

FEATURES

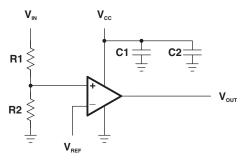
- Low Supply Current...20 μA Typ
- Single Power Supply
- Rail-to-Rail Common-Mode Input Voltage Range
- Push-Pull Output Circuit
- Low Input-Bias Current

APPLICATIONS

- Battery Packs for Sensing Battery Voltage
- MP3 Players, Digital Cameras, PMPs
- Cellular Phones, PDAs, Notebook Computers
- Test Equipment
- General-Purpose Low-Voltage Applications

DESCRIPTION/ORDERING INFORMATION

The TLV7256 is a CMOS-type general-purpose dual comparator capable of single power-supply operation and using lower supply currents than the conventional bipolar comparators. Its push-pull output can connect directly to local ICs such as TTL and CMOS circuits.


ORDERING INFORMATION⁽¹⁾

T _A	PACK	AGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	SSOP – DCT	Reel of 3000	TLV7256IDCTR	PREVIEW	
–40°C to 85°C	550P - DC1	Reel of 250	TLV7256IDCTT	FREVIEW	
	VSSOP – DDU	Reel of 3000	TLV7256IDDUR	YAUA	

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Typical Application Circuit

Figure 1. Threshold Detector

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

5 2IN+

 V_{cc-}

 Π_4

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V _{CC}	Supply voltage		1.5	7	V	
V_{ID}	Differential input voltage				V	
VI	Input voltage		V _{CC} -	V_{CC+}	V	
I _O	Output current			±35	mA	
0	Thermal registeres, justice to $embient(2)$	DCT package		220	°C/W	
OJA	JA Thermal resistance, juction to ambient ⁽²⁾	DDU package		227	-0/00	
Р	Dower dissipation	DCT package		250	m)//	
PD	9 Power dissipation	DDU package		200	mW	
T _A	Operating free-air temperature range		-40	85	°C	
T _{stg}	Storage temperature range		-55	125	°C	

(1) Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Package thermal impedance is calculated according to JESD 51-7.

Recommended Operating Conditions

		MIN	MAX	UNIT
V _{CC}	Supply voltage	1.8	5	V
T _A	Operating free-air temperature	-40	85	°C

Electrical Characteristics

 V_{CC+} = 5 V, V_{CC-} = GND, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
V			25°C		±2	±7	
V _{IO}	Input offset voltage		-40°C to 85°C			±8	mV
I _{IO}	Input offset current		25°C		2		pА
l _l	Input bias current		25°C		4		pА
V _{CM}	Common-mode input voltage		25°C	0		V _{CC}	V
CMRR	Common mode rejection ratio	$\Delta V_{CM} = 5 V$	25°C	48	65		d٦
CINIKK	Common-mode rejection ratio	$0 \le V_{CM} \le 5 V$	–40°C to 85°C	48			dB
		Output = High, V _{IN} = 5 V	25°C		37	51	
		Output = Low, $V_{IN} = 5 V$	25°C		40	60	μΑ
		Output = High, $V_{IN} = 5 V$	_40°C to 85°C			61	
	Supply surrent	Output = Low, $V_{IN} = 5 V$	-40 C 10 65 C			70	
I _{CC}	Supply current	Output = High, V_{IN} = 2.5 V	25°C		20	32	
		Output = Low, V_{IN} = 2.5 V	25°C		26	42	
		Output = High, V_{IN} = 2.5 V	–40°C to 85°C			40	
		Output = Low, V_{IN} = 2.5 V	-40°C 10 85°C			53	
A _{VD}	Voltage gain	$V_D = 3 V, 1 V \le V_{OUT} \le 4 V$	25°C		88		dB
	Sink current	V 05V	25°C	25	33		
Isink	Sink current	V _{OL} = 0.5 V	–40°C to 85°C	20			mA
	Source current		25°C	30	35		mA
source	Source current	V _{OH} = 4.5 V	–40°C to 85°C	25			ШA
		1 – 5 mA	25°C		0.07	0.12	v
V _{OL}	Low-level output voltage	$I_{sink} = 5 \text{ mA}$	-40°C to 85°C			0.20	V
v		1 5 m A	25°C	4.9	4.93		V
V _{OH}	High-level output voltage	I _{source} = 5 mA	-40°C to 85°C	4.85			V

TLV7256 **DUAL COMPARATOR**

SLCS147A-OCTOBER 2006-REVISED JANUARY 2007

Electrical Characteristics

 V_{CC+} = 2.7 V, V_{CC-} = GND, T_{A} = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNI
			25°C		±2	±8	
V _{IO}	Input offset voltage		–40°C to 85°C			±9	mV
I _{IO}	Input offset current		25°C		2		pА
l _l	Input bias current		25°C		4		pА
V _{CM}	Common-mode input voltage		25°C	0		V_{CC}	V
	Common mode sole stice setie	$\Delta V_{CM} = 2.7 V$	25°C	42	57		dB
CMRR	Common-mode rejection ratio	$0 \le V_{CM} \le 2.7 \text{ V}$	–40°C to 85°C	42			
		Output = High, V_{IN} = 2.7 V	2500		30	55	
		Output = Low, V_{IN} = 2.7 V	25°C		36	55	μΑ
		Output = High, V_{IN} = 2.7 V	–40°C to 85°C			65	
сс	Current automat	Output = Low, V_{IN} = 2.7 V	-40°C 10 85°C			65	
	Supply current	Output = High, V _{IN} = 1.35 V	2500		30	48	
		Output = Low, V_{IN} = 1.35 V	25°C		35	55	
		Output = High, V _{IN} = 1.35 V	40%C to 95%C			55	
		Output = Low, V_{IN} = 1.35 V	–40°C to 85°C			65	
A _{VD}	Voltage gain	$V_D = 1.7 \text{ V}, 0.5 \text{ V} \leq V_{OUT} \leq 2.2 \text{ V}$	25°C		88		dB
	Ciale aumont		25°C	13	18		
sink	Sink current	V _{OL} = 0.5 V	–40°C to 85°C	11			mA
	Source ourrest	N 22N	25°C	15	20		~ ^
source	Source current	V _{OH} = 2.2 V	–40°C to 85°C	13			mA
			25°C		0.11	0.16	V
/ _{OL}	Low-level output voltage	$I_{sink} = 5 \text{ mA}$	–40°C to 85°C			0.19	v
,		L 5 m/	25°C	2.54	2.60		V
V _{ОН}	High-level output voltage	I _{source} = 5 mA	–40°C to 85°C	2.45			v

Electrical Characteristics

 V_{CC+} = 1.8 V, V_{CC-} = GND, T_{A} = 25°C (unless otherwise noted)

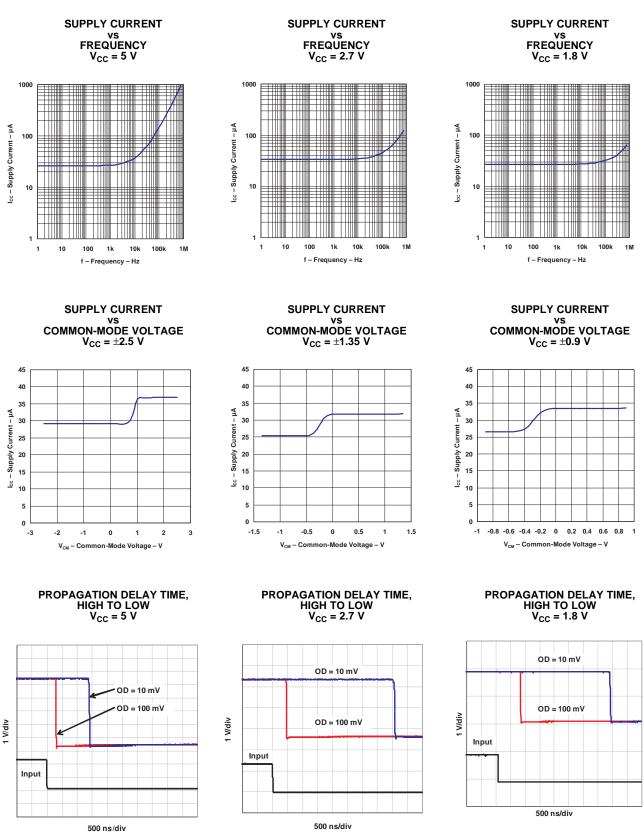
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT	
V	Input offect voltage		25°C		±2	±8	mV	
V _{IO}	Input offset voltage		–40°C to 85°C			±9	mv	
I _{IO}	Input offset current		25°C		2		pА	
l _l	Input bias current		25°C		4		pА	
V _{CM}	Common-mode input voltage		25°C	0		$V_{CC} - 0.3$	V	
CMRR	Common mode rejection ratio	$\Delta V_{CM} = 5 V$	25°C	40	55		dB	
CINKK	Common-mode rejection ratio	$0 \le V_{CM} \le 5 V$	–40°C to 85°C	40			uБ	
		Output = High, V_{IN} = 1.8 V	25°C		30	55		
		Output = Low, V _{IN} = 1.8 V	25'0		33	47	μΑ	
		Output = High, V _{IN} = 1.8 V	–40°C to 85°C			60		
сс	Current current	Output = Low, V _{IN} = 1.8 V	-40°C 10 85°C			51		
	Supply current	Output = High, $V_{IN} = 0.9 V$	2500		20	32		
		Output = Low, $V_{IN} = 0.9 V$	25°C		25	37		
		Output = High, V _{IN} = 0.9 V	4000 to 0500			34		
		Output = Low, $V_{IN} = 0.9 V$	–40°C to 85°C			40	l.	
A _{VD}	Voltage gain	V_{D} = 1.1 V, 0.4 V $\leq V_{OUT} \leq 1.5$ V	25°C		88		dB	
	Cink ourrent	V 0.5.V	25°C	6	9			
I _{sink}	Sink current	V _{OL} = 0.5 V	–40°C to 85°C	5			mA	
	Source current		25°C	5	9		mA	
source	Source current	V _{OH} = 2.2 V	–40°C to 85°C	4			ШA	
\ <i>\</i>	Low lovel output voltoge		25°C		0.2	0.34	V	
V _{OL}	Low-level output voltage	I _{sink} = 5 mA	–40°C to 85°C			0.39	v	
	Lish lovel output veltage	L 5 mA	25°C	1.3	1.6		V	
V _{OH}	High-level output voltage	I _{source} = 5 mA	–40°C to 85°C	1.2			V	

TLV7256 DUAL COMPARATOR

SLCS147A-OCTOBER 2006-REVISED JANUARY 2007

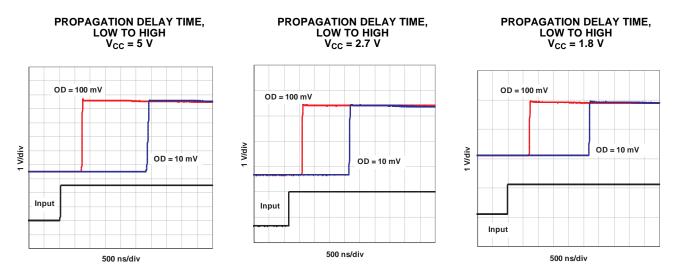
Switching Characteristics

 V_{CC+} = 5 V, V_{CC-} = GND, T_A = 25°C (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	TYP	UNIT
	Propagation dology time (turn on)	Overdrive = 100 mV	680	20
t _{PLH}	Propagation delay time (turn on)	500	ns	
	Propagation dology time (turn off)	Overdrive = 100 mV	250	20
t _{PHL}	Propagation delay time (turn off)	TTL step input	380	ns
t _{TLH}	Pospono timo	Overdrive = 100 mV	60	ns
t _{THL}	Response time		8	115

Switching Characteristics

 V_{CC+} = 3 V, V_{CC-} = GND, T_{A} = 25°C (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	TYP	UNIT
t _{PLH}	Propagation delay time (turn on)	Overdrive = 100 mV	550	ns
t _{PHL}	Propagation delay time (turn off)	Overdrive = 100 mV	250	ns
t _{TLH}	Decements time		30	
t _{THL}	Response time	Overdrive = 100 mV	8	ns

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins F	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TLV7256IDDUR	ACTIVE	VSSOP	DDU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV7256IDDURG4	ACTIVE	VSSOP	DDU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

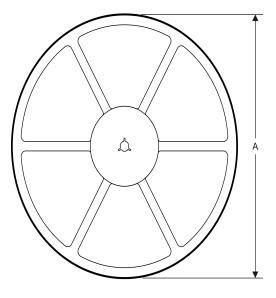
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

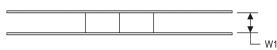
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

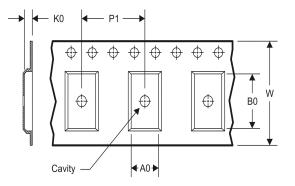
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

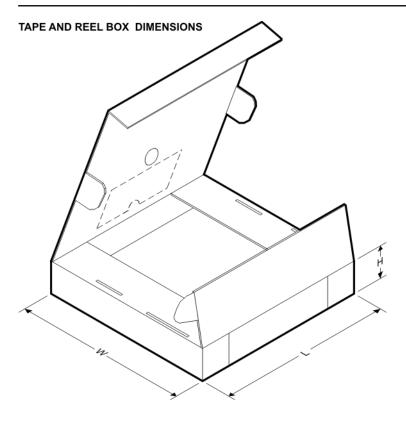
REEL DIMENSIONS


TEXAS INSTRUMENTS

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

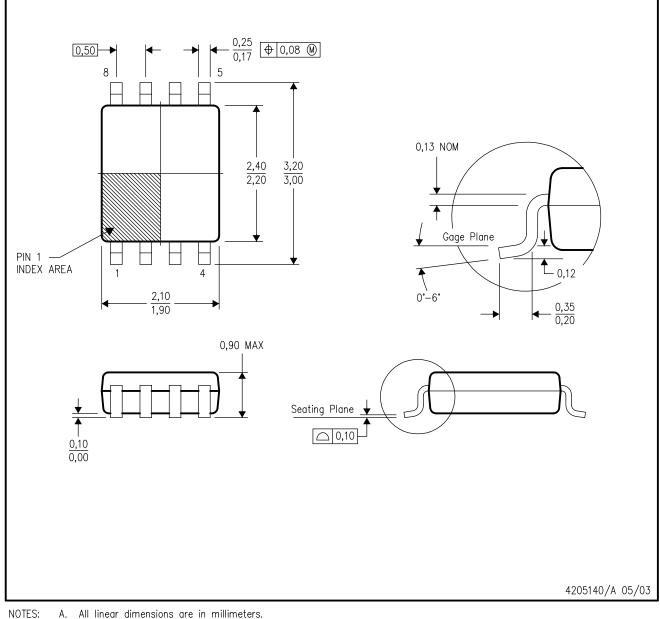

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV7256IDDUR	VSSOP	DDU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

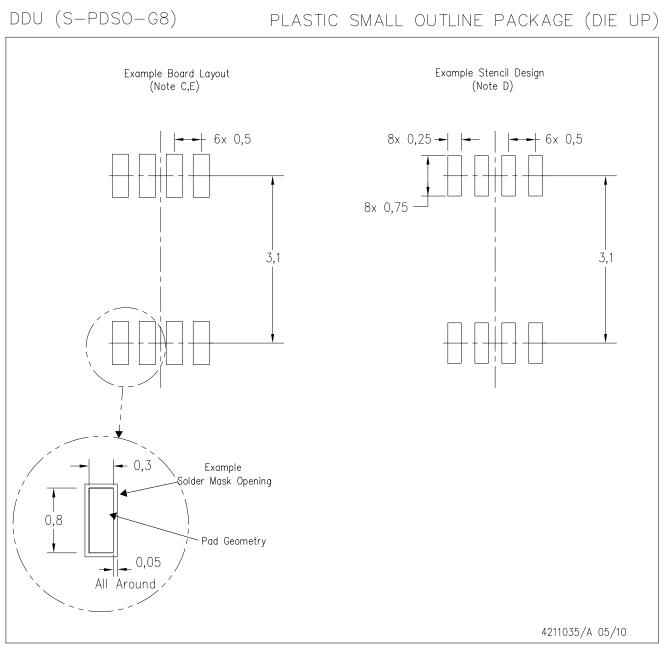
13-Jan-2012



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV7256IDDUR	VSSOP	DDU	8	3000	202.0	201.0	28.0

DDU (R-PDSO-G8)


PLASTIC SMALL-OUTLINE PACKAGE

Α. All linear dimensions are in millimeters.

- Β. This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusion. C.
- D. Falls within JEDEC MO-187 variation CA.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
	TI 505 0		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated