, 9.0 X 9.0 X 0.8 mm, 0.5 mm pitch | 2500     | NOPB | SQA60B     |

Note: Automotive Grade (Q) product incorporates enhanced manufacturing and support processes for the automotive market, including defect detection methodologies. Reliability qualification is compliant with the requirements and temperature grades defined in the AEC Q100 standard. Automotive Grade products are identified with the letter Q. For more information go to http://www.national.com/automotive.

### Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

| Supply Voltage – V <sub>DD33</sub>                      | -0.3V to +4.0V                                  |
|---------------------------------------------------------|-------------------------------------------------|
| Supply Voltage – V <sub>DDIO</sub>                      | -0.3V to +4.0V                                  |
| LVCMOS I/O Voltage                                      | -0.3V to (V <sub>DDIO</sub> + 0.3V)             |
| Deserializer Input Voltage                              | -0.3V to +2.75V                                 |
| Junction Temperature                                    | +150°C                                          |
| Storage Temperature                                     | -65°C to +150°C                                 |
| 60 LLP Package                                          |                                                 |
| Maximum Power Dissipation<br>Capacity at 25°C           |                                                 |
| Derate above 25°C                                       | 1/ θ <sub>JA</sub> °C/W                         |
| θ <sub>JA</sub>                                         | 31 °C/W                                         |
| θ <sub>JC</sub>                                         | 2.4 °C/W                                        |
| ESD Rating (IEC, powered-up only)                       | , R <sub>D</sub> = 330Ω, C <sub>S</sub> = 150pF |
| Air Discharge                                           |                                                 |
| (R <sub>IN+</sub> , R <sub>IN-</sub> )                  | ≥±15 kV                                         |
| Contact Discharge                                       |                                                 |
| (R <sub>IN+</sub> , R <sub>IN-</sub> )                  | ≥±8 kV                                          |
| ESD Rating (ISO10605), $R_D = 3309$                     | Ω, C <sub>S</sub> = 150pF                       |
| Air Discharge<br>(R <sub>IN+</sub> , R <sub>IN-</sub> ) | ≥±15 kV                                         |
| Contact Discharge                                       |                                                 |
| (R <sub>IN+</sub> , R <sub>IN-</sub> )                  | ≥±8 kV                                          |

ESD Rating (ISO10605),  $R_D = 2k\Omega$ ,  $C_S = 150 \& 330 pF$ 

| Air Discharge                          |           |
|----------------------------------------|-----------|
| (R <sub>IN+</sub> , R <sub>IN-</sub> ) | ≥±15 kV   |
| Contact Discharge                      |           |
| (R <sub>IN+</sub> , R <sub>IN-</sub> ) | ≥±8 kV    |
| ESD Rating (HBM)                       | ≥±8 kV    |
| ESD Rating (CDM)                       | ≥±1.25 kV |
| ESD Rating (MM)                        | ≥±250 V   |
| For soldering specifications:          |           |

see product folder at www.national.com and www.national.com/ms/MS/MS-SOLDERING.pdf

## Recommended Operating Conditions

|                                               | Min  | Nom | Max  | Units      |
|-----------------------------------------------|------|-----|------|------------|
| Supply Voltage (V <sub>DD33</sub> )           | 3.0  | 3.3 | 3.6  | V          |
| LVCMOS Supply<br>Voltage (V <sub>DDIO</sub> ) | 3.0  | 3.3 | 3.6  | V          |
| OR                                            |      |     |      |            |
| LVCMOS Supply<br>Voltage (V <sub>DDIO</sub> ) | 1.71 | 1.8 | 1.89 | V          |
| Operating Free Air                            |      |     |      |            |
| Temperature (T <sub>A</sub> )                 | -40  | +25 | +105 | °C         |
| PCLK Frequency                                | 5    |     | 85   | MHz        |
| Supply Noise (Note 7)                         |      |     | 100  | $mV_{P-P}$ |

### **DC Electrical Characteristics**

Over recommended operating supply and temperature ranges unless otherwise specified. (Note 2, Note 3, Note 4)

| Symbol          | Parameter                    | Conditions                       |                                     | Pin/Freq.                      | Min                         | Тур | Max                        | Units |
|-----------------|------------------------------|----------------------------------|-------------------------------------|--------------------------------|-----------------------------|-----|----------------------------|-------|
| LVCMOS I/       | D DC SPECIFICATIONS          |                                  |                                     | -                              |                             | -   | -                          |       |
| V <sub>IH</sub> | High Level Input Voltage     | $V_{DDIO} = 3.0$ to 3            | .6V                                 |                                | 2.0                         |     | V <sub>DDIO</sub>          | V     |
| V <sub>IL</sub> | Low Level Input Voltage      | $V_{DDIO} = 3.0$ to 3            | .6V                                 | PDB                            | GND                         |     | 0.8                        | V     |
| I <sub>IN</sub> | Input Current                | $V_{IN} = 0V \text{ or } V_{DD}$ | <sub>IO</sub> = 3.0 to 3.6V         |                                | -10                         | ±1  | +10                        | μA    |
|                 |                              | $V_{DDIO} = 3.0$ to 3            | .6V                                 |                                | 2.0                         |     | V <sub>DDIO</sub>          | V     |
| V <sub>IH</sub> | High Level Input Voltage     | $V_{\text{DDIO}} = 1.71$ to      | V <sub>DDIO</sub> = 1.71 to 1.89V   |                                | 0.65*<br>V <sub>DDIO</sub>  |     | V <sub>DDIO</sub>          | V     |
|                 |                              | $V_{DDIO} = 3.0$ to 3            | .6V                                 | OSS_SEL,                       | GND                         |     | 0.8                        | V     |
| V <sub>IL</sub> | Low Level Input Voltage      | $V_{DDIO} = 1.71$ to             | 1.89V                               | BISTEN,<br>BISTC /             |                             |     | 0.35*<br>V <sub>DDIO</sub> | V     |
| 1               | Input Current                | V <sub>IN</sub> = 0V or          | V <sub>DDIO</sub> = 3.0<br>to 3.6V  | INTB_IN,<br>GPIO[3:0]          | -10                         | ±1  | +10                        | μA    |
| 'IN             | Input Current                | V <sub>DDIO</sub>                | V <sub>DDIO</sub> = 1.7<br>to 1.89V |                                | -10                         | ±1  | +10                        | μA    |
| M               | High Lovel Output Veltage    | 1 – 4m4                          | V <sub>DDIO</sub> = 3.0 to<br>3.6V  | R[7:0], G[7:0],<br>B[7:0], HS, | 2.4                         |     | V <sub>DDIO</sub>          | V     |
| VOH             | High Level Output Voltage    | $I_{OH} = -4111A$                | V <sub>DDIO</sub> = 1.7<br>to 1.89V | VS, DE,<br>PCLK, LOCK,         | V <sub>DDIO</sub> -<br>0.45 |     | V <sub>DDIO</sub>          | V     |
| M               |                              | 1                                | V <sub>DDIO</sub> = 3.0 to<br>3.6V  | PASS, MCLK,<br>I2S_CLK,        | GND                         |     | 0.4                        | V     |
| VOL             | Low Level Output Voltage     | $I_{OL} = +4IIIA$                | V <sub>DDIO</sub> = 1.7<br>to 1.89V | 125_00,<br>12S_DA,<br>12S_DB.  | GND                         |     | 0.35                       | V     |
| I <sub>OS</sub> | Output Short Circuit Current | $V_{OUT} = 0V$                   |                                     | GPO_REG                        |                             | -60 |                            | mA    |
| I <sub>OZ</sub> | TRI-STATE® Output Current    | $V_{OUT} = 0V \text{ or } V_{I}$ | <sub>DDIO</sub> , PDB = L           | [8:4]                          | -10                         |     | +10                        | μA    |

|                                             | 1                                               |                               |                               | 1                   |     |      |     |       |  |
|---------------------------------------------|-------------------------------------------------|-------------------------------|-------------------------------|---------------------|-----|------|-----|-------|--|
| Symbol                                      | Parameter                                       | Condi                         | tions                         | Pin/Freq.           | Min | Тур  | Max | Units |  |
| FPD-LINK I                                  | II CML RECEIVER INPUT DC SP                     | PECIFICATIONS                 |                               | -                   |     |      |     |       |  |
| V <sub>TH</sub>                             | Differential Threshold High<br>Voltage          | V <sub>CM</sub> = 2.5V        |                               |                     |     |      | +50 | mV    |  |
| V <sub>TL</sub>                             | Differential Threshold Low<br>Voltage           | (Internal V <sub>BIAS</sub> ) | (Internal V <sub>BIAS</sub> ) |                     | -50 |      |     | mV    |  |
| V <sub>CM</sub>                             | Differential Common-mode<br>Voltage             |                               |                               | RIN+, RIN-          |     | 1.8  |     | v     |  |
| R <sub>T</sub>                              | Internal Termination Resistor -<br>Differential |                               |                               |                     | 80  | 100  | 120 | Ω     |  |
| CML MONITOR DRIVER OUTPUT DC SPECIFICATIONS |                                                 |                               |                               |                     |     |      |     |       |  |
| V <sub>ODp-p</sub>                          | Differential Output Voltage                     | R <sub>L</sub> = 100Ω         |                               | CMLOUTP,<br>CMLOUTN | 360 |      |     | mVp-p |  |
| SUPPLY CU                                   | JRRENT                                          | •                             |                               | •                   | •   | •    |     | •     |  |
| I <sub>DD1</sub>                            | Supply Current                                  | C <sub>L</sub> = 12pF,        | V <sub>DD33</sub> = 3.6V      | V <sub>DD33</sub>   |     | 125  | 145 | mA    |  |
|                                             | (includes load current)                         | Checker Board                 | V <sub>DDIO</sub> = 3.6V      |                     |     | 110  | 118 | mA    |  |
| I <sub>DDIO1</sub>                          | f = 85MHz                                       | Pattern<br><i>Figure 1</i>    | V <sub>DDIO</sub> = 1.89V     | V <sub>DDIO</sub>   |     | 60   | 75  | mA    |  |
| I <sub>DD2</sub>                            |                                                 | $C_L = 4pF$                   | V <sub>DD33</sub> = 3.6V      | V <sub>DD33</sub>   |     | 125  | 145 | mA    |  |
|                                             | (includes load current)                         | Checker Board                 | $V_{DDIO} = 3.6V$             |                     |     | 75   | 85  | mA    |  |
| I <sub>DDIO2</sub>                          | f = 85MHz                                       | Pattern,<br><i>Figure 1</i>   | V <sub>DDIO</sub> = 1.89V     | V <sub>DDIO</sub>   |     | 50   | 65  | mA    |  |
| I <sub>DDS</sub>                            |                                                 |                               | V <sub>DD33</sub> = 3.6V      | V <sub>DD33</sub>   |     | 90   | 115 | mA    |  |
|                                             | Supply Current Sleep Mode                       | Without Input                 | $V_{DDIO} = 3.6V$             |                     |     | 3    | 5   | mA    |  |
| DDIOS                                       |                                                 | Senai Stream                  | V <sub>DDIO</sub> = 1.89V     | VDDIO               |     | 2    | 3   | mA    |  |
| I <sub>DDZ</sub>                            |                                                 | PDB = L, All                  | V <sub>DD33</sub> = 3.6V      | V <sub>DD33</sub>   |     | 2    | 10  | mA    |  |
|                                             | 1<br>Supply Current Power Down                  | LVCMOS inputs                 | $V_{DDIO} = 3.6V$             |                     |     | 0.05 | 10  | mA    |  |
| I <sub>DDIOZ</sub>                          |                                                 | are floating or tied to GND   | V <sub>DDIO</sub> = 1.89V     | V <sub>DDIO</sub>   | -   | 0.05 | 10  | mA    |  |

## **AC Electrical Characteristics**

Over recommended operating supply and temperature ranges unless otherwise specified. (Note 2, Note 3, Note 4)

| Symbol            | Parameter                                                  | Conditions                                                 | Pin/Freq.                                         | Min   | Тур    | Max | Units |
|-------------------|------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|-------|--------|-----|-------|
| GPIO BI           | T RATE                                                     | •                                                          | •                                                 |       |        |     | •     |
| D                 | Forward Channel Bit Rate                                   | (Note 9, Note 0)                                           | f = 5 – 85MHz,                                    |       | 0.25*f |     | Mbps  |
| DR                | Back Channel Bit Rate                                      | (NOLE 0, NOLE 9)                                           | GPIO[3:0]                                         | >50   | >75    |     | kbps  |
| CML MO            | NITOR DRIVER OUTPUT AC SPE                                 | CIFICATIONS                                                |                                                   |       |        |     |       |
| Ew                | Differential Output Eye Opening<br>Width                   | R <sub>L</sub> = 100Ω,<br>Jitter Freq >f / 40              | CMLOUTP,<br>CMLOUTN,                              | 0.3   | 0.4    |     | UI    |
| E                 | Differential Output Eye Height                             | Figure 2(Note 8, Note 9)                                   | f = 85MHz                                         | 200   | 300    |     | mV    |
| SWITCH            |                                                            |                                                            |                                                   |       | 1      |     | I     |
| t <sub>BCP</sub>  | PCLK Output Period                                         | $t_{BCP} = t_{TCP}$                                        |                                                   | 11.76 | Т      | 200 | ns    |
| t <sub>BDC</sub>  | PCLK Output Duty Cycle                                     |                                                            |                                                   | 45    | 50     | 55  | %     |
| +                 | LVCMOS Low-to-High Transition                              | V <sub>DDIO</sub> = 1.71 - 1.89V,<br>C <sub>L</sub> = 12pF |                                                   |       | 2      | 3   | ns    |
| <sup>1</sup> CLH  | Figure 3                                                   | $V_{DDIO} = 3.0 - 3.6V,$<br>$C_{L} = 12pF$                 |                                                   |       | 2      | 3   | ns    |
| t <sub>out</sub>  | LVCMOS High-to-Low Transition                              | V <sub>DDIO</sub> = 1.71 - 1.89V,<br>C <sub>L</sub> = 12pF | R[7:0], G[7:0],<br>B[7:0], HS,                    |       | 2      | 3   | ns    |
|                   | Figure 3                                                   | $V_{DDIO} = 3.0 - 3.6V,$<br>$C_{L} = 12pF$                 | PCLK, LOCK,                                       |       | 2      | 3   | ns    |
| teos              | Data Valid before PCLK – Setup<br>Time                     | V <sub>DDIO</sub> = 1.71 - 1.89V,<br>C <sub>L</sub> = 12pF | 12S_CLK,<br>12S_WC,                               | 2.2   |        |     | ns    |
|                   | SSCG = OFF<br>Figure 6                                     | $V_{DDIO} = 3.0 - 3.6V,$<br>$C_{L} = 12pF$                 | I2S_DA,<br>I2S_DB                                 | 2.2   |        |     | ns    |
| teou              | Data Valid after PCLK – Hold Time<br>SSCG = OFF            | V <sub>DDIO</sub> = 1.71 - 1.89V,<br>C <sub>L</sub> = 12pF |                                                   | 3.0   |        |     | ns    |
|                   | Figure 6                                                   | $V_{DDIO} = 3.0 - 3.6V,$<br>$C_{L} = 12pF$                 |                                                   | 3.0   |        |     | ns    |
|                   |                                                            |                                                            | R[7:0], G[7:0],<br>B[7:0]                         |       | 10     |     | ns    |
| tvan              | Active to OFF Delay                                        | OEN = LOSS SEL = H                                         | HS, VS, DE,<br>PCLK, LOCK,<br>PASS                |       | 15     |     | ns    |
| *XZH              | Figure 5(Note 8, Note 9)                                   | 0211 - 2, 000_022 - 11                                     | MCLK,<br>I2S_CLK,<br>I2S_WC,<br>I2S_DA,<br>I2S_DB |       | 60     |     | ns    |
| t <sub>DDLT</sub> | Lock Time<br>Figure 5(Note 8, Note 9)                      | SSCG = OFF                                                 | f = 5 – 85MHz                                     |       | 5      | 40  | ms    |
| t <sub>DD</sub>   | Delay – Latency<br>( <i>Note 8, Note 9</i> )               |                                                            | f = 5 – 85MHz                                     |       | 147*T  |     | ns    |
|                   |                                                            |                                                            | f = 5 - <15<br>MHz                                |       | 0.5    |     | ns    |
| t <sub>DCCJ</sub> | Cycle-to-Cycle Jitter<br>( <i>Note 8</i> , <i>Note 9</i> ) | SSCG = OFF                                                 | f = 15 - 85<br>MHz                                |       | 0.2    |     | ns    |
|                   |                                                            |                                                            | 12S_CLK = 1 -<br>12.28MHz                         |       | +/-2   |     | ns    |

| Symbol            | Parameter                                                                            | Conditions                         | Pin/Freq.                      | Min  | Тур | Мах  | Units |
|-------------------|--------------------------------------------------------------------------------------|------------------------------------|--------------------------------|------|-----|------|-------|
|                   | Data Valid After OEN = H                                                             | VDDIO = 1.71 - 1.89V,<br>CL = 12pF |                                |      | 50  |      | ns    |
| LONS              | Figure 7(Note 8, Note 9)                                                             | VDDIO = 3.0 – 3.6V,<br>CL = 12pF   |                                |      | 50  |      | ns    |
| t <sub>onh</sub>  | Data Tri-State After OEN = L<br>SetupTime                                            | VDDIO = 1.71 - 1.89V,<br>CL = 12pF | R[7:0], G[7:0],<br>B[7:0], HS, |      | 50  |      | ns    |
|                   | Figure 7(Note 8, Note 9)                                                             | VDDIO = 3.0 – 3.6V,<br>CL = 12pF   | VS, DE,<br>PCLK, MCLK,         |      | 50  |      | ns    |
| t <sub>SES</sub>  | Data Tri-State after OSS_ SEL =<br>H, Setup Time<br><i>Figure 7(Note 8, Note 9</i> ) | VDDIO = 1.71 - 1.89V,<br>CL = 12pF | I2S_CLK,<br>I2S_WC,            |      | 5   |      | ns    |
|                   |                                                                                      | VDDIO = 3.0 – 3.6V,<br>CL = 12pF   | I2S_DA,<br>I2S_DB              |      | 5   |      | ns    |
| t <sub>SEH</sub>  | Data to Low after OSS_SEL = L                                                        | VDDIO = 1.71 - 1.89V,<br>CL = 12pF |                                |      | 5   |      | ns    |
|                   | Figure 7(Note 8, Note 9)                                                             | VDDIO = 3.0 – 3.6V,<br>CL = 12pF   |                                |      | 5   |      | ns    |
| BIST Mo           | de                                                                                   |                                    |                                |      |     |      |       |
| t <sub>PASS</sub> | BIST PASS Valid Time<br>BISTEN = H<br>Figure 8(Note 8, Note 9)                       |                                    | PASS                           |      | 800 |      | ns    |
| SSCG M            | ode                                                                                  |                                    |                                |      |     |      |       |
| f <sub>DEV</sub>  | Spread Spectrum Clocking<br>Deviation Frequency                                      | Figure 12                          | f = 85MHz,                     | ±0.5 |     | ±2.5 | %     |
| f <sub>MOD</sub>  | Spread Spectrum Clocking<br>Modulation Frequency                                     | ( <i>Note 8</i> , <i>Note 9</i> )  | SSCG = ON                      | 8    |     | 100  | kHz   |

## **Recommended Timing for the Serial Control Bus** Over 3.3V supply and temperature ranges unless otherwise specified.

| Symbol              | Parameter                                | Conditions    | Min | Тур | Max  | Units |
|---------------------|------------------------------------------|---------------|-----|-----|------|-------|
| f <sub>SCL</sub>    |                                          | Standard Mode | 0   |     | 100  | kHz   |
|                     | SOL Clock Frequency                      | Fast Mode     | 0   |     | 400  | kHz   |
| t <sub>LOW</sub>    | SCL Low Pariod                           | Standard Mode | 4.7 |     |      | us    |
|                     |                                          | Fast Mode     | 1.3 |     |      | us    |
| t <sub>HIGH</sub>   | SCI High Pariod                          | Standard Mode | 4.0 |     |      | us    |
|                     |                                          | Fast Mode     | 0.6 |     |      | us    |
| t <sub>HD;STA</sub> | Hold time for a start or a               | Standard Mode | 4.0 |     |      | us    |
|                     | repeated start condition <i>Figure 9</i> | Fast Mode     | 0.6 |     |      | us    |
| t <sub>SU:STA</sub> | Set Up time for a start or a             | Standard Mode | 4.7 |     |      | us    |
|                     | repeated start condition Figure 9        | Fast Mode     | 0.6 |     |      | us    |
| t <sub>HD;DAT</sub> | Data Hold Time                           | Standard Mode | 0   |     | 3.45 | us    |
|                     | Figure 9                                 | Fast Mode     | 0   |     | 0.9  | us    |
| t <sub>SU;DAT</sub> | Data Set Up Time                         | Standard Mode | 250 |     |      | ns    |
| -                   | Figure 9                                 | Fast Mode     | 100 |     |      | ns    |
| t <sub>SU;STO</sub> | Set Up Time for STOP                     | Standard Mode | 4.0 |     |      | us    |
|                     | Condition, Figure 9                      | Fast Mode     | 0.6 |     |      | us    |
| t <sub>BUF</sub>    | Bus Free Time                            | Standard Mode | 4.7 |     |      | us    |
| 501                 | Between STOP and START, <i>Figure 9</i>  | Fast Mode     | 1.3 |     |      | us    |
| t <sub>r</sub>      | SCL & SDA Rise Time,                     | Standard Mode |     |     | 1000 | ns    |
|                     | Figure 9                                 | Fast Mode     |     |     | 300  | ns    |

www.ti.com

| Symbol         | Parameter            | Conditions    | Min | Тур | Max | Units |  |  |  |
|----------------|----------------------|---------------|-----|-----|-----|-------|--|--|--|
| t <sub>f</sub> | SCL & SDA Fall Time, | Standard Mode |     |     | 300 | ns    |  |  |  |
|                | Figure 9             | Fast mode     |     |     | 300 | ns    |  |  |  |
| <b>D</b> O     |                      |               |     |     |     |       |  |  |  |

### DC and AC Serial Control Bus Characteristics

Over 3.3V supply and temperature ranges unless otherwise specified. (*Note 2, Note 3, Note 4*)

| Symbol              | Parameter               | Conditions                                                   | Min                       | Тур | Max                       | Units |
|---------------------|-------------------------|--------------------------------------------------------------|---------------------------|-----|---------------------------|-------|
| V <sub>IH</sub>     | Input High Level        | SDA and SCL                                                  | 0.7*<br>V <sub>DDIO</sub> |     | V <sub>DDIO</sub>         | v     |
| V <sub>IL</sub>     | Input Low Level Voltage | SDA and SCL                                                  | GND                       |     | 0.3*<br>V <sub>DDIO</sub> | v     |
| V <sub>HY</sub>     | Input Hysteresis        |                                                              |                           | >50 |                           | mV    |
| V <sub>OL</sub>     |                         | SDA, IOL = 1.25mA                                            | 0                         |     | 0.36                      | V     |
| l <sub>in</sub>     |                         | SDA or SCL, Vin = $V_{DDIO}$ or GND                          | -10                       |     | +10                       | μA    |
| t <sub>R</sub>      | SDA RiseTime – READ     |                                                              |                           | 430 |                           | ns    |
| t <sub>F</sub>      | SDA Fall Time – READ    | SDA, RPU = $10k\Omega_2$ , CD $\leq 400$ pF, <i>Figure 9</i> |                           | 20  |                           | ns    |
| t <sub>SU;DAT</sub> | Set Up Time — READ      | Figure 9                                                     |                           | 560 |                           | ns    |
| t <sub>HD;DAT</sub> | Hold Up Time — READ     | Figure 9                                                     |                           | 615 |                           | ns    |
| t <sub>SP</sub>     | Input Filter            |                                                              |                           | 50  |                           | ns    |
| C <sub>in</sub>     | Input Capacitance       | SDA or SCL                                                   |                           | <5  |                           | pF    |

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions.

Note 2: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

**Note 3:** Typical values represent most likely parametric norms at  $V_{DD} = 3.3V$ , Ta = +25 degC, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed.

**Note 4:** Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground except VOD and  $\Delta$ VOD, which are differential voltages.

Note 5: t<sub>DDLT</sub> is the time required by the device to obtain lock when exiting power-down state with an active serial stream.

Note 6: UI – Unit Interval is equivalent to one serialized data bit width (1UI = 1 / 35\*PCLK). The UI scales with PCLK frequency.

**Note 7:** Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal signal is AC coupled to the  $V_{DD33}$  and  $V_{DDIO}$  supplies with amplitude = 100 mVp-p measured at the device  $V_{DD33}$  and  $V_{DDIO}$  pins. Bit error rate testing of input to the Ser and output of the Des with 10 meter cable shows no error when the noise frequency on the Ser is less than 50MHz. The Des on the other hand shows no error when the noise frequency is less than 50 MHz.

Note 8: Specification is guaranteed by characterization and is not tested in production.

Note 9: Specification is guaranteed by design and is not tested in production.



www.ti.com









**FIGURE 8. BIST PASS Waveform** 



30136436

30136451



### **Functional Description**

The DS90UH926Q deserializer receives a 35-bits symbol over a single serial FPD-Link III pair operating upto 2.975 Gbps application payload. The serial stream contains an embedded clock, video control signals and the DC-balanced video data and audio data which enhance signal quality to support AC coupling.

The DS90UH926Q deserializer attains lock to a data stream without the use of a separate reference clock source, which greatly simplifies system complexity and overall cost. The deserializer also synchronizes to the serializer regardless of the data pattern, delivering true automatic "plug and lock" performance. It can lock to the incoming serial stream without the need of special training patterns or sync characters. The deserializer recovers the clock and data by extracting the embedded clock information, validating then deserializing the

incoming data stream. It also applies decryption through a High-Bandwidth Digital Content Protection (HDCP) Cipher to this video and audio data stream following reception of the data from the FPD-Link III decoder. The decrypted parallel LVCMOS video bus is provided to the display. The deserializer is intended for use with the DS90UH925Q serializer, but is also backward compatible with DS90UR905Q or DS90UR907Q FPD-Link II serializer.

#### HIGH SPEED FORWARD CHANNEL DATA TRANSFER

The High Speed Forward Channel (HS\_FC) is composed of 35 bits of data containing RGB data, sync signals, HDCP, I2C, and I2S audio transmitted from Serializer to Deserializer. *Figure 10* illustrates the serial stream per PCLK cycle. This data payload is optimized for signal transmission over an AC coupled link. Data is randomized, balanced and scrambled.



#### FIGURE 10. FPD-Link III Serial Stream

The device supports clocks in the range of 5 MHz to 85 MHz. The application payload rate is 2.975 Gbps maximum (175 Mbps minimum) with the actual line rate of 2.975 Gbps maximum and 525 Mbps Minimum.

#### LOW SPEED BACK CHANNEL DATA TRANSFER

The Low-Speed Backward Channel (LS\_BC) of the DS90UH926Q provides bidirectional communication between the display and host processor. The information is carried back from the Deserializer to the Serializer per serial symbol. The back channel control data is transferred over the single serial link along with the high-speed forward data, DC balance coding and embedded clock information. This architecture provides a backward path across the serial link together with a high speed forward channel. The back channel contains the I2C, HDCP, CRC and 4 bits of standard GPIO information with 10 Mbps line rate.

#### BACKWARD COMPATIBLE MODE

The DS90UH926Q is also backward compatible to DS90UR905Q and DS90UR907Q FPD Link II serializers at 15 - 65 MHz pixel clock frequencies. It receives 28-bits of data over a single serial FPD-Link II pair operating at the line rate of 420 Mbps to 1.82 Gbps. This backward compatible mode is provided through the MODE\_SEL pin(*Table 4*) or the configuration register (*Table 9*).

Note: In this mode, the minimum PCLK frequency is 15 MHz.

#### INPUT EQUALIZATION GAIN

FPD-Link III input adaptive equalizer provides compensation for transmission medium losses and reduces the medium-induced deterministic jitter. It equalizes up to 10m STP cables with 3 connection breaks at maximum serialized stream payload rate of 2.975 Gbps.

#### COMMON MODE FILTER PIN (CMF)

The deserializer provides access to the center tap of the internal termination. A capacitor must be placed on this pin for additional common-mode filtering of the differential pair. This can be useful in high noise environments for additional noise rejection capability. A 0.1  $\mu$ F capacitor has to be connected to this pin to Ground.

#### VIDEO CONTROL SIGNAL FILTER

When operating the devices in Normal Mode, the Video Control Signals (DE, HS, VS) have the following restrictions:

- Normal Mode with Control Signal Filter Enabled: DE and HS — Only 2 transitions per 130 clock cycles are transmitted, the transition pulse must be 3 PCLK or longer.
- Normal Mode with Control Signal Filter Disabled: DE and HS — Only 2 transitions per 130 clock cycles are transmitted, no restriction on minimum transition pulse.
- VS Only 1 transition per 130 clock cycles are transmitted, minimum pulse width is 130 clock cycles.

Video Control Signals are defined as low frequency signals with limited transitions. Glitches of a control signal can cause a visual display error. This feature allows for the chipset to validate and filter out any high frequency noise on the control signals. See *Figure 11*.



#### FIGURE 11. Video Control Signal Filter Waveform

#### **EMI REDUCTION FEATURES**

#### Spread Spectrum Clock Generation (SSCG)

The DS90UH926Q provides an internally generated spread spectrum clock (SSCG) to modulate its outputs. Both clock and data outputs are modulated. This will aid to lower system EMI. Output SSCG deviations to  $\pm 2.5\%$  (5% total) at up to 100 kHz modulations are available. This feature may be controlled by register. See *Table 1*, *Table 2* and *Table 9*.



#### FIGURE 12. SSCG Waveform

TABLE 1. SSCG Configuration LFMODE = L (15 - 85 MHz)

| SSCG Con | figuration ( | Spread Sp | ectrum   |            |
|----------|--------------|-----------|----------|------------|
| LFMODE = | L (15 - 85M  | Output    |          |            |
| SSC[2]   | SSC[1]       | SSC[0]    | Fdev (%) | Fmod (kHz) |
| L        | L            | L         | ±0.9     | PCLK /     |
| L        | L            | Н         | ±1.2     | 2168       |
| L        | Н            | L         | ±1.9     |            |
| L        | Н            | Н         | ±2.5     |            |
| н        | L            | L         | ±0.7     | PCLK /     |
| н        | L            | Н         | ±1.3     | 1300       |
| Н        | Н            | L         | ±2.0     |            |
| н        | н            | Н         | ±2.5     | ]          |

|                                                       | LFMODE = H (5 - <15 MHz) |        |                     |               |  |  |  |  |  |  |  |
|-------------------------------------------------------|--------------------------|--------|---------------------|---------------|--|--|--|--|--|--|--|
| SSCG Configuration (0x2C)<br>LFMODE = H (5 - <15 MHz) |                          |        | Spread Sp<br>Output | ectrum        |  |  |  |  |  |  |  |
| SSC[2]                                                | SSC[1]                   | SSC[0] | Fdev (%)            | Fmod<br>(kHz) |  |  |  |  |  |  |  |
| L                                                     | L                        | L      | ±0.5                | PCLK / 628    |  |  |  |  |  |  |  |
| L                                                     | L                        | Н      | ±1.3                |               |  |  |  |  |  |  |  |
| L                                                     | Н                        | L      | ±1.8                |               |  |  |  |  |  |  |  |
| L                                                     | Н                        | Н      | ±2.5                |               |  |  |  |  |  |  |  |
| Н                                                     | L                        | L      | ±0.7                | PCLK / 388    |  |  |  |  |  |  |  |
| Н                                                     | L                        | Н      | ±1.2                |               |  |  |  |  |  |  |  |
| Н                                                     | Н                        | L      | ±2.0                |               |  |  |  |  |  |  |  |
| Н                                                     | Н                        | Н      | ±2.5                |               |  |  |  |  |  |  |  |

**TABLE 2. SSCG Configuration** 

#### Enhanced Progressive Turn-On (EPTO)

The deserializer LVCMOS parallel outputs timing are delayed. Groups of 8-bit R, G and B outputs switch in a different time. This minimizes the number of outputs switching simultaneously and helps to reduce supply noise. In addition it spreads the noise spectrum out reducing overall EMI.

#### LVCMOS VDDIO Option

The deserializer parallel bus can operate with 1.8 V or 3.3 V levels (VDDIO) for target (Display) compatibility. The 1.8 V levels will offer a lower noise (EMI) and also a system power savings.

#### POWER DOWN (PDB)

The Serializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin can be controlled by the host or through the  $V_{DDIO}$ , where  $V_{DDIO}=3.0V$  to 3.6V or  $V_{DD33}$ . To save power disable the link when the display is not needed (PDB = LOW). When the pin is driven by the host, make sure to release it after  $V_{DD33}$  and  $V_{DDIO}$  have reached final levels; no external components are required. In the case of driven by the  $V_{DDIO}=3.0V$  to 3.6V or  $V_{DD33}$  directly, a 10 kohm resistor to the  $V_{DDIO}=3.0V$  to 3.6V or  $V_{DD33}$ , and a >10uF capacitor to the ground are required (See Figure 22 Typical Connection Diagram).

#### STOP STREAM SLEEP

The deserializer enters a low power SLEEP state when the input serial stream is stopped. A STOP condition is detected when the embedded clock bits are not present. When the serial stream starts again, the deserializer will then lock to the incoming signal and recover the data. Note – in STOP STREAM SLEEP, the Serial Control Bus Registers values are retained.

#### SERIAL LINK FAULT DETECT

The serial link fault detection is able to detect any of following seven (7) conditions

1) cable open

2) "+" to "-" short

3) "+" short to GND

4) "-" short to GND

5) "+" short to battery

6) "-" short to battery

7) Cable is linked incorrectly

If any one of the fault conditions occurs, The Link Detect Status is 0 (cable is not detected) on the Serial Control Bus

Register bit 0 of address 0x1C *Table 9*. The link errors can be monitored though Link Error Count of the Serial Control Bus Register bit [4:0] of address 0x41 *Table 9*.

#### OSCILLATOR OUTPUT

The deserializer provides an optional PCLK output when the input clock (serial stream) has been lost. This is based on an internal oscillator. The frequency of the oscillator may be selected. This feature is controlled by register Address 0x02, bit 5 (OSC Clock Enable). See *Table 9*.

#### PIXEL CLOCK EDGE SELECT (RFB)

The RFB determines the edge that the data is strobed on. If RFB is High ('1'), output data is strobed on the Rising edge of the PCLK. If RFB is Low ('0'), data is strobed on the Falling edge of the PCLK. This allows for inter-operability with down-

stream devices. The deserializer output does not need to use the same edge as the Ser input. This feature may be controlled by register. See *Table 9* 

#### CLOCK-DATA RECOVERY STATUS FLAG (LOCK), OUTPUT ENABLE (OEN) AND OUTPUT STATE SELECT (OSS\_SEL)

When PDB is driven HIGH, the CDR PLL begins locking to the serial input and LOCK is TRI-STATE or LOW (depending on the value of the OEN setting). After the DS90UH926Q completes its lock sequence to the input serial data, the LOCK output is driven HIGH, indicating valid data and clock recovered from the serial input is available on the parallel bus and PCLK outputs. The State of the outputs are based on the OEN and OSS\_SEL setting (*Table 3*) or register bit (*Table 9*). See *Figure 7*.

| TABLE 3. Output Sta | ates |
|---------------------|------|
|---------------------|------|

| Inputs          |     |     |             | Outputs |                 |                 |                                |
|-----------------|-----|-----|-------------|---------|-----------------|-----------------|--------------------------------|
| Serial<br>input | PDB | OEN | OSS_SE<br>L | Lock    | Pass            | Data, GPIO, I2S | CLK                            |
| Х               | 0   | Х   | Х           | Z       | Z               | Z               | Z                              |
| Х               | 1   | 0   | 0           | L or H  | L               | L               | L                              |
| Х               | 1   | 0   | 1           | L or H  | Z               | Z               | Z                              |
| Static          | 1   | 1   | 0           | L       | L               | L               | L/OSC (Register bit<br>enable) |
| Static          | 1   | 1   | 1           | L       | Previous Status | L               | L                              |
| Active          | 1   | 1   | 0           | Н       | L               | L               | L                              |
| Active          | 1   | 1   | 1           | Н       | Valid           | Valid           | Valid                          |

#### LOW FREQUENCY OPTIMIZATION (LFMODE)

The LFMODE is set via register (*Table 9*) or MODE\_SEL Pin 24 (*Table 4*). It controls the operating frequency of the deserializer. If LFMODE is Low (default), the PCLK frequency is between 15 MHz and 85 MHz. If LFMODE is High, the PCLK frequency is between 5 MHz and <15 MHz. Please note when the device LFMODE is changed, a PDB reset is required.

## INTERRUPT PIN — FUNCTIONAL DESCRIPTION AND USAGE (INTB)

- On DS90UH925, set register 0xC6[5] = 1 and 0xC6[0] = 1
- 2. DS90UH926Q deserializer INTB\_IN (pin 16) is set LOW by some downstream device.
- 3. DS90UH925Q serializer pulls INTB (pin 31) LOW. The signal is active low, so a LOW indicates an interrupt condition.
- 4. External controller detects INTB = LOW; to determine interrupt source, read HDCP\_ISR register .
- 5. A read to HDCP\_ISR will clear the interrupt at the DS90UH925, releasing INTB.
- 6. The external controller typically must then access the remote device to determine downstream interrupt source and clear the interrupt driving INTB\_IN. This would be

when the downstream device releases the INTB\_IN (pin 16) on the DS90UH926Q. The system is now ready to return to step (1) at next falling edge of INTB\_IN.

#### CONFIGURATION SELECT (MODE\_SEL)

Configuration of the device may be done via the MODE\_SEL input pin, or via the configuration register bit. A pull-up resistor and a pull-down resistor of suggested values may be used to set the voltage ratio of the MODE\_SEL input ( $V_{R4}$ ) and  $V_{DD33}$  to select one of the other 10 possible selected modes. See *Figure 13* and *Table 4*.



FIGURE 13. MODE\_SEL Connection Diagram

| # | Ideal Ratio<br>V <sub>R4</sub> /V <sub>DD33</sub> | ldeal V <sub>R4</sub><br>(V) | Suggested<br>Resistor R3<br>kΩ (1% tol) | Suggested<br>Resistor R4<br>kΩ (1% tol) | LFMODE | Repeater | Backward<br>Compatible | I2S Channel<br>B<br>(18–bit<br>Mode) |
|---|---------------------------------------------------|------------------------------|-----------------------------------------|-----------------------------------------|--------|----------|------------------------|--------------------------------------|
| 1 | 0                                                 | 0                            | Open                                    | 40.2 or Any                             | L      | L        | L                      | L                                    |
| 2 | 0.121                                             | 0.399                        | 294                                     | 40.2                                    | L      | L        | L                      | Н                                    |
| 3 | 0.152                                             | 0.502                        | 280                                     | 49.9                                    | L      | Н        | L                      | L                                    |
| 4 | 0.242                                             | 0.799                        | 240                                     | 76.8                                    | L      | Н        | L                      | Н                                    |
| 5 | 0.311                                             | 1.026                        | 226                                     | 102                                     | Н      | L        | L                      | L                                    |
| 6 | 0.402                                             | 1.327                        | 196                                     | 130                                     | Н      | L        | L                      | L                                    |
| 7 | 0.492                                             | 1.624                        | 169                                     | 165                                     | Н      | Н        | L                      | L                                    |
| 8 | 0.583                                             | 1.924                        | 137                                     | 191                                     | Н      | Н        | L                      | Н                                    |
| 9 | 0.629                                             | 2.076                        | 124                                     | 210                                     | L      | L        | Н                      | L                                    |

TABLE 4. Configuration Select (MODE\_SEL)

LFMODE: L = 15 – 85 MHz (Default); H = 5 – <15 MHz

Repeater: L = Repeater Off (Default); H = Repeater On

Backward Compatible: L = Backward Compatible Off (Default); H = Backward Compatible On to 905/907 (20 - 65MHz) I2S Channel B: L = I2S Channel B Off, Normal 24-bit RGB Mode (Default); H = I2S Channel B On, 18-bit RGB Mode with I2S\_DB Enabled.

#### **I2S RECEIVING**

In normal 24-bit RGB operation mode, the DS90UH926Q provides up to 3-bit of I2S. They are I2S\_CLK, I2S\_WC and I2S\_DA, as well as the Master I2S Clock (MCLK). The encrypted and packetized audio information is received during the video blanking periods along with specific information about the clock frequency. The audio decryption is supported per HDCP v1.3. A jitter cleaning feature reduces I2S\_CLK output jitter to +/- 2ns.

#### **I2S Jitter Cleaning**

The DS90UH926Q features a standalone PLL to clean the I2S data jitter supporting high end car audio systems. If I2S CLK frequency is less than 1MHz, this feature has to be disabled through the register bit I2S Control (0x2B) in *Table 9*.

#### Secondary I2S Channel

In 18-bit RGB operation mode, the secondary I2S data (I2S\_DB) can be used as the additional I2S audio channel in

additional to the 3-bit of I2S. The I2S\_DB is synchronized to the I2S\_CLK. To enable this synchronization feature on this bit, set the MODE\_SEL (*Table 4*) or program through the register bit (*Table 9*).

#### MCLK

The deserializer has an I2S Master Clock Output. It supports x1, x2, or x4 of I2S CLK Frequency. When the I2S PLL is disabled, the MCLK output is off. below covers the range of I2S sample rates and MCLK frequencies.

By default, all the MCLK output frequencies are x2 of the I2S CLK frequencies. The MCLK frequencies can also be enabled through the register bit [7:4] (*I2S MCLK Output*) of 0x3A shown in *Table 9.* To select desired MCLK frequency, write bit 7 (0x3A) = 1, then write to bit [6:4] accordingly.

#### TABLE 5. Audio Interface Frequencies

| Sample Rate<br>(kHz) | I2S Data Word Size<br>(bits) | I2S CLK<br>(MHz) | MCLK Output<br>(MHz) | Bit [6:4]<br>(Address 0x3A) |     |
|----------------------|------------------------------|------------------|----------------------|-----------------------------|-----|
| 32                   | 16                           | 1.024            | x1 of I2S CLK        | 000                         |     |
|                      |                              |                  | x2 of I2S CLK        | 001                         |     |
|                      |                              |                  | x4 of I2S CLK        | 010                         |     |
| 44.1                 | 16                           | 1.411            | x1 of I2S CLK        | 000                         |     |
|                      |                              |                  | x2 of I2S CLK        | 001                         |     |
|                      |                              |                  | x4 of I2S CLK        | 010                         |     |
| 48                   | 16                           | 1.536            | x1 of I2S CLK        | 000                         |     |
|                      |                              |                  | x2 of I2S CLK        | 001                         |     |
|                      |                              |                  | x4 of I2S CLK        | 010                         |     |
| 96                   | 16                           | 3.072            | x1 of I2S CLK        | 001                         |     |
|                      |                              |                  | x2 of I2S CLK        | 010                         |     |
|                      |                              |                  | x4 of I2S CLK        | 011                         |     |
| 192                  | 16                           | 6.144            | x1 of I2S CLK        | 010                         |     |
|                      |                              |                  | x2 of I2S CLK        | 011                         |     |
|                      |                              |                  | x4 of I2S CLK        | 100                         |     |
| 32                   | 24                           | 1.536            | x1 of I2S CLK        | 000                         |     |
|                      |                              |                  | x2 of I2S CLK        | 001                         |     |
|                      |                              |                  | x4 of I2S CLK        | 010                         |     |
| 44.1                 | 24                           | 2.117            | x1 of I2S CLK        | 001                         |     |
|                      |                              |                  | x2 of I2S CLK        | 010                         |     |
|                      |                              |                  | x4 of I2S CLK        | 011                         |     |
| 48                   | 24                           | 2.304            | x1 of I2S CLK        | 001                         |     |
|                      |                              |                  | x2 of I2S CLK        | 010                         |     |
|                      |                              |                  | x4 of I2S CLK        | 011                         |     |
| 96                   | 24                           | 96 24            | 4.608                | x1 of I2S CLK               | 010 |
|                      |                              | -                | x2 of I2S CLK        | 011                         |     |
|                      |                              |                  | x4 of I2S CLK        | 100                         |     |
| 192                  | 24                           | 9.216            | x1 of I2S CLK        | 011                         |     |
|                      |                              |                  | x2 of I2S CLK        | 100                         |     |
|                      |                              |                  | x4 of I2S CLK        | 101                         |     |
| 32                   | 32                           | 2.048            | x1 of I2S CLK        | 001                         |     |
|                      |                              |                  | x2 of I2S CLK        | 010                         |     |
|                      |                              |                  | x4 of I2S CLK        | 011                         |     |
| 44.1                 | 32                           | 2.822            | x1 of I2S CLK        | 001                         |     |
|                      |                              |                  | x2 of I2S CLK        | 010                         |     |
|                      |                              |                  | x4 of I2S CLK        | 011                         |     |
| 48                   | 32                           | 3.072            | x1 of I2S CLK        | 001                         |     |
|                      |                              |                  | x2 of I2S CLK        | 010                         |     |
|                      |                              |                  | x4 of I2S CLK        | 011                         |     |
| 96                   | 32                           | 6.144            | x1 of I2S CLK        | 010                         |     |
|                      |                              |                  | x2 of I2S CLK        | 011                         |     |
|                      |                              |                  | x4 of I2S CLK        | 100                         |     |
| 192                  | 32                           | 12.288           | x1 of I2S CLK        | 011                         |     |
|                      |                              |                  | x2 of I2S CLK        | 100                         |     |
|                      |                              |                  | x4 of I2S CLK        | 110                         |     |

#### GPIO[3:0] and GPO\_REG[8:4]

In 18-bit RGB operation mode, the optional R[1:0] and G[1:0] of the DS90UH926Q can be used as the general purpose IOs GPIO[3:0] in either forward channel (Outputs) or back channel (Inputs) application.

#### GPIO[3:0] Enable Sequence

See *Table 6* for the GPIO enable sequencing.

**Step 1:**Enable the 18-bit mode either through the configuration register bit *Table 9* on DS90UH925Q only. DS90UH926Q is automatically configured as in the 18-bit mode.

**Step 2:**To enable GPIO3 forward channel, write 0x03 to address 0x0F on DS90UH925Q, then write 0x05 to address 0x1F on DS90UH926Q.

| # | Description   | Device     | Forward Channel           | Back Channel              |
|---|---------------|------------|---------------------------|---------------------------|
| 1 | Enable 18-bit | DS90UH925Q | 0x12 = 0x04               | 0x12 = 0x04               |
|   | mode          | DS90UH926Q | Auto Load from DS90UH925Q | Auto Load from DS90UH925Q |
| 2 | GPIO3         | DS90UH925Q | 0x0F = 0x03               | 0x0F = 0x05               |
|   |               | DS90UH926Q | 0x1F = 0x05               | 0x1F = 0x03               |
| 3 | GPIO2         | DS90UH925Q | 0x0E = 0x30               | 0x0E = 0x50               |
|   |               | DS90UH926Q | 0x1E = 0x50               | 0x1E = 0x30               |
| 4 | GPIO1         | DS90UH925Q | 0x0E = 0x03               | 0x0E = 0x05               |
|   |               | DS90UH926Q | 0x1E = 0x05               | 0x0E = 0x05               |
| 5 | GPIO0         | DS90UH925Q | 0x0D = 0x93               | 0x0D = 0x95               |
|   |               | DS90UH926Q | 0x1D = 0x95               | 0x1D = 0x93               |

#### TABLE 6. GPIO Enable Sequencing Table

#### GPO\_REG[8:4] Enable Sequence

GPO\_REG[8:4] are the outputs only pins. They must be programmed through the local register bits. See *Table 7* for the GPO\_REG enable sequencing.

**Step 1:**Enable the 18-bit mode either through the configuration register bit on DS90UH925Q only. DS90UH926Q is automatically configured as in the 18-bit mode. Step 2:To enable GPO\_REG8 outputs an "1" , write 0x90 to address 0x21 on DS90UH926Q..

#### TABLE 7. GPO\_REG Enable Sequencing Table

| # | Description        | Device     | Local Access    | Local Output Value |
|---|--------------------|------------|-----------------|--------------------|
| 1 | Enable 18-bit mode | DS90UH926Q | 0x12 = 0x04     |                    |
|   |                    |            | (on DS90UH925Q) |                    |
| 2 | GPO_REG8           | DS90UH926Q | 0x21 = 0x90     | "1"                |
|   |                    |            | 0x21 = 0x10     | "0"                |
| 3 | GPO_REG7           | DS90UH926Q | 0x21 = 0x09     | "1"                |
|   |                    |            | 0x21 = 0x01     | "0"                |
| 4 | GPO_REG6           | DS90UH926Q | 0x20 = 0x90     | "1"                |
|   |                    |            | 0x20 = 0x10     | "0"                |
| 5 | GPO_REG5           | DS90UH926Q | 0x20 = 0x09     | "1"                |
|   |                    |            | 0x20 = 0x01     | "0"                |
| 6 | GPO_REG4           | DS90UH926Q | 0x1F = 0x90     | "1"                |
|   |                    |            | 0x1F = 0x10     | "0"                |

19

#### HDCP

The Cipher function is implemented in the deserializer per HDCP v1.3 specification. It supports the HDCP key exchange for the authentication over the back channel with the DS90UH925Q serializer. An on-chip Non-Volatile Memory (NVM) is used to store the HDCP keys. The confidential HD-CP keys are loaded by National during the manufacturing process and are not accessible external to the device.

The DS90UH926Q receives encrypted data and uses the Cipher engine to decrypt as per HDCP v1.3. Decrypted data is available at the deserializer parallel output interface.

#### HDCP REPEATER

When DS90UH925Q and DS90UH926Q are configured as the HDCP Repeater application, it provides a mechanism to

extend HDCP transmission over multiple links to multiple display devices. This repeater application provides a mechanism to authenticate all HDCP Receivers in the system and distribute protected content to the HDCP Receivers using the encryption mechanisms provided in the HDCP specification.

#### **Repeater Configuration**

In HDCP repeater application, In this document, the DS90UH925Q is referred to as the HDCP Transmitter or transmit port (TX), and the DS90UH926Q is referred to as the HDCP Receiver (RX). *Figure 14* shows the maximum configuration supported for HDCP Repeater implementations using the DS90UH925Q (TX) and DS90UH926Q (RX). Two levels of HDCP Repeaters are supported with a maximum of three HDCP Transmitters per HDCP Receiver.



FIGURE 14. HDCP Maximum Repeater Application

To support HDCP Repeater operation, the DS90UH926Q Deserializer includes the ability to control the downstream authentication process, assemble the KSV list for downstream HD-CP Receivers, and pass the KSV list to the upstream HD-CP Transmitter. An I2C master within the DS90UH926Q communicates with the I2C slave within the DS90UH925Q Serializer. The DS90UH925Q Serializer handles authenticating with a downstream HDCP Receiver and makes status available through the I2C interface. The DS90UH925Q and reads downstream KSV and KSV list values from the DS90UH925Q.

In addition to the I2C interface used to control the authentication process, the HDCP Repeater implementation includes two other interfaces. A parallel LVCMOS interface provides the unencrypted video data in 24-bit RGB format and includes the DE/VS/HS control signals. In addition to providing the RGB video data, the parallel LVCMOS interface communicates control information and packetized audio data during video blanking intervals. A separate I2S audio interface may optionally be used to send I2S audio data between the HDCP Receiver and HDCP Transmitter in place of using the packetized audio over the parallel LVCMOS interface. All audio and video data is decrypted at the output of the HDCP Receiver and is re-encrypted by the HDCP Transmitter. *Figure 15* provides more detailed block diagram of a 1:2 HD-CP repeater configuration.





#### **Repeater Connections**

The HDCP Repeater requires the following connections between the HDCP Receiver and each HDCP Transmitter *Figure 16*.

1) Video Data – Connect PCLK, RGB and control signals (DE, VS, HS).

2) I2C – Connect SCL and SDA signals. Both signals should be pulled up to  $V_{\text{DD33}}$  with 4.7 k $\Omega$  resistors.

 Audio – Connect I2S\_CLK, I2S\_WC, and I2S\_DA signals.
 IDx pin – Each HDCP Transmitter and Receiver must have an unique I2C address.

5) MODE\_SEL pin – All HDCP Transmitter and Receiver must be set into the Repeater Mode.

6) Interrupt pin- Connect DS90UH926Q INTB\_IN pin to DS90UH925Q INTB pin. The signal must be pulled up to  $V_{\mbox{DDIO}}.$ 





#### **BUILT IN SELF TEST (BIST)**

An optional At-Speed Built In Self Test (BIST) feature supports the testing of the high speed serial link and the lowspeed back channel. This is useful in the prototype stage, equipment production, in-system test and also for system diagnostics.

#### **BIST Configuration and Status**

The BIST mode is enabled at the deseralizer by the Pin select (Pin 44 BISTEN and Pin 16 BISTC) or configuration register (*Table 9*) through the deserializer. When LFMODE = 0, the pin based configuration defaults to external PCLK or 33 MHz internal Oscillator clock (OSC) frequency. In the absence of PCLK, the user can select the desired OSC frequency (default 33 MHz or 25MHz) through the register bit. When LFMODE = 1, the pin based configuration defaults to external PCLK or 12.5MHz MHz internal Oscillator clock (OSC) frequency.

When BISTEN of the deserializer is high, the BIST mode enable information is sent to the serializer through the Back Channel. The serializer outputs a test pattern and drives the link at speed. The deserializer detects the test pattern and monitors it for errors. The PASS output pin toggles to flag any payloads that are received with 1 to 35 bit errors.

The BIST status is monitored real time on PASS pin. The result of the test is held on the PASS output until reset (new BIST test or Power Down). A high on PASS indicates NO ERRORS were detected. A Low on PASS indicates one or more errors were detected. The duration of the test is controlled by the pulse width applied to the deserializer BISTEN pin. This BIST feature also contains a Link Error Count and a Lock Status. If the connection of the serial link is broken, then the link error count is shown in the register. When the PLL of the deserializer is locked or unlocked, the lock status can be read in the register. See *Table 9*.

#### Sample BIST Sequence

See *Figure 17* for the BIST mode flow diagram.

**Step 1:**For the DS90UH925Q and DS90UH926Q FPD-Link III chipset, BIST Mode is enabled via the BISTEN pin of DS90UH926Q FPD-Link III deserializer. The desired clock source is selected through BISTC pin.

**Step 2:**The DS90UH925Q serializer is woken up through the back channel if it is not already on. The all zero pattern on the data pins is sent through the FPD-Link III to the deserializer. Once the serializer and the deserializer are in BIST mode and the deserializer acquires Lock, the PASS pin of the deserializer goes high and BIST starts checking the data stream. If an error in the payload (1 to 35) is detected, the PASS pin will switch low for one half of the clock period. During the BIST test, the PASS output can be monitored and counted to determine the payload error rate.

**Step 3:**To Stop the BIST mode, the deserializer BISTEN pin is set Low. The deserializer stops checking the data. The final test result is held on the PASS pin. If the test ran error free, the PASS output will be High. If there was one or more errors detected, the PASS output will be Low. The PASS output state is held until a new BIST is run, the device is RESET, or Powered Down. The BIST duration is user controlled by the duration of the BISTEN signal.

**Step 4:**The Link returns to normal operation after the deserializer BISTEN pin is low. *Figure 18*shows the waveform diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2 shows one with multiple errors. In most cases it is difficult to generate errors due to the robustness of the link (differential data transmission etc.), thus they may be introduced by greatly extending the cable length, faulting the interconnect, reducing signal condition enhancements (Rx Equalization).



FIGURE 17. BIST Mode Flow Diagram

#### Forward Channel and Back Channel Error Checking

While in BIST mode, the serializer stops sampling RGB input pins and switches over to an internal test pattern. The internal all-zeroes pattern goes through scrambler, dc-balancing etc. and goes over the serial link to the deserializer. The deserializer on locking to the serial stream compares the recovered serial stream with all-zeroes and records any errors in status registers and dynamically indicates the status on PASS pin.

The back-channel data is checked for CRC errors once the serializer locks onto back-channel serial stream as indicated by link detect status (register bit 0x0C[0]). The CRC errors are recorded in an 8-bit register. The register is cleared when the serializer enters the BIST mode. As soon as the serializer exits BIST mode, the functional mode CRC register starts recording the CRC errors. The BIST mode CRC error register is active in BIST mode only and keeps the record of last BIST run until cleared or enters BIST mode again.



FIGURE 18. BIST Waveforms

30136464

### **Serial Control Bus**

The DS90UH926Q is configured by the use of a serial control bus that is I2C protocol compatible. Multiple deserializer devices may share the serial control bus since 16 device addresses are supported. Device address is set via R<sub>1</sub> and R<sub>2</sub> values on IDx pin. See *Figure 19* below.

SDA is the Serial Bus Data Input / Output signal. Both SCL and SDA signals require an external pull-up resistor to V<sub>DD33</sub>. For most applications a 4.7 k pull-up resistor to V<sub>DD33</sub> may be used. The resistor value may be adjusted for capacitive loading and data rate requirements. The signals are either pulled High, or driven Low.

The serial control bus consists of two signals and a configuration pin. The SCL is a Serial Bus Clock Input / Output. The





The configuration pin is the IDx pin. This pin sets one of 16 possible device addresses. A pull-up resistor and a pull-down resistor of suggested values may be used to set the voltage

ratio of the IDx input (V<sub>R2</sub>) and V<sub>DD33</sub> to select one of the other 16 possible addresses. See *Table 8*.

| #  | Ideal Ratio<br>V <sub>R2</sub> / V <sub>DD33</sub> | ldeal V <sub>R2</sub><br>(V) | Suggested<br>Resistor R1 kΩ<br>(1% tol) | Suggested<br>Resistor R2 kΩ<br>(1% tol) | Address 7'b | Address 8'b<br>Appended |
|----|----------------------------------------------------|------------------------------|-----------------------------------------|-----------------------------------------|-------------|-------------------------|
| 1  | 0                                                  | 0                            | Open                                    | 40.2 or Any                             | 0x2C        | 0x58                    |
| 2  | 0.121                                              | 0.399                        | 294                                     | 40.2                                    | 0x2D        | 0x5A                    |
| 3  | 0.152                                              | 0.502                        | 280                                     | 49.9                                    | 0x2E        | 0x5C                    |
| 4  | 0.182                                              | 0.601                        | 270                                     | 60.4                                    | 0x2F        | 0x5E                    |
| 5  | 0.212                                              | 0.700                        | 267                                     | 71.5                                    | 0x30        | 0x60                    |
| 6  | 0.242                                              | 0.799                        | 240                                     | 76.8                                    | 0x31        | 0x62                    |
| 7  | 0.273                                              | 0.901                        | 243                                     | 90.9                                    | 0x32        | 0x64                    |
| 8  | 0.310                                              | 1.023                        | 226                                     | 102                                     | 0x33        | 0x66                    |
| 9  | 0.356                                              | 1.175                        | 210                                     | 115                                     | 0x34        | 0x68                    |
| 10 | 0.402                                              | 1.327                        | 196                                     | 130                                     | 0x35        | 0x6A                    |
| 11 | 0.447                                              | 1.475                        | 182                                     | 147                                     | 0x36        | 0x6C                    |
| 12 | 0.492                                              | 1.624                        | 169                                     | 165                                     | 0x37        | 0x6E                    |
| 13 | 0.538                                              | 1.775                        | 154                                     | 180                                     | 0x38        | 0x70                    |
| 14 | 0.583                                              | 1.924                        | 137                                     | 191                                     | 0x39        | 0x72                    |
| 15 | 0.629                                              | 2.076                        | 124                                     | 210                                     | 0x3A        | 0x74                    |
| 16 | 0.727                                              | 2.399                        | 90.9                                    | 243                                     | 0x3B        | 0x76                    |

| TABLE 8 | . Serial | Control | Bus | Addresses | for | ID: |
|---------|----------|---------|-----|-----------|-----|-----|
| TABLE 8 | . Serial | Control | Bus | Addresses | for | ID  |

|              |              |                     |        | ΤÆ                   | ABLE 9. S        | erial Control                                       | ol Bus Registers                                                                                                                                     |
|--------------|--------------|---------------------|--------|----------------------|------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADD<br>(dec) | ADD<br>(hex) | Register<br>Name    | Bit(s) | Regist<br>er<br>Type | Default<br>(hex) | Function                                            | Descriptions                                                                                                                                         |
| 0            | 0x00         | I2C Device<br>ID    | 7:1    | RW                   |                  | Device ID                                           | 7-bit address of Deserializer<br>See <i>Table 4</i>                                                                                                  |
|              |              |                     | 0      | RW                   |                  | ID Setting                                          | I2C ID Setting<br>1: Register I2C Device ID (Overrides IDx pin)<br>0: Device ID is from IDx pin                                                      |
| 1            | 0x01         | Reset               | 7      | RW                   | 0x04             | Remote<br>Auto<br>Power<br>Down                     | Remote Auto Power Down<br>1: Power down when no forward channel link is detected<br>0: Do not power down when no forward channel link is<br>detected |
|              |              |                     | 6:3    |                      |                  |                                                     | Reserved.                                                                                                                                            |
|              |              |                     | 2      | RW                   |                  | BC<br>Enable                                        | Back channel enable<br>1: Enable<br>0: Disable                                                                                                       |
|              |              |                     | 1      | RW                   |                  | Digital<br>RESET1                                   | Reset the entire digital block including registers<br>This bit is self-clearing.<br>1: Reset<br>0: Normal operation                                  |
|              |              |                     | 0      | RW                   |                  | Digital<br>RESET0                                   | Reset the entire digital block except registers<br>This bit is self-clearing<br>1: Reset<br>0: Normal operation                                      |
| 2            | 0x02         | Configuratio<br>n 0 | 7      | RW                   | 0x00             | Output<br>Enable                                    | LVCMOS Output Enable.<br>1: Enable<br>0: Disable. Tri-state Outputs                                                                                  |
|              |              |                     | 6      | RW                   |                  | OEN and<br>OSS_SEL<br>Override                      | Overrides Output Enable Pin and Output State pin<br>1: Enable override<br>0: Disable - no override                                                   |
|              |              |                     | 5      | RW                   |                  | OSC<br>Clock<br>Enable                              | OSC Clock Output Enable<br>If loss of lock OSC clock is output onto PCLK<br>0: Disable<br>1: Enable                                                  |
|              |              |                     | 4      | RW                   |                  | Output<br>Sleep<br>State<br>Select<br>(OSS_SE<br>L) | OSS Select to Control Output State during Lock Low Period<br>1: Enable<br>0: Disable                                                                 |
|              |              |                     | 3      | RW                   |                  | Backward<br>Compatibl<br>e Mode<br>Override         | Mode_Sel Backward compatible Mode Override Enable.<br>1: Use register bit "reg_02[2]" to set BC Mode<br>0: Use MODE_SEL option.                      |
|              |              |                     | 2      | RW                   |                  | Backward<br>Compatibl<br>e Mode<br>Select           | Backward Compatible Mode Select to DS90UR905Q and<br>DS90UR907Q. If Reg_02[3] = 1<br>1: Backward Compatible is on<br>0: Backward Compatible is off   |
|              |              |                     | 1      | RW                   |                  | LFMODE<br>Pin<br>Override                           | LFMODE Pin Override Enable<br>1: Use register bit "reg_02[0]" to set LFMODE<br>0: Use LFMODE Pin                                                     |
|              |              |                     | 0      | RW                   |                  | LFMODE                                              | Low Frequency Mode Select<br>1: PCLK = 5 - <15 MHz<br>0: PCLK = 15 - 85 MHz                                                                          |

| ADD<br>(dec) | ADD<br>(hex) | Register<br>Name           | Bit(s) | Regist<br>er | Default<br>(hex) | Function                            | Descriptions                                                                                                                                                                                                                                                               |
|--------------|--------------|----------------------------|--------|--------------|------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |              |                            |        | Туре         |                  |                                     |                                                                                                                                                                                                                                                                            |
| 3            | 0x03         | Configuratio               | 7      |              | 0xF0             |                                     | Reserved.                                                                                                                                                                                                                                                                  |
|              |              | n 1                        | 6      | RW           |                  | CRC                                 | CRC Generator Enable (Back Channel)                                                                                                                                                                                                                                        |
|              |              |                            |        |              |                  | Generator                           | 1: Enable                                                                                                                                                                                                                                                                  |
|              |              |                            |        |              |                  | Enable                              | 0: Disable                                                                                                                                                                                                                                                                 |
|              |              |                            | 5      |              |                  |                                     | Reserved                                                                                                                                                                                                                                                                   |
|              |              |                            | 4      | RW           |                  | Filter<br>Enable                    | HS, VS, DE two clock filter When enabled, pulses less than<br>two full PCLK cycles on the DE, HS, and VS inputs will be<br>rejected<br>1: Filtering enable<br>0: Filtering disable                                                                                         |
|              |              |                            | 3      | RW           |                  | I2C Pass-                           | I2C Pass-Through Mode                                                                                                                                                                                                                                                      |
|              |              |                            |        |              |                  | through                             | 1: Pass-Through Enabled                                                                                                                                                                                                                                                    |
|              |              |                            |        |              |                  |                                     | 0: Pass-Through Disabled                                                                                                                                                                                                                                                   |
|              |              |                            | 2      | RW           |                  | Auto ACK                            | ACK Select<br>1: Auto ACK enable                                                                                                                                                                                                                                           |
|              |              |                            | 4      |              |                  |                                     | Descrived                                                                                                                                                                                                                                                                  |
|              |              |                            |        |              |                  |                                     | Divel Cleak Edge Salast                                                                                                                                                                                                                                                    |
|              |              |                            | 0      | nvv          |                  |                                     | 1: Parallel Interface Data is strobed on the Rising Clock<br>Edge.<br>0: Parallel Interface Data is strobed on the Falling Clock<br>Edge.                                                                                                                                  |
| 4            | 0x04         | BCC<br>Watchdog<br>Control | 7:1    | RW           | 0xFE             | BCC<br>Watchdog<br>Timer            | The watchdog timer allows termination of a control channel transaction, if it fails to complete within a programmed amount of time. This field sets the Bidirectional Control Channel Watchdog Timeout value in units of 2 milliseconds. This field should not be set to 0 |
|              |              |                            | 0      | RW           |                  | BCC<br>Watchdog<br>Timer<br>Disable | Disable Bidirectional Control Channel Watchdog Timer<br>1: Disables BCC Watchdog Timer operation<br>0: Enables BCC Watchdog Timer operation"                                                                                                                               |
| 5            | 0x05         | I2C Control<br>1           | 7      | RW           | 0x2E             | I2C Pass<br>Through<br>All          | I2C Pass-Through All Transactions<br>1: Enabled<br>0: Disabled                                                                                                                                                                                                             |
|              |              |                            | 6:4    | RW           |                  | I2C SDA<br>Hold Time                | Internal I2C SDA Hold Time<br>It configures the amount of internal hold time provided for the<br>SDA input relative to the SCL input. Units are 50 ns.                                                                                                                     |
|              |              |                            | 3:0    | RW           |                  | I2C Filter<br>Depth                 | I2C Glitch Filter Depth<br>It configures the maximum width of glitch pulses on the SCL<br>and SDA inputs that will be rejected. Units are 5 ns.                                                                                                                            |

| (hex) | Name                | 1                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                    |
|-------|---------------------|------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                     |                                                      | er<br>-                                                                          | (hex)                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                    |
|       |                     | _                                                    | Туре                                                                             |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                    |
| 0x06  | 2                   | 7                                                    | К                                                                                | 0x00                                                                                                                                                                                                                                                                                                                             | Forward<br>Channel<br>Sequence<br>Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Control Channel Sequence Error Detected It indicates a sequence error has been detected in forward control channel. It this bit is set, an error may have occurred in the control channel operation.                                                                                                                                                               |
|       |                     | 6                                                    | RW                                                                               |                                                                                                                                                                                                                                                                                                                                  | Clear<br>Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | It clears the Sequence Error Detect bit<br>This bit is not self-clearing.                                                                                                                                                                                                                                                                                          |
|       |                     |                                                      |                                                                                  |                                                                                                                                                                                                                                                                                                                                  | Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                    |
|       |                     | 5                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reserved                                                                                                                                                                                                                                                                                                                                                           |
|       |                     | 4:3                                                  | RW                                                                               |                                                                                                                                                                                                                                                                                                                                  | SDA<br>Output<br>Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SDA Output Delay<br>This field configures output delay on the SDA output. Setting<br>this value will increase output delay in units of 50 ns. Nominal<br>output delay values for SCL to SDA are:<br>00 : 250ns<br>01: 300ns<br>10: 350ns<br>11: 400ns                                                                                                              |
|       |                     | 2                                                    | RW                                                                               |                                                                                                                                                                                                                                                                                                                                  | Local<br>Write                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Disable Remote Writes to Local Registers through Serializer<br>(Does not affect remote access to I2C slaves at Deserializer)<br>1: Stop remote write to local device registers<br>0: remote write to local device registers                                                                                                                                        |
|       |                     | 1                                                    | RW                                                                               |                                                                                                                                                                                                                                                                                                                                  | I2C Bus<br>Timer<br>Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Speed up I2C Bus Watchdog Timer<br>1: Timer expires after approximately 50 ms<br>0: Timer expires after approximately 1s                                                                                                                                                                                                                                           |
|       |                     | 0                                                    | RW                                                                               |                                                                                                                                                                                                                                                                                                                                  | I2C Bus<br>Timer<br>Disable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Disable I2C Bus Timer When the I2C Timer may be used to detect when the I2C bus is free or hung up following an invalid termination of a transaction. If SDA is high and no signalling occurs for approximately 1 s, the I2C bus is assumed to be free. If SDA is low and no signaling occurs, the device will attempt to clear the bus by driving 9 clocks on SCL |
| 0x07  | Remote<br>Device ID | 7:1                                                  | RW                                                                               | 0x18                                                                                                                                                                                                                                                                                                                             | Remote<br>ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remote ID<br>Configures the I2C Slave ID of the remote Serializer. A value<br>of 0 in this field disables I2C access to remote Serializer. This<br>field is automatically configured via the Serializer Forward<br>Channel. Software may overwrite this value, but should also<br>set the FREEZE DEVICE ID bit to prevent overwriting by the<br>Forward Channel.   |
|       |                     | 0                                                    | RW                                                                               |                                                                                                                                                                                                                                                                                                                                  | Freeze<br>Device ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Freeze Serializer Device ID<br>1: Prevent auto-loading of the Serializer Device ID from the<br>Forward Channel. The ID will be frozen at the value written.<br>0: Update                                                                                                                                                                                           |
| 0x08  | SlaveID[0]          | 7:1                                                  | RW                                                                               | 0x00                                                                                                                                                                                                                                                                                                                             | Target<br>Slave<br>Device<br>ID0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7-bit Remote Slave Device ID 0<br>Configures the physical I2C address of the remote I2C Slave<br>device attached to the remote Serializer. If an I2C transaction<br>is addressed to the Slave Alias ID0, the transaction will be<br>remapped to this address before passing the transaction<br>across the Bidirectional Control Channel to the Serializer.         |
| 0,000 |                     |                                                      |                                                                                  | 0,000                                                                                                                                                                                                                                                                                                                            | Tawast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 hit Demote Cleve Device ID 1                                                                                                                                                                                                                                                                                                                                     |
| 0x09  | SlavelD[1]          | 0                                                    | HW                                                                               | UXUO                                                                                                                                                                                                                                                                                                                             | I arget<br>Slave<br>Device<br>ID1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Configures the physical I2C address of the remote I2C Slave<br>device attached to the remote Serializer. If an I2C transaction<br>is addressed to the Slave Alias ID1, the transaction will be<br>remapped to this address before passing the transaction<br>across the Bidirectional Control Channel to the Serializer.<br><b>Reserved</b>                        |
|       | 0x07                | 20x07Remote<br>Device ID0x08SlaveID[0]0x09SlaveID[1] | 2<br>6<br>5<br>4:3<br>7<br>4:3<br>1<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 2           6       RW         5          4:3       RW         2       RW         1       RW         0       RW         0x07       Remote<br>Device ID       7:1         0x08       SlaveID[0]       7:1       RW         0x09       SlaveID[1]       7:1       RW         0            0x09       SlaveID[1]       7:1       RW | 2       I       I         6       RW         5       I         4:3       RW         2       RW         1       RW         1       RW         0       RW         0x00       SlavelD[0]       7:1         0       RW       0x00         0       I       I         0       I       I         0       I       I         0 | 2<                                                                                                                                                                                                                                                                                                                                                                 |

| ADD   | ADD    | Register<br>Name  | Bit(s) | Regist | Default | Function                         | Descriptions                                                                                                                                                                                                                                                                                                                                               |
|-------|--------|-------------------|--------|--------|---------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (uec) | (IIEX) | Name              |        | Type   | (IIEX)  |                                  |                                                                                                                                                                                                                                                                                                                                                            |
| 10    | 0x0A   | SlaveID[2]        | 7:1    | RW     | 0x00    | Target<br>Slave<br>Device<br>ID2 | 7-bit Remote Slave Device ID 2<br>Configures the physical I2C address of the remote I2C Slave<br>device attached to the remote Serializer. If an I2C transaction<br>is addressed to the Slave Alias ID2, the transaction will be<br>remapped to this address before passing the transaction<br>across the Bidirectional Control Channel to the Serializer. |
|       |        |                   | 0      |        |         |                                  | Reserved                                                                                                                                                                                                                                                                                                                                                   |
| 11    | 0x0B   | SlaveID[3]        | 7:1    | RW     | 0x00    | Target<br>Slave<br>Device<br>ID3 | 7-bit Remote Slave Device ID 3<br>Configures the physical I2C address of the remote I2C Slave<br>device attached to the remote Serializer. If an I2C transaction<br>is addressed to the Slave Alias ID3, the transaction will be<br>remapped to this address before passing the transaction<br>across the Bidirectional Control Channel to the Serializer. |
|       |        |                   | 0      |        |         |                                  | Reserved                                                                                                                                                                                                                                                                                                                                                   |
| 12    | 0x0C   | SlaveID[4]        | 7:1    | RW     | 0x00    | Target<br>Slave<br>Device<br>ID4 | 7-bit Remote Slave Device ID 4<br>Configures the physical I2C address of the remote I2C Slave<br>device attached to the remote Serializer. If an I2C transaction<br>is addressed to the Slave Alias ID4, the transaction will be<br>remapped to this address before passing the transaction<br>across the Bidirectional Control Channel to the Serializer. |
|       |        |                   | 0      |        |         |                                  | Reserved                                                                                                                                                                                                                                                                                                                                                   |
| 13    | 0x0D   | SlaveID[5]        | 7:1    | RW     | 0x00    | Target<br>Slave<br>Device<br>ID5 | 7-bit Remote Slave Device ID 5<br>Configures the physical I2C address of the remote I2C Slave<br>device attached to the remote Serializer. If an I2C transaction<br>is addressed to the Slave Alias ID5, the transaction will be<br>remapped to this address before passing the transaction<br>across the Bidirectional Control Channel to the Serializer. |
|       |        |                   | 0      |        |         |                                  | Reserved                                                                                                                                                                                                                                                                                                                                                   |
| 14    | 0x0E   | SlaveID[6]        | 7:1    | RW     | 0x00    | Target<br>Slave<br>Device<br>ID6 | 7-bit Remote Slave Device ID 6<br>Configures the physical I2C address of the remote I2C Slave<br>device attached to the remote Serializer. If an I2C transaction<br>is addressed to the Slave Alias ID6, the transaction will be<br>remapped to this address before passing the transaction<br>across the Bidirectional Control Channel to the Serializer. |
|       |        |                   | 0      |        |         |                                  | Reserved                                                                                                                                                                                                                                                                                                                                                   |
| 15    | 0x0F   | SlaveID[7]        | 7:1    | RW     | 0x00    | Target<br>Slave<br>Device<br>ID7 | 7-bit Remote Slave Device ID 7<br>Configures the physical I2C address of the remote I2C Slave<br>device attached to the remote Serializer. If an I2C transaction<br>is addressed to the Slave Alias ID7, the transaction will be<br>remapped to this address before passing the transaction<br>across the Bidirectional Control Channel to the Serializer. |
|       |        |                   | 0      |        |         |                                  | Reserved                                                                                                                                                                                                                                                                                                                                                   |
| 16    | 0x10   | SlaveAlias<br>[0] | 7:1    | RW     | 0x00    | ID[0]<br>Match                   | 7-bit Remote Slave Device Alias ID 0<br>Configures the decoder for detecting transactions<br>designated for an I2C Slave device attached to the remote<br>Serializer. The transaction will be remapped to the address<br>specified in the Slave ID0 register.<br>A value of 0 in this field disables access to the remote I2C<br>Slave.<br><b>Reserved</b> |

| ADD   | ADD   | Register          | Bit(s) | Regist     | Default | Function       | Descriptions                                                                                                                                                                                                                                                                                                                            |
|-------|-------|-------------------|--------|------------|---------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (dec) | (hex) | Name              |        | er<br>Type | (hex)   |                |                                                                                                                                                                                                                                                                                                                                         |
| 17    | 0x11  | SlaveAlias<br>[1] | 7:1    | RW         | 0x00    | ID[1]<br>Match | 7-bit Remote Slave Device Alias ID 1<br>Configures the decoder for detecting transactions<br>designated for an I2C Slave device attached to the remote<br>Serializer. The transaction will be remapped to the address<br>specified in the Slave ID1 register.<br>A value of 0 in this field disables access to the remote I2C<br>Slave. |
|       |       |                   | 0      |            |         |                | Reserved                                                                                                                                                                                                                                                                                                                                |
| 18    | 0x12  | SlaveAlias<br>[2] | 7:1    | RW         | 0x00    | ID[2]<br>Match | 7-bit Remote Slave Device Alias ID 2<br>Configures the decoder for detecting transactions<br>designated for an I2C Slave device attached to the remote<br>Serializer. The transaction will be remapped to the address<br>specified in the Slave ID2 register.<br>A value of 0 in this field disables access to the remote I2C<br>Slave. |
|       |       |                   | 0      |            |         |                | Reserved                                                                                                                                                                                                                                                                                                                                |
| 19    | 0x13  | SlaveAlias<br>[3] | 7:1    | RW         | 0x10    | ID[3]<br>Match | 7-bit Remote Slave Device Alias ID 3<br>Configures the decoder for detecting transactions<br>designated for an I2C Slave device attached to the remote<br>Serializer. The transaction will be remapped to the address<br>specified in the Slave ID3 register.<br>A value of 0 in this field disables access to the remote I2C<br>Slave. |
|       |       |                   | 0      |            |         |                | Reserved                                                                                                                                                                                                                                                                                                                                |
| 20    | 0x14  | SlaveAlias<br>[4] | 7:1    | RW         | 0x00    | ID[4]<br>Match | 7-bit Remote Slave Device Alias ID 4<br>Configures the decoder for detecting transactions<br>designated for an I2C Slave device attached to the remote<br>Serializer. The transaction will be remapped to the address<br>specified in the Slave ID4 register.<br>A value of 0 in this field disables access to the remote I2C<br>Slave. |
|       |       |                   | 0      |            |         |                | Reserved                                                                                                                                                                                                                                                                                                                                |
| 21    | 0x15  | SlaveAlias<br>[5] | 7:1    | RW         | 0x00    | ID[5]<br>Match | 7-bit Remote Slave Device Alias ID 5<br>Configures the decoder for detecting transactions<br>designated for an I2C Slave device attached to the remote<br>Serializer. The transaction will be remapped to the address<br>specified in the Slave ID5 register.<br>A value of 0 in this field disables access to the remote I2C<br>Slave. |
|       |       |                   | 0      |            |         |                | Reserved                                                                                                                                                                                                                                                                                                                                |
| 22    | 0x16  | SlaveAlias<br>[6] | 7:1    | RW         | 0x00    | ID[6]<br>Match | 7-bit Remote Slave Device Alias ID 6<br>Configures the decoder for detecting transactions<br>designated for an I2C Slave device attached to the remote<br>Serializer. The transaction will be remapped to the address<br>specified in the Slave ID6 register.<br>A value of 0 in this field disables access to the remote I2C<br>Slave. |
|       |       |                   | 0      | RW         |         |                | Reserved                                                                                                                                                                                                                                                                                                                                |

| ADD<br>(dec) | ADD<br>(hex) | Register<br>Name  | Bit(s) | Regist<br>er<br>Type | Default<br>(hex) | Function                  | Descriptions                                                                                                                                                                                                                                                                                                                            |
|--------------|--------------|-------------------|--------|----------------------|------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23           | 0x17         | SlaveAlias<br>[7] | 7:1    | RW                   | 0x00             | ID[7]<br>Match            | 7-bit Remote Slave Device Alias ID 7<br>Configures the decoder for detecting transactions<br>designated for an I2C Slave device attached to the remote<br>Serializer. The transaction will be remapped to the address<br>specified in the Slave ID7 register.<br>A value of 0 in this field disables access to the remote I2C<br>Slave. |
|              |              |                   | 0      |                      |                  |                           | Reserved                                                                                                                                                                                                                                                                                                                                |
| 28           | 0x1C         | General           | 7:4    | RW                   | 0x00             |                           | Reserved                                                                                                                                                                                                                                                                                                                                |
|              |              | Status            | 3      | R                    |                  | I2S<br>Locked             | I2S Lock Status<br>0: I2S PLL controller not locked<br>1: I2S PLL controller locked to input I2S clock                                                                                                                                                                                                                                  |
|              |              |                   | 2      |                      |                  |                           | Reserved                                                                                                                                                                                                                                                                                                                                |
|              |              |                   | 1      | R                    |                  | Signal<br>Detect          | Signal Detect<br>1: Serial input detected<br>0: Serial input not detected                                                                                                                                                                                                                                                               |
|              |              |                   | 0      | R                    |                  | Lock                      | Deserializer CDR, PLL's clock to recovered clock frequency<br>1: Deserializer locked to recovered clock<br>0: Deserializer not locked                                                                                                                                                                                                   |
| 29           | 0x1D         | GPIO0             | 7:4    | R                    | 0xA0             | Rev-ID                    | Revision ID: 1010: Production Device                                                                                                                                                                                                                                                                                                    |
|              |              | Config            | 3      | RW                   |                  | GPIO0<br>Output<br>Value  | Local GPIO Output Value<br>This value is output on the GPIO pin when the GPIO function<br>is enabled, the local GPIO direction is Output, and remote<br>GPIO control is disabled.                                                                                                                                                       |
|              |              |                   | 2      | RW                   |                  | GPIO0<br>Remote<br>Enable | Remote GPIO0 Control<br>1: Enable GPIO control from remote Serializer. The GPIO pin<br>will be an output, and the value is received from the remote<br>Deserializer.<br>0: Disable GPIO control from remote Serializer                                                                                                                  |
|              |              |                   | 1      | RW                   |                  | GPIO0<br>Direction        | Local GPIO Direction<br>1: Input<br>0: Output                                                                                                                                                                                                                                                                                           |
|              |              |                   | 0      | RW                   |                  | GPIO0<br>Enable           | GPIO Function Enable<br>1: Enable GPIO operation<br>0: Enable normal operation                                                                                                                                                                                                                                                          |

| ADD   | ADD   | Register  | Bit(s) | Regist     | Default | Function        | Descriptions                                                 |
|-------|-------|-----------|--------|------------|---------|-----------------|--------------------------------------------------------------|
| (dec) | (hex) | Name      |        | er<br>Typo | (hex)   |                 |                                                              |
|       | 0.45  |           | 7      | Туре       | 0.00    |                 | Least CDIO Output Value                                      |
| 30    |       | GPIO2 and | 1      | RW         | 0x00    | Output          | Local GPIO Output value                                      |
|       |       | Config    |        |            |         | Value           | enabled the local GPIO direction is Output, and remote       |
|       |       | Coning    |        |            |         | Value           | GPIO control is disabled.                                    |
|       |       |           | 6      | BW         |         | GPIO2           | Bemote GPIO2 Control                                         |
|       |       |           | Ũ      |            |         | Remote          | 1: Enable GPIO control from remote Serializer. The GPIO pin  |
|       |       |           |        |            |         | Enable          | will be an output, and the value is received from the remote |
|       |       |           |        |            |         |                 | Deserializer.                                                |
|       |       |           |        |            |         |                 | 0: Disable GPIO control from remote Serializer.              |
|       |       |           | 5      | RW         |         | GPIO2           | Local GPIO Direction                                         |
|       |       |           |        |            |         | Direction       | 1: Input                                                     |
|       |       |           |        |            |         |                 | 0: Output                                                    |
|       |       |           | 4      | RW         |         | GPIO2           | GPIO Function Enable                                         |
|       |       |           |        |            |         | Enable          | 1: Enable GPIO operation                                     |
|       |       |           |        |            |         |                 | 0: Enable normal operation                                   |
|       |       |           | 3      | RW         |         | GPIO1           | Local GPIO Output Value                                      |
|       |       |           |        |            |         | Output          | This value is output on the GPIO when the GPIO function is   |
|       |       |           |        |            |         | value           | enabled, the local GPIO direction is Output, and remote      |
|       |       |           |        |            |         |                 | GPIO control is disabled.                                    |
|       |       |           | 2      | RW         |         | GPI01<br>Domoto | Remote GPIOT Control                                         |
|       |       |           |        |            |         | Enablo          | 1. Enable GFIO control from remote Senailzer. The GFIO pin   |
|       |       |           |        |            |         |                 | Deserializer                                                 |
|       |       |           |        |            |         |                 | 0: Disable GPIO control from remote Serializer.              |
|       |       |           | 1      | RW         |         | GPIO1           | Local GPIO Direction                                         |
|       |       |           |        |            |         | Direction       | 1: Input                                                     |
|       |       |           |        |            |         |                 | 0: Output                                                    |
|       |       |           | 0      | RW         |         | GPIO1           | GPIO Function Enable                                         |
|       |       |           |        |            |         | Enable          | 1: Enable GPIO operation                                     |
|       |       |           |        |            |         |                 | 0: Enable normal operation                                   |
| 31    | 0x1F  | GPO_REG4  | 7      | RW         | 0x00    | GPO_RE          | Local GPO_REG4 Output Value                                  |
|       |       | and GPO3  |        |            |         | G4 Output       | This value is output on the GPO when the GPO function is     |
|       |       | Config    |        |            |         | Value           | enabled, the local GPO direction is Output, and remote GPO   |
|       |       |           |        |            |         |                 | control is disabled.                                         |
|       |       |           | 6:5    |            |         |                 | Reserved                                                     |
|       |       |           | 4      | RW         |         | GPO_RE          | GPO_REG4 Function Enable                                     |
|       |       |           |        |            |         | G4              | 1: Enable GPO operation                                      |
|       |       |           |        |            |         | Enable          | U: Enable normal operation                                   |
|       |       |           | 3      | RW         |         | GPI03           | Local GPIO Output Value This value is output on the GPIO     |
|       |       |           |        |            |         |                 | when the GPIO function is enabled, the local GPIO direction  |
|       |       |           | 0      |            |         |                 | Pomoto GPIO2 Control                                         |
|       |       |           | 2      | ۳۷         |         | Bemoto          | 1. Enable GPIO control from remote Socializor. The GPIO pin  |
|       |       |           |        |            |         | Fnable          | will be an output, and the value is received from the remote |
|       |       |           |        |            |         |                 | Deserializer.                                                |
|       |       |           |        |            |         |                 | 0: Disable GPIO control from remote Serializer.              |
|       |       |           | 1      | RW         | 5       | GPIO3           | Local GPIO Direction                                         |
|       |       |           |        |            |         | Direction       | 1: Input                                                     |
|       |       |           |        |            |         |                 | 0: Output                                                    |
|       |       |           | 0      | RW         |         | GPIO3           | GPIO Function Enable                                         |
|       |       |           |        |            |         | Enable          | 1: Enable GPIO operation                                     |
|       |       |           |        |            |         |                 | 0: Enable normal operation                                   |

31

| ADD<br>(dec) | ADD<br>(hex) | Register<br>Name                      | Bit(s) | Regist<br>er<br>Type | Default<br>(hex) | Function                     | Descriptions                                                                                                                                                                  |
|--------------|--------------|---------------------------------------|--------|----------------------|------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32           | 0x20         | GPO_REG6<br>and<br>GPO_REG5<br>Config | 7      | RW                   | 0x00             | GPO_RE<br>G6 Output<br>Value | Local GPO_REG6 Output Value<br>This value is output on the GPO when the GPO function is<br>enabled, the local GPO direction is Output, and remote GPO<br>control is disabled. |
|              |              |                                       | 6:5    |                      |                  |                              | Reserved                                                                                                                                                                      |
|              |              |                                       | 4      | RW                   |                  | GPO_RE<br>G6<br>Enable       | GPO_REG6 Function Enable<br>1: Enable GPO operation<br>0: Enable normal operation                                                                                             |
|              |              |                                       | 3      | RW                   |                  | GPO_RE<br>G5 Output<br>Value | Local GPO_REG5 Output Value<br>This value is output on the GPO when the GPO function is<br>enabled, the local GPO direction is Output, and remote GPO<br>control is disabled. |
|              |              |                                       | 2:1    |                      |                  |                              | Reserved                                                                                                                                                                      |
|              |              |                                       | 0      | RW                   |                  | GPO_RE<br>G5<br>Enable       | GPO_REG5 Function Enable<br>1: Enable GPO operation<br>0: Enable normal operation                                                                                             |
| 33           | 0x21         | GPO8 and<br>GPO7<br>Config            | 7      | RW                   | 0x00             | GPO_RE<br>G8 Output<br>Value | Local GPO_REG8 Output Value<br>This value is output on the GPO when the GPO function is<br>enabled, the local GPO direction is Output, and remote GPO<br>control is disabled. |
|              |              |                                       | 6:5    |                      |                  |                              | Reserved                                                                                                                                                                      |
|              |              |                                       | 4      | RW                   |                  | GPO_RE<br>G8<br>Enable       | GPO_REG8 Function Enable<br>1: Enable GPO operation<br>0: Enable normal operation                                                                                             |
|              |              |                                       | 3      | RW                   |                  | GPO_RE<br>G7 Output<br>Value | Local GPO_REG7 Output Value<br>This value is output on the GPO when the GPO function is<br>enabled, the local GPO direction is Output, and remote GPO<br>control is disabled. |
|              |              |                                       | 2:1    |                      | 1                |                              | Reserved                                                                                                                                                                      |
|              |              |                                       | 0      | RW                   |                  | GPO_RE<br>G7<br>Enable       | GPO_REG7 Function Enable<br>1: Enable GPO operation<br>0: Enable normal operation                                                                                             |

| ADD   | ADD<br>(box) | Register             | Bit(s) | Regist | Default | Function                               | Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |                            |                                                                                                                                                                                                         |
|-------|--------------|----------------------|--------|--------|---------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (uec) |              | Indifie              |        | Type   |         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |                            |                                                                                                                                                                                                         |
| 34    | 0x22         | Data Path<br>Control | 7      | RW     | 0x00    | Override<br>FC Config                  | <ol> <li>Disable loading of this register from the forward channel,<br/>keeping locally written values intact</li> <li>Allow forward channel loading of this register</li> </ol>                                                                                                                                                                                                                                                                                                                                                            |  |  |  |                            |                                                                                                                                                                                                         |
|       |              |                      | 6      | RW     |         | Pass<br>RGB                            | Setting this bit causes RGB data to be sent independent of<br>DE. This allows operation in systems which may not use DE<br>to frame video data or send other data when DE is<br>deasserted. Note that setting this bit prevents HDCP<br>operation and blocks packetized audio. This bit does not<br>need to be set in DS90UB925 or in Backward Compatibility<br>mode.<br>1: Pass RGB independent of DE<br>0: Normal operation<br>Note: this bit is automatically loaded from the remote<br>serializer unless bit 7 of this register is set. |  |  |  |                            |                                                                                                                                                                                                         |
|       |              |                      | 5      | RW     |         | DE<br>Polarity                         | This bit indicates the polarity of the DE (Data Enable) signal.<br>1: DE is inverted (active low, idle high)<br>0: DE is positive (active high, idle low)<br>Note: this bit is automatically loaded from the remote<br>serializer unless bit 7 of this register is set.                                                                                                                                                                                                                                                                     |  |  |  |                            |                                                                                                                                                                                                         |
|       |              |                      | 4      | RW     |         | I2S_Gen                                | This bit controls whether the HDCP Receiver outputs<br>packetized Auxiliary/Audio data on the RGB video output<br>pins.<br>1: Don't output packetized audio data on RGB video output<br>pins<br>0: Output packetized audio on RGB video output pins.<br>Note: this bit is automatically loaded from the remote<br>serializer unless bit 7 of this register is set.                                                                                                                                                                          |  |  |  |                            |                                                                                                                                                                                                         |
|       |              |                      | 3      | RW     | •       | I2S<br>Channel<br>B Enable<br>Override | 1: Set I2S Channel B Enable from reg_22[0]<br>0: Set I2S Channel B Enable from MODE_SEL pin<br>Note: this bit is automatically loaded from the remote<br>serializer unless bit 7 of this register is set.                                                                                                                                                                                                                                                                                                                                   |  |  |  |                            |                                                                                                                                                                                                         |
|       |              |                      | 2      | RW     | •       | 18-bit<br>Video<br>Select              | 1: Select 18-bit video mode<br>0: Select 24-bit video mode<br>Note: this bit is automatically loaded from the remote<br>serializer unless bit 7 of this register is set.                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |                            |                                                                                                                                                                                                         |
|       |              |                      | 1      | RW     | RW      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  | I2S<br>Transport<br>Select | 1: Enable I2S Data Forward Channel Frame Transport<br>0: Enable I2S Data Island Transport<br>Note: this bit is automatically loaded from the remote<br>serializer unless bit 7 of this register is set. |
|       |              |                      | 0      | RW     |         | I2S<br>Channel<br>B Enable             | I2S Channel B Enable<br>1: Enable I2S Channel B on B1 output<br>0: I2S Channel B disabled<br>Note: this bit is automatically loaded from the remote<br>serializer unless bit 7 of this register is set.                                                                                                                                                                                                                                                                                                                                     |  |  |  |                            |                                                                                                                                                                                                         |

| ADD<br>(dec) | ADD<br>(hex) | Register<br>Name              | Bit(s) | Regist<br>er<br>Type | Default<br>(hex) | Function                | Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|--------------|-------------------------------|--------|----------------------|------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 35           | 0x23         | General<br>Purpose<br>Control | 7      | RW                   | 0x10             | Rx RGB<br>Checksu<br>m  | RX RGB Checksum Enable Setting this bit enables the<br>Receiver to validate a one-byte checksum following each<br>video line. Checksum failures are reported in the HDCP_STS<br>register                                                                                                                                                                                                                                                                                                                                                          |
|              |              |                               | 6:5    |                      |                  |                         | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |              |                               | 4      | R                    | 1                | Mode_Sel                | Mode Select is Done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |              |                               | 3      | R                    |                  | LFMODE                  | Low Frequency Mode Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              |              |                               | 2      | R                    |                  | Repeater                | Repeater Mode Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |              |                               | 1      | R                    |                  | Backward                | Backward Compatible Mode Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |              |                               | 0      | R                    |                  | I2S<br>Channel<br>B     | I2S Channel B Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 36           | 0x24         | BIST                          | 7:4    |                      | 0x08             |                         | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |              | Control                       | 3      | RW                   |                  | BIST Pin<br>Config      | BIST Configured through Pin<br>1: BIST configured through pin<br>0: BIST configured through register bit                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |              |                               | 2:1    | RW                   |                  | BIST<br>Clock<br>Source | BIST Clock Source<br>00: External Pixel Clock<br>01: 33 MHz Oscillator<br>10: Reserved<br>11: 25 MHz Oscillator                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |              |                               | 0      | RW                   |                  | BIST<br>Enable          | BIST Control<br>1: Enabled<br>0: Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 37           | 0x25         | BIST Error                    | 7:0    | R                    | 0x00             | BIST<br>Error<br>Count  | BIST Error Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 38           | 0x26         | SCL High<br>Time              | 7:0    | RW                   | 0x83             | SCL High<br>Time        | I2C Master SCL High Time<br>This field configures the high pulse width of the SCL output<br>when the Deserializer is the Master on the local I2C bus.<br>Units are 50 ns for the nominal oscillator clock frequency.<br>The default value is set to provide a minimum 5us SCL high<br>time with the internal oscillator clock running at 26MHz rather<br>than the nominal 20MHz.                                                                                                                                                                  |
| 39           | 0x27         | SCL Low<br>Time               | 7:0    | RW                   | 0x84             | SCL Low<br>Time         | I2C SCL Low Time<br>This field configures the low pulse width of the SCL output<br>when the De-Serializer is the Master on the local I2C bus.<br>This value is also used as the SDA setup time by the I2C<br>Slave for providing data prior to releasing SCL during<br>accesses over the Bidirectional Control Channel. Units are<br>50 ns for the nominal oscillator clock frequency. The default<br>value is set to provide a minimum 5us SCL low time with the<br>internal oscillator clock running at 26MHz rather than the<br>nominal 20MHz. |

| ADD   | ADD   | Register    | Bit(s) | Regist | Default | Function  | Descriptions                                     |
|-------|-------|-------------|--------|--------|---------|-----------|--------------------------------------------------|
| (dec) | (hex) | Name        |        | er     | (hex)   |           |                                                  |
|       |       |             |        | Туре   |         |           |                                                  |
| 41    | 0x29  | FRC Control | 7      | RW     | 0x00    | Timing    | Select display timing mode                       |
|       |       |             |        |        |         | Mode      | 0: DE only Mode                                  |
|       |       |             |        |        |         | Select    | 1: Sync Mode (VS,HS)                             |
|       |       |             | 6      | RW     |         | VS        | 0: Active High                                   |
|       |       |             |        |        |         | Polarity  | 1: Active Low                                    |
|       |       |             | 5      | RW     |         | HS        | 0: Active High                                   |
|       |       |             |        |        |         | Polarity  | 1: Active Low                                    |
|       |       |             | 4      | RW     |         | DE        | 0: Active High                                   |
|       |       |             |        |        |         | Polarity  | 1: Active Low                                    |
|       |       |             | 3      | RW     |         | FRC2      | 0: FRC2 Disable                                  |
|       |       |             |        |        |         | Enable    | 1: FRC2 Enable                                   |
|       |       |             | 2      | RW     |         | FRC1      | 0: FRC1 Disable                                  |
|       |       |             |        |        |         | Enable    | 1: FRC1 Enable                                   |
|       |       |             | 1      | RW     |         | Hi-FRC 2  | 0: Hi-FRC2 Enable                                |
|       |       |             |        |        |         | Disable   | 1: Hi-FRC2 Disable                               |
|       |       |             | 0      | RW     |         | Hi-FRC 1  | 0: Hi-FRC1 Enable                                |
|       |       |             |        |        |         | Disable   | 1: Hi-FRC1 Disable                               |
| 42    | 0x2A  | White       | 7:6    | RW     | 0x00    | Page      | 00: Configuration Registers                      |
|       |       | Balance     |        |        |         | Setting   | 01: Red LUT                                      |
|       |       | Control     |        |        |         |           | 10: Green LUT                                    |
|       |       |             |        |        |         |           | 11: Blue LUT                                     |
|       |       |             | 5      | RW     |         | White     | 0: White Balance Disable                         |
|       |       |             |        |        |         | Balance   | 1: White Balance Enable                          |
|       |       |             |        |        |         |           |                                                  |
|       |       |             | 4      | RW     |         |           | 0: Reload Disable                                |
|       |       |             |        |        |         | Freioad   | I: Heload Enable                                 |
|       |       |             | 0.0    |        |         | Enable    | Processed                                        |
|       |       |             | 3:0    |        |         |           | reserved                                         |
| 43    | 0x2B  | 12S Control | 7      | RW     | 0x00    | 12S PLL   | 12S PLL Control                                  |
|       |       |             |        |        |         |           | U: 125 PLL is on for 125 data jitter cleaning    |
|       |       |             | 0.1    |        |         |           |                                                  |
|       |       |             | 6:1    |        |         |           |                                                  |
|       |       |             | 0      | RW     |         | 12S Clock | 12S Clock Edge Select                            |
| 1     |       |             |        |        |         | Ledge     | U: 125 Data is strobed on the Hising Clock Edge  |
|       |       |             |        |        |         |           | 11:125 Data is strobed on the Falling Clock Edge |

| ADD<br>(dec) | ADD<br>(hex) | Register<br>Name   | Bit(s) | Regist<br>er<br>Type | Default<br>(hex) | Function                      | Descriptions                                                                                                                                                                                                                                                                                                                                                |
|--------------|--------------|--------------------|--------|----------------------|------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 44           | 0x2C         | SSCG               | 7:4    |                      | 0x00             |                               | Reserved                                                                                                                                                                                                                                                                                                                                                    |
|              |              | Control            | 3      | RW                   |                  | SSCG<br>Enable                | Enable Spread Spectrum Clock Generator<br>0: Disable<br>1: Enable                                                                                                                                                                                                                                                                                           |
|              |              |                    | 2:0    | RW                   |                  | SSCG<br>Selection             | SSCG Frequency Deviation:<br>When LFMODE = H<br>fdev fmod<br>000: +/- 0.7 CLK/628<br>001: +/- 1.3<br>010: +/- 1.8<br>011: +/- 2.5<br>100: +/- 0.7 CLK/388<br>101: +/- 1.2<br>110: +/- 2.0<br>111: +/- 2.5<br>When LFMODE = L<br>fdev fmod<br>000: +/- 0.9 CLK/2168<br>001: +/- 1.2<br>010: +/- 1.9<br>011: +/- 2.5<br>100: +/- 0.7 CLK/1300<br>101: +/- 1.3 |
|              |              |                    |        |                      |                  |                               | 110: +/- 2.0<br>111: +/- 2.5                                                                                                                                                                                                                                                                                                                                |
| 58           | 0x3A         | I2S MCLK<br>Output | 7      | RW                   | 0x00             | MCLK<br>Override              | 1: Override divider select for MCLK<br>0: No override for MCLK divider                                                                                                                                                                                                                                                                                      |
|              |              |                    | 6:4    | RW                   |                  | MCLK<br>Frequenc<br>y Slect   | See Table 5                                                                                                                                                                                                                                                                                                                                                 |
|              |              |                    | 3:0    |                      |                  |                               | Reserved                                                                                                                                                                                                                                                                                                                                                    |
| 65           | 0x41         | Link Error         | 7:5    |                      | 0x03             |                               | Reserved                                                                                                                                                                                                                                                                                                                                                    |
|              |              | Count              | 4      | RW                   |                  | Link Error<br>Count<br>Enable | Enable serial link data integrity error count<br>1: Enable error count<br>0: Disable                                                                                                                                                                                                                                                                        |
|              |              |                    | 3:0    | RW                   |                  | Link Error<br>Count           | Link error count threshold.<br>Counter is pixel clock based. clk0, clk1 and DCA are<br>monitored for link errors, if error count is enabled, deserializer<br>loose lock once error count reaches threshold. If disabled<br>deserilizer loose lock with one error.                                                                                           |

| ADD   | ADD   | Register                        | Bit(s)   | Regist | Default | Function                       | Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|-------|-------|---------------------------------|----------|--------|---------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (dec) | (hex) | Name                            |          | er     | (hex)   |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|       | 0     | <b>F</b>                        | 7.5      | Туре   | 000     | <b>FO</b> 014 44               | 50 selecture luc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 68    | 0x44  | Equaiization                    | 7:5      | κw     | 0x60    | 1 Select                       | Used if adaptive EQ is bypassed.<br>000 Min EQ 1st Stage<br>001<br>010<br>011<br>100<br>101<br>110<br>111 Max EQ 1st Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|       |       |                                 | 4        |        | İ       |                                | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|       |       |                                 | 3:1      | RW     |         | EQ Stage<br>2 Select           | EQ select value.<br>Used if adaptive EQ is bypassed.<br>000 Min EQ 2nd Stage<br>001<br>010<br>011<br>100<br>101<br>110<br>111 Max EQ 2nd Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|       |       |                                 | 0        | RW     | ĺ       | Adaptive                       | 1: Disable adaptive EQ (to write EQ select values)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|       |       |                                 |          |        |         | EQ                             | 0: Enable adaptive EQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 86    | 0x56  | CML Output                      | 7:4      |        | 0x08    |                                | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|       |       |                                 | 3        | RW     |         |                                | 1: Disabled (Default)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|       |       |                                 | 2.0      |        |         |                                | Beserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 100   | 0x64  | Pattern<br>Generator<br>Control | 7:4      | RW     | 0x10    | Pattern<br>Generator<br>Select | Fixed Pattern Select<br>This field selects the pattern to output when in Fixed Pattern<br>Mode. Scaled patterns are evenly distributed across the<br>horizontal or vertical active regions. This field is ignored when<br>Auto-Scrolling Mode is enabled. The following table shows<br>the color selections in non-inverted followed by inverted color<br>mode<br>0000: Reserved 0001: White/Black<br>0010: Black/White<br>0011: Red/Cyan<br>0100: Green/Magenta<br>0101: Blue/Yellow<br>0110: Horizontally Scaled Black to White/White to Black<br>0111: Horizontally Scaled Black to Green/Magenta to White<br>1001: Horizontally Scaled Black to Blue/Yellow to White<br>1010: Vertically Scaled Black to Red/Cyan to White<br>1010: Vertically Scaled Black to Red/Cyan to White<br>1100: Vertically Scaled Black to Blue/Yellow to White<br>1100: Vertically Scaled Black to Blue/Yellow to White<br>1101: Vertically Scaled Black to Black |  |  |
|       |       |                                 |          |        |         |                                | PGGS, PGBS registers<br>1111: Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|       |       |                                 | 3:1      |        |         |                                | PGGS, PGBS registers 1111: Reserved Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|       |       |                                 | 3:1<br>0 | RW     |         | Pattern                        | PGGS, PGBS registers<br>1111: Reserved<br>Pattern Generator Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |

| ADD<br>(dec) | ADD<br>(hex) | Register<br>Name                            | Bit(s) | Regist<br>er<br>Type | Default<br>(hex) | Function                                          | Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|--------------|--------------|---------------------------------------------|--------|----------------------|------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 101          | 0x65         | Pattern                                     | 7:5    |                      | 0x00             |                                                   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|              |              | Generator<br>Configuratio<br>n              | 4      | RW                   |                  | Pattern<br>Generator<br>18 Bits                   | <ul> <li>18-bit Mode Select</li> <li>1: Enable 18-bit color pattern generation. Scaled patterns will have 64 levels of brightness and the R, G, and B outputs use the six most significant color bits.</li> <li>0: Enable 24-bit pattern generation. Scaled patterns use 256 levels of brightness.</li> </ul>                                                                                                                                              |  |  |
|              |              |                                             | 3      | RW                   |                  | Pattern<br>Generator<br>External<br>Clock         | Select External Clock Source<br>1: Selects the external pixel clock when using internal timing.<br>0: Selects the internal divided clock when using internal<br>timing<br>This bit has no effect in external timing mode<br>(PATGEN_TSEL = 0).                                                                                                                                                                                                             |  |  |
|              |              |                                             | 2      | RW                   |                  | Pattern<br>Generator<br>Timing<br>Select          | <ul> <li>Timing Select Control</li> <li>1: The Pattern Generator creates its own video timing as configured in the Pattern Generator Total Frame Size, Active Frame Size. Horizontal Sync Width, Vertical Sync Width, Horizontal Back Porch, Vertical Back Porch, and Sync Configuration registers.</li> <li>0: the Pattern Generator uses external video timing from the pixel clock, Data Enable, Horizontal Sync, and Vertical Sync signals.</li> </ul> |  |  |
|              |              |                                             | 1      | RW                   |                  | Pattern<br>Generator<br>Color<br>Invert           | Enable Inverted Color Patterns<br>1: Invert the color output.<br>0: Do not invert the color output.                                                                                                                                                                                                                                                                                                                                                        |  |  |
|              |              |                                             | 0      | RW                   |                  | Pattern<br>Generator<br>Auto-<br>Scroll<br>Enable | Auto-Scroll Enable:<br>1: The Pattern Generator will automatically move to the next<br>enabled pattern after the number of frames specified in the<br>Pattern Generator Frame Time (PGFT) register.<br>0: The Pattern Generator retains the current pattern.                                                                                                                                                                                               |  |  |
| 102          | 0x66         | Pattern<br>Generator<br>Indirect<br>Address | 7:0    | RW                   | 0x00             | Indirect<br>Address                               | This 8-bit field sets the indirect address for accesses to indirectly-mapped registers. It should be written prior to reading or writing the Pattern Generator Indirect Data register.<br>See AN-2198                                                                                                                                                                                                                                                      |  |  |
| 103          | 0x67         | Pattern<br>Generator<br>Indirect Data       | 7:0    | RW                   | 0x00             | Indirect<br>Data                                  | When writing to indirect registers, this register contains th data to be written. When reading from indirect registers, th register contains the read back value. See <i>AN-2198</i>                                                                                                                                                                                                                                                                       |  |  |
| 128          | 0x80         | RX_BKSV0                                    | 7:0    | R                    | 0x00             | RX<br>BKSV0                                       | BKSV0: Value of byte 0 of the Deserializer KSV                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 129          | 0x81         | RX_BKSV1                                    | 7:0    | R                    | 0x00             | RX<br>BKSV1                                       | BKSV1: Value of byte 1 of the Deserializer KSV                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 130          | 0x82         | RX_BKSV2                                    | 7:0    | R                    | 0x00             | RX<br>BKSV2                                       | BKSV2: Value of byte 2 of the Deserializer KSV                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 131          | 0x83         | RX_BKSV3                                    | 7:0    | R                    | 0x00             | RX<br>BKSV3                                       | BKSV3: Value of byte 3of the Deserializer KSV.                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 132          | 0x84         | RX_BKSV4                                    | 7:0    | R                    | 0x00             | RX<br>BKSV4                                       | BKSV4: Value of byte 4of the Deserializer KSV.                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 144          | 0x90         | TX_KSV0                                     | 7:0    | R                    | 0x00             | TX KSV0                                           | KSV0: Value of byte 0 of the Serializer KSV.                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 145          | 0x91         | TX_KSV1                                     | 7:0    | R                    | 0x00             | TX KSV1                                           | KSV1: Value of byte 1 of the Serializer KSV.                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 146          | 0x92         | TX_KSV2                                     | 7:0    | R                    | 0x00             | TX KSV2                                           | KSV2: Value of byte 2 of the Serializer KSV.                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |

| ADD   | ADD   | Register | Bit(s) | Regist | Default | Function       | Descriptions                                                                                                                                                                                                                                  |
|-------|-------|----------|--------|--------|---------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (dec) | (hex) | Name     |        | er     | (hex)   |                |                                                                                                                                                                                                                                               |
|       |       |          |        | Туре   |         |                |                                                                                                                                                                                                                                               |
| 147   | 0x93  | TX_KSV3  | 7:0    | R      | 0x00    | TX KSV3        | KSV3: Value of byte 3 of the Serializer KSV.                                                                                                                                                                                                  |
| 148   | 0x94  | TX_KSV4  | 7:0    | R      | 0x00    | TX KSV4        | KSV4: Value of byte 4 of the Serializer KSV.                                                                                                                                                                                                  |
| 192   | 0xC0  | HDCP_DBG | 7      |        | 0x00    |                | Reserved                                                                                                                                                                                                                                      |
|       |       |          | 6      | R      |         | HDCP<br>I2C TO | Reserved                                                                                                                                                                                                                                      |
|       |       |          |        |        |         | DIS            |                                                                                                                                                                                                                                               |
|       |       |          | 5:4    |        |         |                | Reserved                                                                                                                                                                                                                                      |
|       |       |          | 3      | К      |         |                | Enable RBG video line checksum.                                                                                                                                                                                                               |
|       |       |          |        |        |         | N              | <ol> <li>Brables sending of ones-complement checksum for each</li> <li>8-bit RBG data channel following end of each video data line.</li> <li>0: Checksum disabled</li> <li>Set via the HDCP_DBG register in the HDCP Transmitter.</li> </ol> |
|       |       |          | 2      | R      |         | FC TEST        | Frame Counter Testmode:                                                                                                                                                                                                                       |
|       |       |          |        |        |         | MODE           | 1: Speeds up frame counter used for Pj and Ri verification.                                                                                                                                                                                   |
|       |       |          |        |        |         |                | When set to a 1, Pj is computed every 2 frames and Ri is                                                                                                                                                                                      |
|       |       |          |        |        |         |                | computed every 16 frames.                                                                                                                                                                                                                     |
|       |       |          |        |        |         |                | 0: PJ is computed every 16 frames and RI is computed every                                                                                                                                                                                    |
|       |       |          |        |        |         |                | Set via the HDCP_DBG register in the HDCP Transmitter.                                                                                                                                                                                        |
|       |       |          | 1      | R      | x       | TMR SP         | Timer Speedup:                                                                                                                                                                                                                                |
|       |       |          |        |        |         | EEDUP          | 1: Speed up HDCP authentication timers.                                                                                                                                                                                                       |
|       |       |          |        |        |         |                | 0: Standard authentication timing                                                                                                                                                                                                             |
|       |       |          |        |        |         |                | Set via the HDCP_DBG register in the HDCP Transmitter.                                                                                                                                                                                        |
|       |       |          | 0      | R      |         | HDCP_I2        | HDCP I2C Fast mode Enable:                                                                                                                                                                                                                    |
|       |       |          |        |        |         | C_FAST         | 1: Enable the HDCP I2C Master in the HDCP Receiver to                                                                                                                                                                                         |
|       |       |          |        |        |         |                | 0:Tthe I2C Master will operate with Standard mode timing.                                                                                                                                                                                     |
|       |       |          |        |        |         |                | Set via the HDCP_DBG register in the HDCP Transmitter.                                                                                                                                                                                        |
| 193   | 0xC1  | HDCP_DBG | 7:2    |        | 0x00    |                | Reserved                                                                                                                                                                                                                                      |
|       |       | 2        | 1      | RW     |         | NO_DEC         | No Decrypt:                                                                                                                                                                                                                                   |
|       |       |          |        |        |         | RYPT           | 1: The HDCP Receiver outputs the encrypted data on the                                                                                                                                                                                        |
|       |       |          |        |        |         |                | RGB pins. All other functions will work normally. This                                                                                                                                                                                        |
|       |       |          |        |        |         |                | provides a simple way of showing that the link is encrypted.                                                                                                                                                                                  |
|       |       |          | 0      |        |         |                | Boograd                                                                                                                                                                                                                                       |
| 106   |       | ПСР      | 7.0    |        | 0x00    |                | Reserved                                                                                                                                                                                                                                      |
| 130   | 0,04  | Status   | 1.2    | B      | 0,00    | BGB CH         | BGB Checksum Error Detected                                                                                                                                                                                                                   |
|       |       |          | I      |        |         | KSUM E         | If RGB Checksum in enabled through the HDCP Transmitter                                                                                                                                                                                       |
|       |       |          |        |        |         | RR             | HDCP_DBG register, this bit will indicate if a checksum error                                                                                                                                                                                 |
|       |       |          |        |        |         |                | is detected. This register may be cleared by writing any value                                                                                                                                                                                |
|       |       |          |        |        |         |                | to this register.                                                                                                                                                                                                                             |
|       |       |          | 0      | R      |         | HDCP           | HDCP Authenticated:                                                                                                                                                                                                                           |
|       |       |          |        |        |         | Status         | Indicates the HDCP authentication has completed                                                                                                                                                                                               |
|       |       |          |        |        |         |                | requiring content protection. This bit will be cleared if                                                                                                                                                                                     |
|       |       |          |        |        |         |                | authentication is lost or if the controller restarts                                                                                                                                                                                          |
|       |       |          |        |        |         |                | authentication.                                                                                                                                                                                                                               |
| 224   | 0xE0  | RPTR TX0 | 7:1    | R      | 0x0     | HDCP           | Serializer Port 0 I2C Address:                                                                                                                                                                                                                |
|       |       |          |        |        |         | Serializer     | Indicates the I2C address for the Repeater Serializer Port.                                                                                                                                                                                   |
|       |       |          | 0      | R      |         | Port 0         | Serializer Port 0 Valid:                                                                                                                                                                                                                      |
|       |       |          |        |        |         | Address        | Indicates that the HDCP Repeater has a Serializer port at the I2C Address identified by upper 7 bits of this register.                                                                                                                        |

| ADD<br>(dec) | ADD<br>(hex) | Register<br>Name | Bit(s) | Regist | Default | Function           | Descriptions                                                                                                                                          |  |
|--------------|--------------|------------------|--------|--------|---------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (400)        |              | Hume             |        | Туре   | (nex)   |                    |                                                                                                                                                       |  |
| 225          | 0xE1         | RPTR TX1         | 7:1    | R      | 0x00    | HDCP<br>Serializer | Serializer Port 1 I2C Address: Indicates the I2C address for the Repeater Serializer Port.                                                            |  |
|              |              |                  | 0      | R      |         | Port 1<br>Address  | Serializer Port 1 Valid: Indicates that the HDCP Repeater has<br>a Serializer port at the I2C Address identified by upper 7 bits<br>of this register. |  |
| 226          | 0xE2         | RPTR TX2         | 7:1    |        | 0x00    | HDCP<br>Serializer | Serializer Port 2 I2C Address: Indicates the I2C address for the Repeater Serializer Port.                                                            |  |
|              |              |                  | 0      | R      |         | Port 2<br>Address  | Serializer Port 2 Valid: Indicates that the HDCP Repeater has<br>a Serializer port at the I2C Address identified by upper 7 bits<br>of this register. |  |
| 227          | 0xE3         | RPTR TX3         | 7:1    | R      | 0x00    | HDCP<br>Serializer | Serializer Port 3 I2C Address: Indicates the I2C address for the Repeater Serializer Port.                                                            |  |
|              |              |                  | 0      | R      |         | Port 3<br>Address  | Serializer Port 3 Valid: Indicates that the HDCP Repeater has<br>a Serializer port at the I2C Address identified by upper 7 bits<br>of this register  |  |
| 240          | 0xF0         | HDCP RX ID       | 7:0    | R      | 0x5F    | ID0                | First byte ID code: '_'                                                                                                                               |  |
| 241          | 0xF1         |                  | 7:0    | R      | 0x55    | ID1                | Second byte of ID code: 'U'                                                                                                                           |  |
| 242          | 0xF2         |                  | 7:0    | R      | 0x48    | ID2                | Third byte of ID code, Value will be either 'B' or 'H'. 'H' indicates an HDCP capable device.                                                         |  |
| 243          | 0xF3         |                  | 7:0    | R      | 0x39    | ID3                | Fourth byte of ID code: '9'                                                                                                                           |  |
| 244          | 0xF4         |                  | 7:0    | R      | 0x32    | ID4                | Fifth byte of ID code: '2'                                                                                                                            |  |
| 245          | 0xF5         |                  | 7:0    | R      | 0x36    | ID5                | Sixth byte of ID code: '6'                                                                                                                            |  |

## Image Enhancement Features

Several image enhancement features are provided. White balance LUTs allow the user to define and target the color temperature of the display. Adaptive Hi-FRC dithering enables the presentation of "true-color" images on an 18-bit color display.

#### WHITE BALANCE

The White Balance feature enables similar display appearance when using LCD's from different vendors. It compensates for native color temperature of the display, and adjusts relative intensities of R, G, B to maintain specified color temperature. Programmable control registers are used to define the contents of three LUTs (8-bit color value for Red, Green and Blue) for the White Balance Feature. The LUTs map input RGB values to new output RGB values. There are three LUTs, one LUT for each color. Each LUT contains 256 entries, 8-bits per entry with a total size of 6144 bits ( $3 \times 256 \times 8$ ). All entries are readable and writable. Calibrated values are loaded into registers through the I2C interface (deserializer is a slave device). This feature may also be applied to lower color depth applications such as 18-bit (666) and 16-bit (565). White balance is enabled and configured via serial control bus register.

#### LUT contents

The user must define and load the contents of the LUT for each color (R,G,B). Regardless of the color depth being driven (888, 666, 656), the user must always provide contents for 3 complete LUTs - 256 colors x 8 bits x 3 tables. Unused bits - LSBs -shall be set to "0" by the user.

When 24-bit (888) input data is being driven to a 24-bit display, each LUT (R, G and B) must contain 256 unique 8-bit entries. The 8-bit white balanced data is then available at the output of the DS90UH926Q deserailizer, and driven to the display.

When 18-bit (666) input data is being driven to an 18-bit display, the white balance feature may be used in one of two ways. First, simply load each LUT with 256, 8-bit entries. Each 8-bit entry is a 6-bit value (6 MSBs) with the 2 LSBs set to "00". Thus as total of 64 unique 6-bit white balance output values are available for each color (R, G and B). The 6-bit white balanced data is available at the output of the DS90UH926Q deserializer, and driven directly to the display. Alternatively, with 6-bit input data the user may choose to load complete 8-bit values into each LUT. This mode of operation provides the user with finer resolution at the LUT output to more closely achieve the desired white point of the calibrated display. Although 8-bit data is loaded, only 64 unique 8-bit white balance output values are available for each color (R, G and B). The result is 8-bit white balanced data. Before driving to the output of the deserializer, the 8-bit data must be reduced to 6-bit with an FRC dithering function. To operate in this mode, the user must configure the DS90UH926Q to enable the FRC2 function.

Examples of the three types of LUT configurations described are shown in *Figure 20* 

#### Enabling white balance

The user must load all 3 LUTs prior to enabling the white balance feature. The following sequence must be followed by the user.

To initialize white balance after power-on (Table 10):

1) Load contents of all 3 LUTs . This requires a sequential loading of LUTs - first RED, second GREEN, third BLUE. 256, 8-bit entries must be loaded to each LUT. Page registers must be set to select each LUT.

2) Enable white balance

By default, the LUT data may not be reloaded after initialization at power-on.

An option does exist to allow LUT reloading after power-on and initial LUT loading (as described above). This option may only be used after enabling the white balance reload feature via the associated serial control bus register. In this mode the LUTs may be reloaded by the master controller via I2C. This provides the user with the flexibility to refresh LUTs periodically, or upon system requirements to change to a new set of LUT values. The host controller loads the updated LUT values via the serial bus interface. There is no need to disable the white balance feature while reloading the LUT data. Refreshing the white balance to the new set of LUT data will be seamless - no interruption of displayed data.

It is important to note that initial loading of LUT values requires that all 3 LUTs be loaded sequentially. When reloading, partial LUT updates may be made.

| 8-bit in / 8 bit out |           |  |  |  |  |  |  |  |
|----------------------|-----------|--|--|--|--|--|--|--|
| Gray level           | Data Out  |  |  |  |  |  |  |  |
| Entry                | (8-bits)  |  |  |  |  |  |  |  |
| 0                    | 0000000b  |  |  |  |  |  |  |  |
| 1                    | 00000001b |  |  |  |  |  |  |  |
| 2                    | 00000011b |  |  |  |  |  |  |  |
| 3                    | 00000011b |  |  |  |  |  |  |  |
| 4                    | 00000110b |  |  |  |  |  |  |  |

5 6

÷

00000110b

 248
 11111010b

 249
 11111010b

 250
 1111101b

 251
 1111101b

 252
 1111101b

 253
 1111101b

 254
 1111101b

 255
 11111101b

|--|

| Gray level | Data Out           |
|------------|--------------------|
| Entry      | (8-bits)           |
| 0          | 000000 <b>0</b> b  |
| 1          | N/A                |
| 2          | N/A                |
| 3          | N/A                |
| 4          | 000001 <b>00</b> b |
| 5          | N/A                |
| 6          | N/A                |
| 7          | N/A                |
| 8          | 000010 <b>00</b> b |
| 9          | N/A                |
| 10         | N/A                |
| 11         | N/A                |
|            |                    |
| •          |                    |
| 248        | 111110 <b>00</b> b |
| 249        | N/A                |
| 250        | N/A                |
| 251        | N/A                |
| 252        | 111111 <b>00</b> b |
| 253        | N/A                |
| 254        | N/A                |
| 255        | N/A                |

| 6-bit in / 8 bit out |           |  |  |  |  |  |  |
|----------------------|-----------|--|--|--|--|--|--|
| Gray level           | Data Out  |  |  |  |  |  |  |
| Entry                | (8-bits)  |  |  |  |  |  |  |
| 0                    | 0000001b  |  |  |  |  |  |  |
| 1                    | N/A       |  |  |  |  |  |  |
| 2                    | N/A       |  |  |  |  |  |  |
| 3                    | N/A       |  |  |  |  |  |  |
| 4                    | 00000110b |  |  |  |  |  |  |
| 5                    | N/A       |  |  |  |  |  |  |
| 6                    | N/A       |  |  |  |  |  |  |
| 7                    | N/A       |  |  |  |  |  |  |
| 8                    | 00001011b |  |  |  |  |  |  |
| 9                    | N/A       |  |  |  |  |  |  |
| 10                   | N/A       |  |  |  |  |  |  |
| 11                   | N/A       |  |  |  |  |  |  |
| _ : _                | :         |  |  |  |  |  |  |
| 248                  | 11111010b |  |  |  |  |  |  |
| 249                  | N/A       |  |  |  |  |  |  |
| 250                  | N/A       |  |  |  |  |  |  |
| 251                  | N/A       |  |  |  |  |  |  |
| 252                  | 11111111b |  |  |  |  |  |  |
| 253                  | N/A       |  |  |  |  |  |  |
| 254                  | N/A       |  |  |  |  |  |  |
| 255                  | N/A       |  |  |  |  |  |  |

30136472

#### FIGURE 20. White Balance LUT Configurations

| TABLE | 10. | White | Balance | Register  | Table |
|-------|-----|-------|---------|-----------|-------|
| IADEE | 10. | WINC  | Dalance | ricgister | Table |

| PAG | ADD   | ADD   | Register Name | Bit(s) | Access | Default | Function      | Description                                 |
|-----|-------|-------|---------------|--------|--------|---------|---------------|---------------------------------------------|
| E   | (dec) | (hex) |               |        |        | (hex)   |               |                                             |
| 0   | 42    | 0x2A  | White Balance | 7:6    | RW     | 0x00    | Page Setting  | 00: Configuration Registers                 |
|     |       |       | Control       |        |        |         |               | 01: Red LUT                                 |
|     |       |       |               |        |        |         |               | 10: Green LUT                               |
|     |       |       |               |        |        |         |               | 11: Blue LUT                                |
|     |       |       |               | 5      | RW     |         | White Balance | 0: White Balance Disable                    |
|     |       |       |               |        |        |         | Enable        | 1: White Balance Enable                     |
|     |       |       |               | 4      | RW     |         |               | 0: Reload Disable                           |
|     |       |       |               |        |        |         |               | 1: Reload Enable                            |
|     |       |       |               | 3:0    |        |         |               | Reserved                                    |
| 1   | 0 –   | 00-FF | White Balance | FF:0   | RW     | N/A     | Red LUT       | 256 8-bit entries to be applied to the Red  |
|     | 255   |       | Red LUT       |        |        |         |               | subpixel data                               |
| 2   | 0 –   | 00-FF | White Balance | FF:0   | RW     | N/A     | Green LUT     | 256 8-bit entries to be applied to the      |
|     | 255   |       | Green LUT     |        |        |         |               | Green subpixel data                         |
| 3   | 0 —   | 00-FF | White Balance | FF:0   | RW     | N/A     | Blue LUT      | 256 8-bit entries to be applied to the Blue |
|     | 255   |       | Blue LUT      |        |        |         |               | subpixel data                               |

#### ADAPTIVE HI-FRC DITHERING

The Adaptive FRC Dithering Feature delivers product-differentiating image quality. It reduces 24-bit RGB (8 bits per subpixel) to 18-bit RGB (6 bits per sub-pixel), smoothing color gradients, and allowing the flexibility to use lower cost 18-bit displays. FRC (Frame Rate Control) dithering is a method to emulate "missing" colors on a lower color depth LCD display by changing the pixel color slightly with every frame. FRC is achieved by controlling on and off pixels over multiple frames (Temporal). Static dithering regulates the number of on and off pixels in a small defined pixel group (Spatial). The FRC module includes both Temporal and Spatial methods and also Hi-FRC. Conventional FRC can display only 16,194,277 colors with 6-bit RGB source. "Hi-FRC" enables full (16,777,216) color on an 18-bit LCD panel. The "adaptive" FRC module also includes input pixel detection to apply specific Spatial dithering methods for smoother gray level transitions. When enabled, the lower LSBs of each RGB output are not active; only 18 bit data (6 bits per R,G and B) are driven to the display. This feature is enabled via serial control bus register.

Two FRC functional blocks are available, and may be independently enabled. FRC1 precedes the white balance LUT, and is intended to be used when 24-bit data is being driven to an 18-bit display with a white balance LUT that is calibrated

www.ti.com

for an 18-bit data source. The second FRC block, FRC2, follows the white balance block and is intended to be used when fine adjustment of color temperature is required on an 18-bit color display, or when a 24-bit source drives an 18-bit display with a white balance LUT calibrated for 24-bit source data.

For proper operation of the FRC dithering feature, the user must provide a description of the display timing control signals. The timing mode, "sync mode" (HS, VS) or "DE only" must be specified, along with the active polarity of the timing control signals. All this information is entered to DS90UH926Q control registers via the serial bus interface. Adaptive Hi-FRC dithering consists of several components. allows the effective dithered result to support a total of 16.7 million colors. The incoming 9-bit data is evaluated, and one of four possible algorithms is selected. The majority of incoming data sequences are supported by the default dithering algorithm. Certain incoming data patterns (black/white pixel, full on/off sub-pixel) require special algorithms designed to eliminate visual artifacts associated with these specific gray level transitions. Three algorithms are defined to support these critical transitions.

An example of the default dithering algorithm is illustrated in *Figure 21*. The "1" or "0" value shown in the table describes whether the 6-bit value is increased by 1 ("1") or left unchanged ("0"). In this case, the 3 truncated LSBs are "001".

Initially, the incoming 8-bit data is expanded to 9-bit data. This
F0L0 Frame = 0,

| F0L0           | Frame = 0, Line = 0                         |  |  |  |  |
|----------------|---------------------------------------------|--|--|--|--|
| PD1            | Pixel Data one                              |  |  |  |  |
| Cell Value 010 | R[7:2]+0, G[7:2]+1, B[7:2]+0                |  |  |  |  |
| LSB=001        | three lsb of 9 bit data (8 to 9 for Hi-Frc) |  |  |  |  |

| Pixel Index | PD1 | PD2 | PD3 | PD4 | PD5 | PD6 | PD7 | PD8 | 1        |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|----------|
| LSB = 001   |     |     |     |     | -   |     |     |     |          |
| F0L0        | 010 | 000 | 000 | 000 | 000 | 000 | 010 | 000 |          |
| F0L1        | 101 | 000 | 000 | 000 | 101 | 000 | 000 | 000 | R = 4/32 |
| F0L2        | 000 | 000 | 010 | 000 | 010 | 000 | 000 | 000 | G = 4/32 |
| F0L3        | 000 | 000 | 101 | 000 | 000 | 000 | 101 | 000 | B = 4/32 |
|             |     |     |     |     |     |     |     |     |          |
| F1L0        | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 |          |
| F1L1        | 000 | 111 | 000 | 000 | 000 | 111 | 000 | 000 | R = 4/32 |
| F1L2        | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | G = 4/32 |
| F1L3        | 000 | 000 | 000 | 111 | 000 | 000 | 000 | 111 | B = 4/32 |
|             |     |     |     |     |     |     |     |     |          |
| F2L0        | 000 | 000 | 010 | 000 | 010 | 000 | 000 | 000 |          |
| F2L1        | 000 | 000 | 101 | 000 | 000 | 000 | 101 | 000 | R = 4/32 |
| F2L2        | 010 | 000 | 000 | 000 | 000 | 000 | 010 | 000 | G = 4/32 |
| F2L3        | 101 | 000 | 000 | 000 | 101 | 000 | 000 | 000 | B = 4/32 |
|             |     |     |     |     | -   |     |     |     |          |
| F3L0        | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 |          |
| F3L1        | 000 | 000 | 000 | 111 | 000 | 000 | 000 | 111 | R = 4/32 |
| F3L2        | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | G = 4/32 |
| F3L3        | 000 | 111 | 000 | 000 | 000 | 111 | 000 | 000 | B = 4/32 |

30136473

FIGURE 21. Default FRC Algorithm

### **Internal Pattern Generation**

The DS90UH926Q serializer supports the internal pattern generation feature. It allows basic testing and debugging of an integrated panel. The test patterns are simple and repetitive and allow for a quick visual verification of panel operation.

As long as the device is not in power down mode, the test pattern will be displayed even if no parallel input is applied. If no PCLK is received, the test pattern can be configured to use a programmed oscillator frequency. For detailed information, refer to Application Note *AN-2198*.

## **Applications Information**

#### DISPLAY APPLICATION

The DS90UH926Q, in conjunction with the DS90UH925Q, is intended for interface between a HDCP compliant host (graphics processor) and a Display. It supports an 24-bit color depth (RGB888) and high definition (720p) digital video format. It allows to receive a three 8-bit RGB stream with a pixel rate up to 85 MHz together with three control bits (VS, HS and DE) and three I2S-bus audio stream with an audio sampling rate up to 192 kHz. The included HDCP 1.3 compliant cipher block allows the authentication of the DS90UH926Q, which decrypts both video and audio contents. The keys are preloaded by National into Non-Volatile Memory (NVM) for maximum security.

The deserializer is expected to be located close to its target device. The interconnect between the deserializer and the target device is typically in the 1 to 3 inch separation range. The input capacitance of the target device is expected to be in the 5 to 10 pF range. Care should be taken on the PCLK output trace as this signal is edge sensitive and strobes the

data. It is also assumed that the fanout of the deserializer is up to three in the repeater mode. If additional loads need to be driven, a logic buffer or mux device is recommended.

#### TYPICAL APPLICATION CONNECTION

Figure 22 shows a typical application of the DS90UH926Q deserializer for an 85 MHz 24-bit Color Display Application. inputs utilize 0.1  $\mu$ F coupling capacitors to the line and the deserializer provides internal termination. Bypass capacitors are placed near the power supply pins. At a minimum, seven 0.1  $\mu$ F capacitors and two 4.7  $\mu$ F capacitors should be used for local device bypassing. Ferrite beads are placed on the power lines for effective noise suppression. Since the device in the Pin/STRAP mode, two 10 k $\Omega$  pull-up resistors are used on the parallel output bus to select the desired device features.

The interface to the target display is with 3.3V LVCMOS levels, thus the  $V_{\text{DDIO}}$  pins are connected to the 3.3 V rail. A delay cap is placed on the PDB signal to delay the enabling of the device until power is stable.



#### POWER UP REQUIREMENTS AND PDB PIN

The VDDs (V<sub>33</sub> and V<sub>DDIO</sub>) supply ramp should be faster than 1.5 ms with a monotonic rise. A large capacitor on the PDB pin is needed to ensure PDB arrives after all the VDDs have settled to the recommended operating voltage. When PDB pin is pulled to V<sub>DDIO</sub> = 3.0V to 3.6V or V<sub>DD33</sub>, it is recommended to use a 10 kΩ pull-up and a >10 uF cap to GND to delay the PDB input signal.

All inputs must not be driven until  $V_{\text{DD33}}$  and  $V_{\text{DD10}}$  has reached its steady state value.

#### TRANSMISSION MEDIA

The DS90UH925Q and DS90UH926Q chipset is intended to be used in a point-to-point configuration through a shielded twisted pair cable. The serializer and deserializer provide internal termination to minimize impedance discontinuities. The interconnect (cable and connector) between the serializer and deserializer should have a differential impedance of 100 Ohms. The maximum length of cable that can be used is dependant on the quality of the cable (gauge, impedance), connector, board (discontinuities, power plane), the electrical environment (e.g. power stability, ground noise, input clock jitter, PCLK frequency, etc.) and the application environment. The resulting signal quality at the receiving end of the transmission media may be assessed by monitoring the differential eye opening of the serial data stream. The Receiver CML Monitor Driver Output Specifications define the acceptable data eye opening width and eye opening height. A differential probe should be used to measure across the termination resistor at the CMLOUT+/- pin Figure 2.

#### PCB LAYOUT AND POWER SYSTEM CONSIDERATIONS

Circuit board layout and stack-up for the FPD-Link III devices should be designed to provide low-noise power feed to the device. Good layout practice will also separate high frequency or high-level inputs and outputs to minimize unwanted stray noise pickup, feedback and interference. Power system performance may be greatly improved by using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass capacitors should include both RF ceramic and tantalum electrolvtic types. RF capacitors may use values in the range of 0.01 uF to 0.1 uF. Tantalum capacitors may be in the 2.2 uF to 10 uF range. Voltage rating of the tantalum capacitors should be at least 5X the power supply voltage being used.

Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power entry. This is typically in the 50uF to 100uF range and will smooth low fre-

quency switching noise. It is recommended to connect power and ground pins directly to the power and ground planes with bypass capacitors connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external bypass capacitor will increase the inductance of the path.

A small body size X7R chip capacitor, such as 0603 or 0402, is recommended for external bypass. Its small body size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of these external bypass capacitors, usually in the range of 20-30 MHz. To provide effective bypassing, multiple capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing the impedance at high frequency.

Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power pin pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as PLLs.

Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the CML lines to prevent coupling from the LVCMOS lines to the CML lines. Closelycoupled differential lines of 100 Ohms are typically recommended for CML interconnect. The closely coupled lines help to ensure that coupled noise will appear as common-mode and thus is rejected by the receivers. The tightly coupled lines will also radiate less.

Information on the LLP style package is provided in National Application Note: AN-1187.

#### CML INTERCONNECT GUIDELINES

See AN-1108 and AN-905 for full details.

- Use 100  $\Omega$  coupled differential pairs
- Use the S/2S/3S rule in spacings
  - -S = space between the pair
  - -2S = space between pairs
  - 3S = space to LVCMOS signal
- Minimize the number of Vias
- Use differential connectors when operating above 500
   Mbps line speed
- Maintain balance of the traces
- Minimize skew within the pair

Additional general guidance can be found in the LVDS Owner's Manual - available in PDF format from the National web site at: **www.national.com/lvds** 

## Revision

- March 7, 2012 •
  - Deleted "DC Electrical Characteristics" PDB VDDIO = 1.71 to 1.89V

  - Added under "SUPPLY CURRENT I<sub>DDZ, DDIOZ</sub>, I<sub>DDIOZ</sub>Max = 10mA
     Added under "CML MONITOR DRIVER OUTPUT AC SPECIFICATIONS" E<sub>W</sub> Min = 0.3 UI AND E<sub>H</sub> Min = 200 mV
  - Added "INTERRUPT PIN FUNCTIONAL DESCRIPTION AND USAGE (INTB)" under Functional Description section
  - Updated "POWER DOWN (PDB) description under Functional Description from VDDIO to VDDIO = 3.0 to 3.6V or VDDI3
  - Updated "FIGURE 22. Typical Connection Diagram"



## Notes

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products               |                                 | Applications                  |                                   |
|------------------------|---------------------------------|-------------------------------|-----------------------------------|
| Audio                  | www.ti.com/audio                | Automotive and Transportation | www.ti.com/automotive             |
| Amplifiers             | amplifier.ti.com                | Communications and Telecom    | www.ti.com/communications         |
| Data Converters        | dataconverter.ti.com            | Computers and Peripherals     | www.ti.com/computers              |
| DLP® Products          | www.dlp.com                     | Consumer Electronics          | www.ti.com/consumer-apps          |
| DSP                    | dsp.ti.com                      | Energy and Lighting           | www.ti.com/energy                 |
| Clocks and Timers      | www.ti.com/clocks               | Industrial                    | www.ti.com/industrial             |
| Interface              | interface.ti.com                | Medical                       | www.ti.com/medical                |
| Logic                  | logic.ti.com                    | Security                      | www.ti.com/security               |
| Power Mgmt             | power.ti.com                    | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Microcontrollers       | microcontroller.ti.com          | Video and Imaging             | www.ti.com/video                  |
| RFID                   | www.ti-rfid.com                 |                               |                                   |
| OMAP Mobile Processors | www.ti.com/omap                 |                               |                                   |
| Wireless Connectivity  | www.ti.com/wirelessconnectivity |                               |                                   |
|                        |                                 |                               |                                   |

**TI E2E Community Home Page** 

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated