LM6511

LM6511 180 ns 3V Comparator

Literature Number: SNOS695B

LM6511 180 ns 3V Comparator General Description

The LM6511 voltage comparator is ideal for analog-digital interface circuitry when only a +3V or +3.3V supply is available. The open-collector output permits signal compatibility with a wide variety of digital families: +5V CMOS, +3V CMOS, TTL and so on. Supply voltage may range from 2.7V to 36V between supply voltage leads. The LM6511 operates with little power consumption (P_{diss} < 9.45 mW at V⁺ = +2.7V and V⁻ = 0V).

This voltage comparator offers many features that are available in traditional sub-microsecond comparators: output sync strobe, inputs and output may be isolated from system ground, and wire-ORing. Also, the LM6511 uses the industry-standard, single comparator pinout configuration.

Features

(Typical unless otherwise noted)

- Operates at +2.7V, +3V, +3.3V, +5V
- Low Power consumption <9.45 mW @ V⁺ = 2.7V (max)
- Fast Response Time of 180 ns

Applications

- Portable Equipment
- Cellular Phones
- Digital Level Shifting

Connection Diagram

Ordering Information

Package	Industrial Temperature Range -40°C to +85°C	NSC Package Drawing	
8-Pin Small Outline	LM6511IM, LM6511IMX	M08A	

March 2003

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	-0.3 to +36V
Output to Negative Supply Voltage	50V
Ground to Negative Supply Voltage	30V
Differential Input Voltage	±30V
Input Voltage	(Note 2)
Storage Temperature Range	–65°C to +150°C
Soldering Information:	
SO Package	
(Vapor Phase in 60 sec)	215°C
SO Package (Infrared in 15 sec)	220°C

Power Dissipation	500 mW
Output Short Circuit Duration	10s
Junction Temperature	150°C
ESD Rating	
(C = +100 pF, R = 1.5 kΩ)	300V

Operating Ratings (Note 1)

Supply Voltage	2.5V to 30V
Temperature Range	$-40^{\circ}C \le T_{J} \le$
	+85°C
Thermal Resistance (θ_{JA})	
SO Package	170°C/W

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25$ °C. **Boldface** limits apply at the temperature extremes. V⁺ = 2.7V, V⁻ = 0V, $50\Omega \le R_L \le 50k\Omega$, and $I_L = 1.0$ mA unless otherwise specified

Symbol	Parameter	Conditions	Typical	LM6511I	Units
				Limit	(Limits)
V _{os}	Offset Voltage	$R_{S} \le 50 \text{ k}\Omega$	1.5	5	mV
		(Note 3)		8	max
I _B	Input Bias Current		38	130	
				200	nA
I _{os}	Input Offset Current	$R_{S} \le 50 \text{ k}\Omega$	1.5	20	max
		(Note 3)		50	
Is	Positive Supply Current		2.7	3.5	
				5	mA
	Negative Supply Current		1.5	2.0	max
				2.5	
V _{SAT}	Saturation Voltage	$V_{IN} \le 10 \text{ mV}$	0.23	0.4	V
		I _{SINK} = 8 mA		0.4	max
A _V	Large Signal Voltage Gain	$\Delta V_{OUT} = 2V$	40		V/mV
CMRR	Common Mode Rejection Ratio		72		dB
I _{STROBE}	Strobe ON Current	(Note 5)	2.0	5.0	mA max
V _{IN}	Input Voltage Range			0.50	V min
				V ⁺ – 1.25	V max
	Output Leakage Current	$V_{IN} \ge 10 \text{ mV}, V_{OUT} = 35V,$	0.2		nA
		I _{STROBE} = 3 mA			max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25$ °C. **Boldface** limits apply at the temperature extremes. V⁺ = 2.7V, V⁻ = 0V, 50 $\Omega \le R_L \le 50$ k Ω , and I_L = 1.0 mA unless otherwise specified

Symbol	Parameter	Conditions	Typical	LM6511I	Units
				Limit	(Limits)
T _R	Response Time	(Note 4)	180		ns

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Note 2: The positive input voltage limit is 30V above the negative supply voltage. The negative input voltage limit is equal to the negative supply voltage or 30V below the positive supply voltage, whichever is less.

Note 3: The offset voltage and offset current limits are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Therefore, these parameters define an error band and take into account the worst-case effects of voltage gain and input impedance.

Note 4: This specification is for a 100 mV input step with a 25 mV overdrive.

AC Electrical Characteristics (Continued)

Note 5: This specification gives the range of current which must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin to ground; it should be current driven at 3 mA to 5 mA.

 LM6511 Typical Performance Characteristics
 Vs = 3V unless otherwise noted (Continued)

 Output Current Limiting
 Supply Current vs. Temperature

Output Leakage Current

Typical Application

Notes: Because of the very wide operating and output voltage range, the LM6511 may be used to shift logic levels from 3V to TTL or CMOS to the other way around. By biasing the input to $\frac{1}{2}$ of the input logic supply (V_A), this assures that this input remains within the input voltage range. The pull-up resistor should go to the output logic supply (V_B).

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated