LMP8645,LMP8645HV

LMP8645/LMP8645HV Precision High Voltage Current Sense Amplifier

Literature Number: SNOSB29E

LMP8645/LMP8645HV

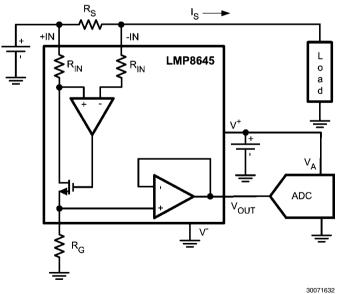
Precision High Voltage Current Sense Amplifier

General Description

The LMP8645 and the LMP8645HV are precision current sense amplifiers that detect small differential voltages across a sense resistor in the presence of high input common mode voltages with a supply voltage Range from 2.7V to 12V.

The LMP8645 accepts input signals with common mode voltage Range from -2V to 42V, while the LMP8645HV accepts input signal with common mode voltage Range from -2V to 76V. The LMP8645 and LMP8645HV have adjustable gain for applications where supply current and high common mode voltage are the determining factors. The gain is configured with a single resistor, providing a high level of flexibility, the accuracy could be as low as 2% (max) including the gain setting resistor. The output is buffered in order to provide low output impedance. This high side current sense amplifier is ideal for sensing and monitoring currents in DC or battery powered systems, excellent AC and DC specifications over temperature, and keeps errors in the current sense loop to a minimum. The LMP8645 is an ideal choice for industrial, automotive and consumer applications, and it is available in TSOT-6 package.

Features


Typical values, $T_{A} = 25^{\circ}C$

High common-mode voltage Range	
— LMP8645	-2V to 42V
— LMP8645HV	-2V to 76V
 Supply voltage Range 	2.7V to 12V
 Gain configurable with a single resist 	or
 Max variable gain accuracy (with external 	ernal resistor) 2.0%
 Transconductance 	200 µA/V
 Low offset voltage 	1 mV
Input bias	12 µA
■ PSRR	90 dB
■ CMRR	95 dB
Temperature Range	-40°C to 125°C
6-Pin TSOT Package	
-	

Applications

- High-side current sense
- Vehicle current measurement
- Motor controls
- Battery monitoring
- Remote sensing
- Power management

Typical Application

LMP[™] is a trademark of National Semiconductor Corporation.

January 31, 2011

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (<i>Note 2</i>)				
Human Body Model				
For input pins +IN, -IN	±5000V			
For all other pins	±2000V			
Machine Model	200V			
Charge device model	1250V			
Supply Voltage ($V_S = V^+ - V^-$)	13.2V			
Differential voltage +IN- (-IN)	6V			
Voltage at pins +IN, -IN				
LMP8645HV	-6V to 80V			

LMP8645-6V to 60VVoltage at R_G pin13.2VVoltage at OUT pinV- to V+Storage Temperature Range-65°C to 150°CJunction Temperature (*Note 3*)150°CFor soldering specifications,
see product folder at www.national.com and
www.national.com/ms/MS/MS-SOLDERING.pdf

Operating Ratings (Note 1)

Supply Voltage (V _S = V ⁺ - V ⁻)	2.7V to 12V
Temperature Range (<i>Note 3</i>)	-40°C to 125°C
Package Thermal Resistance(Note 3)	
TSOT-6	96°C/W

2.7V Electrical Characteristics (Note 4)

Unless otherwise specified, all limits guaranteed for at $T_A = 25^{\circ}$ C, $V_S = V^+ - V^-$, $V^+ = 2.7$ V, $V^- = 0$ V, $-2V < V_{CM} < 76$ V, $R_G = 25$ k Ω , $R_L = 10$ M Ω . **Boldface** limits apply at the temperature extremes.

Symbol Parameter		Condition		Typ (<i>Note 5</i>)	Max (<i>Note 6</i>)	Units	
V _{OS}	Input Offset Voltage	V _{CM} = 2.1V	-1 -1.7		1 1.7	mV	
TCV _{OS} Input Offset Voltage Drift V((Note 7, Note 9)		V _{CM} = 2.1V			7	µV/°C	
I _B	Input Bias Current (Note 10)	V _{CM} = 2.1V		12	20	μA	
e _{ni}	Input Voltage Noise (Note 9)	f > 10 kHz, R _G = 5 kΩ		120		nV/√Hz	
V _{SENSE(MAX)}	Max Input Sense Voltage (Note 9)	$V_{CM} = 12V, R_G = 5 k\Omega$		600		mV	
Gain A _V	Adjustable Gain Setting (Note 9)				100	V/V	
Gm	Transconductance	V _{CM} = 2.1V		200		μA/V	
	Accuracy	V _{CM} = 2.1V	-2 -3.4		2 3.4	%	
	Gm drift (<i>Note 9</i>)	–40°C to 125°C, V _{CM} =2.1V			140	ppm /°C	
PSRR	Power Supply Rejection Ratio	V _{CM} = 2.1V, 2.7V < V ⁺ < 12V	90			dB	
CMRR	Common Mode Rejection Ratio	LMP8645HV 2.1V < V _{CM} < 76V LMP8645 2.1V < V _{CM} < 42V	95			dB	
		-2V <v<sub>CM < 2V</v<sub>	60			1	
BW	-3 dB Bandwidth (<i>Note 9</i>)	$R_G = 10 \text{ k}\Omega$,, $C_G = 4 \text{ pF V}_{SENSE} = 400 \text{ mV}$, $C_L = 30 \text{ pF}$, $R_L = 1M\Omega$		990			
		$R_G = 25 \text{ k}\Omega, C_G = 4 \text{ pF}, V_{SENSE} = 200 \text{ mV},$ $C_L = 30 \text{ pF}, R_L = 1M\Omega$		260		kHz	
		$\label{eq:Rg} \begin{split} &Rg = 50 \mathrm{k}\Omega, C_{G} = 4 \; pF, V_{SENSE} = 100 \; mV, \\ &C_{L} = 30 \; pF, R_{L} = 1 \mathrm{M}\Omega \end{split}$		135			
SRSlew Rate (Note 8, Note 9)VVVS		$V_{CM} = 5V, C_G = 4 \text{ pF}, V_{SENSE} \text{ from } 25 \text{ mV}$ to 175 mV, $C_L = 30 \text{ pF}, R_L = 1M\Omega$		0.5		V/µs	
I _S	Supply Current	V _{CM} = 2.1V		380	525 710	uA	
		$V_{CM} = -2V$		2000	2500 2700	u/\	
V _{OUT}	Maximum Output Voltage	V _{CM} = 2.1V, Rg= 500 kΩ	1.2			V	
	Minimum Output Voltage	$V_{CM} = 2.1V$			20	mV	

Symbol	Parameter	Condition	Min (<i>Note 6</i>)	Typ (<i>Note 5</i>)	Max (<i>Note 6</i>)	Units
I _{OUT}	I _{OUT} Output current (<i>Note 9</i>) Sourcing, V _{OUT} = 600mV, Rg = 150kΩ			5		m۸
		Sinking, V_{OUT} = 600mV, Rg = 150k Ω		5		mA
C _{LOAD}	Max Output Capacitance Load (<i>Note 9</i>)			30		pF

5V Electrical Characteristics (Note 4)

Unless otherwise specified, all limits guaranteed for at $T_A = 25^{\circ}$ C, $V_S = V^+ - V^-$, $V^+ = 5$ V, $V^- = 0$ V, -2V < $V_{CM} < 76$ V, $R_g = 25$ k Ω , $R_L = 10 M\Omega$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (<i>Note 6</i>)	Typ (<i>Note 5</i>)	Max (<i>Note 6</i>)	Units
V _{OS}	Input Offset Voltage	V _{CM} = 2.1V	-1 -1.7		1 1.7	mV
TCV _{OS}	Input Offset Voltage Drift (<i>Note 7, Note 9</i>)	V _{CM} = 2.1V			7	µV/°C
Ι _Β	Input Bias Current (Note 10)	V _{CM} = 2.1V		12.5	22	μA
e _{ni}	Input Voltage Noise (Note 9)	f > 10 kHz, R _G = 5 kΩ		120		nV/√Hz
V _{SENSE(MAX)}	Max Input Sense Voltage (Note 9)	Note 9) $V_{CM} = 12V, R_G = 5 k\Omega$		600		mV
Gain A _v	Adjustable Gain Setting (Note 9)				100	V/V
Gm	Transconductance	V _{CM} = 2.1V		200		μA/V
	Accuracy	V _{CM} = 2.1V	-2 -3.4		2 3.4	%
	Gm drift (<i>Note 9</i>)	-40°C to 125°C, V _{CM} = 2.1V			140	ppm /°C
PSRR	PSRR Power Supply Rejection Ratio V _{CM} = 2.1V, , 2.7V < V ⁺ < 12V		90			dB
CMRR	Common Mode Rejection Ratio	LMP8645HV 2.1V <v<sub>CM < 76V LMP8645 2.1V <v<sub>CM< 42V</v<sub></v<sub>	95			dB
		-2V < V _{CM} < 2V	60			
BW	-3 dB Bandwidth (<i>Note 9</i>)	R_G = 10 kΩ, C _G = 4 pF V _{SENSE} = 400 mV, C _L = 30 pF, R _L = 1MΩ		850		
		R_G = 25 kΩ, C _G = 4 pF, V _{SENSE} = 300 mV, C _L = 30 pF, R _L = 1MΩ		260		kHz
		R_G = 50 kΩ, C_G = 4 pF, V_{SENSE} = 300mV, C_L = 30 pF, R_L = 1MΩ		140		
SR	Slew Rate (Note 8, Note 9)	$V_{CM} = 5V, C_G = 4 \text{ pF}, V_{SENSE} \text{ from 100 mV}$ to 500 mV, $C_L = 30 \text{ pF}, R_L = 1M\Omega$		0.5		V/µs
I _S	Supply Current	V _{CM} = 2.1V		450	610 780	uA
		$V_{CM} = -2V$		2100	2800 3030	uA
V _{OUT}	Maximum Output Voltage	V _{CM} =5V, Rg= 500 kΩ	3.3			V
	Minimum Output Voltage	V _{CM} =2.1V			22	mV
I _{OUT}	Output current (Note 9)	Sourcing, V_{OUT} = 1.65V, Rg= 150k Ω		5		
		Sinking, V_{OUT} = 1.65V, Rg= 150k Ω		5		mA
C _{LOAD}	Max Output Capacitance Load (<i>Note 9</i>)			30		pF

12V Electrical Characteristics (Note 4)

Unless otherwise specified, all limits guaranteed for at $T_A = 25^{\circ}$ C, $V_S = V^+$ -V⁻, $V^+ = 12$ V, $V^- = 0$ V, $-2V < V_{CM} < 76$ V, $R_g = 25$ k Ω , $R_L = 10$ M Ω . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (<i>Note 6</i>)	Typ (<i>Note 5</i>)	Max (<i>Note 6</i>)	Units
V _{OS}			-1 -1.7		1 1.7	mV
TCV _{OS}	Input Offset Voltage Drift (<i>Note 7, Note 9</i>)				7	µV/°C
I _B	Input Bias Current (Note 10)	V _{CM} = 2.1V		13	23	μA
e _{ni}	Input Voltage Noise (Note 9)	f > 10 kHz, R _G = 5 kΩ		120		nV/√Hz
V _{SENSE(MAX)}	Max Input Sense Voltage (Note 9)	V_{CM} =12V, R_{G} = 5 k Ω		600		mV
Gain A _V	Adjustable Gain Setting (Note 9)	/ _{CM} = 12V			100	V/V
Gm	Transconductance	V _{CM} = 2.1V		200		μA/V
	Accuracy	V _{CM} = 2.1V	-2 -3.4		2 3.4	%
	Gm drift (<i>Note 9</i>)	–40°C to 125°C, V _{CM} =2.1V			140	ppm /°C
PSRR	Power Supply Rejection Ratio	V _{CM} =2.1V, 2.7V <v<sup>+ < 12V</v<sup>	90			dB
CMRR	Common Mode Rejection Ratio	LMP8645HV 2.1V <v<sub>CM < 76V LMP8645 2.1V <v<sub>CM< 42V</v<sub></v<sub>	95			dB
		-2V <v<sub>CM < 2V</v<sub>	60			
BW	-3 dB Bandwidth (<i>Note 9</i>)	$R_G = 10 \text{ k}\Omega, C_G = 4 \text{ pF } V_{SENSE} = 400 \text{ mV},$ $C_L = 30 \text{ pF}, R_L = 1M\Omega$		860		
		$R_G = 25 \text{ k}\Omega, C_G = 4 \text{ pF}, V_{SENSE} = 400 \text{ mV},$ $C_L = 30 \text{ pF}, R_L = 1M\Omega$		260		kHz
		$R_G = 50$ kΩ, $C_G = 4$ pF, $V_{SENSE} = 400$ mV, $C_L = 30$ pF, $R_L = 1MΩ$		140		
SR	Slew Rate (Note 8, Note 9)	$V_{CM} = 5V, C_G = 4 \text{ pF}, V_{SENSE} \text{ from 100 mV}$ to 500 mV, $C_L = 30 \text{ pF}, R_L = 1M\Omega$		0.6		V/µs
I _S	Supply Current	V _{CM} = 2.1V		555	765 920	uA
		$V_{CM} = -2V$		2200	2900 3110	uA
V _{OUT}	Maximum Output Voltage	$V_{CM} = 12V, R_G = 500k\Omega$	10.2			V
	Minimum Output Voltage	V _{CM} = 2.1V			24	mV
I _{OUT}	Output current (Note 9)	Sourcing, V_{OUT} = 5.25V, Rg= 150k Ω		5		mA
		Sinking, V_{OUT} = 5.25V, Rg= 150k Ω		5		
C _{LOAD}	Max Output Capacitance Load (<i>Note 9</i>)			30		pF

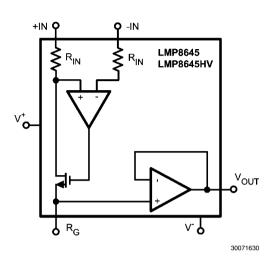
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics Tables.

Note 2: Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J(MAX)}$, θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation $P_{DMAX} = (T_{J(MAX)} - T_A) / \theta_{JA}$ or the number given in Absolute Maximum Ratings, whichever is lower.

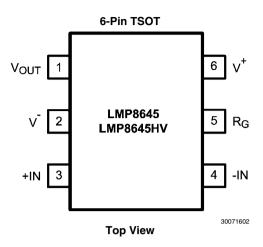
Note 4: Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where $T_J > T_A$.

Note 5: Typical values represent the most likely parametric norm at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.


Note 6: All limits are guaranteed by testing, design, or statistical analysis.

Note 7: Offset voltage temperature drift is determined by dividing the change in V_{OS} at the temperature extremes by the total temperature change.

Note 8: The number specified is the average of rising and falling slew rates and measured at 90% to 10%.

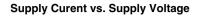

Note 9: This parameter is guaranteed by design and/or characterization and is not tested in production. **Note 10:** Positive Bias Current corresponds to current flowing into the device.

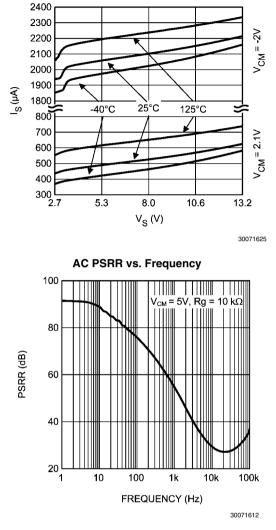
Block Diagram

LMP8645/LMP8645HV

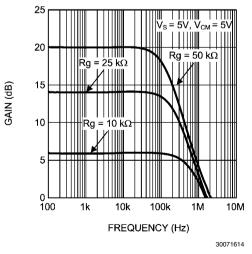
Connection Diagram

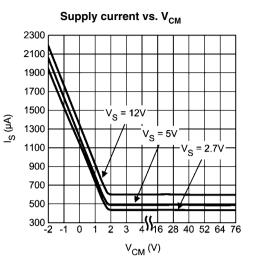
Pin Descriptions

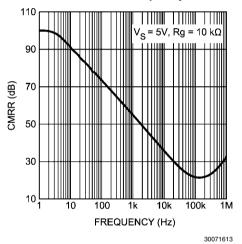

Pin	Name	Description
1	V _{OUT}	Single Ended Output
2	V-	Negative Supply Voltage
3	+IN	Positive Input
4	-IN	Negative Input
5	R _G	External Gain Resistor
6	V+	Positive Supply Voltage

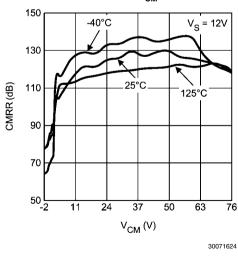

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing	
	LMP8645MK		1k Units Tape and Reel		
6-Pin TSOT	LMP8645MKE	AJ6A	250 Units Tape and Reel		
	LMP8645MKX		3k Units Tape and Reel	MK06A	
	LMP8645HVMK		1k Units Tape and Reel	IVINUOA	
	LMP8645HVMKE	AK6A	250 Units Tape and Reel	əl	
	LMP8645HVMKX		3k Units Tape and Reel		


Typical Performance Characteristics Unless otherwise specified: T_A = 25°C, V_S=V+-V-, V_{SENSE}= +IN - $(-IN), R_{I} = 10 M\Omega.$

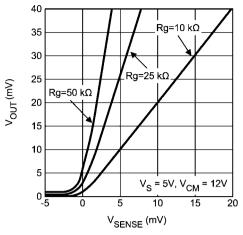


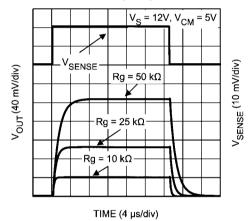

Gain vs. Frequency

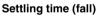


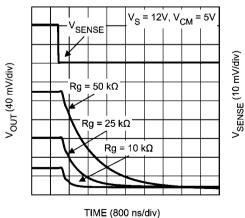
30071626

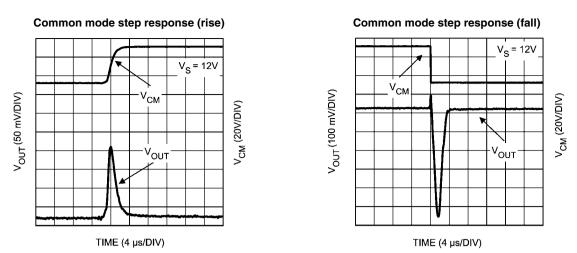

AC CMRR vs. Frequency











Small Step response

30071622

30071615

Application Information

GENERAL

The LMP8645 and LMP8645HV are single supply high side current sense amplifiers with variable gain selected through an external resistor and a common mode voltage Range of -2V to 42V or -2V to 76V depending on the grade.

The sense voltage is amplified by a user-selected gain and level shifted from the positive power supply to a ground-referred output.

THEORY OF OPERATION

As seen from the picture below, the current flowing through $R_{\rm S}$ develops a voltage drop equal to $V_{\rm SENSE}$ across $R_{\rm S}.$ The high impedance inputs of the amplifier doesn't conduct this current and the high open loop gain of the sense amplifier forces its non-inverting input to the same voltage as the inverting input. In this way the voltage drop across $R_{\rm IN}$ matches $V_{\rm SENSE}.$ A current proportional to $I_{\rm S}$ according to the following relation:

$$I_{S}' = V_{SENSE}/R_{IN} = R_{S}*I_{S}/R_{IN}$$
, where $R_{IN} = 1/Gm$

flows entirely in the external gain resistor developing a voltage drop equal to

 $V_G = I_S' * R_{GAIN} = (V_{SENSE}/R_{IN}) * R_{GAIN} = ((R_S * I_S)/R_{IN}) * R_{GAIN}$ This voltage is buffered and showed at the output with a very low impedance allowing a very easy interface of the LMP8645 with other ICs (ADC, μ C...).

 $V_{OUT} = (R_S I_S) G$, where $G = R_{GAIN} R_{IN}$

SELECTION OF THE SHUNT RESISTOR

The accuracy of the current measurement strictly depends on the value of the shunt resistor R_s . Its value depends on the application and it is a compromise between small-signal accuracy and maximum permissible voltage loss in the measurement section. High values of R_s provide better accuracy at lower currents by minimizing the effects of offset, while low values of R_s minimize voltage loss in the supply section. For most applications, best performance is obtained with an R_s

value that provides a full-scale shunt voltage Range of 100 mV to 200 mV.

SELECTION OF THE GAIN RESISTOR

In the LMP8645 and LMP8645HV the gain is selected through an external resistor connected to the $\rm R_G$ pin. Moreover the gain resistor $\rm R_{GAIN}$ determines the voltage of the output buffer which is related to the supply voltage and to the common mode voltage of the input signal. The gain resistor must be chosen such that the max output voltage does not exceed the LMP8645 max output voltage rating for a given common mode voltage.

The following equations explain how to select the gain resistor for various Range of the input common mode voltage.

Range 1
$$-2V < V_{CM} \le 1.8V$$

The max voltage at the RG pin is given by the following inequality $V_{RG}=V_{sense}*R_{GAIN}$ *Gm \leq min(1.3V; Vout_max) where Vout_max is the maximum allowable output voltage according to the Electrical Tables.All the gain resistors (R_{GAIN}) which respect the previous inequality are allowed. The graphical representation in *Figure 2* helps in the selection; all the combinations (V_{SENSE} , R_{GAIN}) below the curve are allowed.

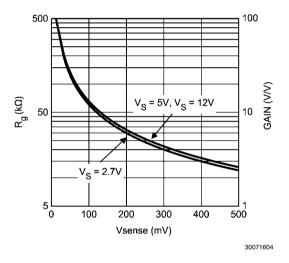


FIGURE 2. Allowed Gains for Range 1

As a consequence once selected the gain (R_{GAIN}) the V_{SENSE} Range is fixed too. For example if an application required a Gain of 10, R_G will be 50 k Ω and V_{SENSE} will be in the Range 10 mV to 100 mV.

Range 2
$$1.8V < V_{CM} \le V_{S}$$

In this Range the max voltage at the R_G pin is related to the common mode voltage and V_{SENSE} . So all the R_{GAIN} resistors which respect the following inequalities are allowed:

$$V_{R_G} \le min (Vout_max; (V_{CM} - V_{sense}-250mV))$$

where

 $V_{RG} = V_{SENSE} * R_{GAIN} * Gm$ and Vout_max is the maximum allowable output voltage according to the Electrical Tables.

The graphical representation in *Figure 3* helps in the selection; all the combinations (V_{SENSE} , R_{GAIN}) below the curves for given V_{CM} and supply voltage are allowed.

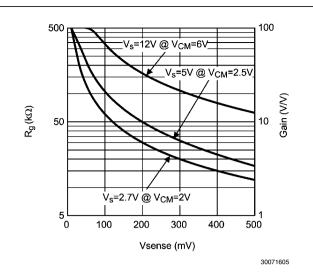


FIGURE 3. Allowed Gains for Range 2

Also in this Range once selected the $\rm R_{GAIN}$ (Gain) the $\rm V_{SENSE}$ Range is fixed too.

Range 3
$$V_{CM} \ge V_{S}$$

The max voltage at the R_G pin is Vout_max, it means that $V_{OUT} = V_{SENSE} * R_{GAIN}/R_{IN} \leq$ Vout_max where Vout_max is the maximum allowable output voltage according to the Electrical Tables.So all the R_{GAIN} resistors which respect the previous inequality are allowed. The graphical representation in helps in the selection; all the combinations (V_{SENSE}, R_{GAIN}) below the curves are allowed.

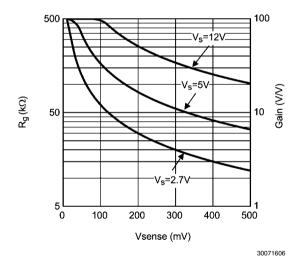


FIGURE 4. Allowed Gains for Range 3

Also in this Range once selected the $\rm R_{GAIN}$ (Gain) the $\rm V_{SENSE}$ Range is fixed too.

From the Ranges showed above a good way to maximize the output voltage swing of the LMP8645 is to select the max allowable Rgain according to the previous equations. For a

fixed supply voltage and Vsense as the common mode voltage increases, the max allowable Rgain increases too.

DESIGN GUIDELINE

Example 1

The LMP8645 is used to monitor the current supply of an active device (Refer to *Figure 5*). The LMP8645 is supplied at 5V the active device is supplied at 12V and the max current sunk is 1A. In this example the LMP8645 will work in all 3 Ranges: in Range 1 at the turning on of the active device, then in Range 3 passing through the Range 2. Since the purpose of the application is monitor the current of the active device in any operating state working condition (power on, normal operation, etc.), the gain resistor will be selected according to the Range 1, the Range which gives more constraints to the output dynamic voltage of the LMP8645.

At the startup of the monitored device the LMP8645 works at 0V common mode, it means that its max output is 1.3V (Range 1). In order to maximize the resolution the Rsense is calculated as max allowed Vsense (Refer to Figure 2) divided by max current (1A), so Rsesne=0.5Ω. Due to the output limitation the max allowed gain will be 2.6V/V so R_{GAIN} =13k Ω . With this approach the current is monitored at any working condition but without using the entire output dynamic of the LMP8645. Alternatively if the monitored device doesn't sink 1A at any supply voltage, it is possible to design considering the max output voltage of the LMP8645 when operating in Range 3 ($V_{CM} \ge V_S$). Also in this case is possible to maximize the resolution using Rsesne= 0.5Ω , and maximize the output dynamic with Rgain=33k Ω . With this approach the max detectable current when V_{CM} is less than 1,8V is about 400mA, while for V_{CM} =2.5V the max detectable current is 600mA (Refer to *Figure 2*) and for $V_{CM} \ge V_S$ is 1A.

The second approach maximizes the output dynamic but implies some knowledge on the monitored current.

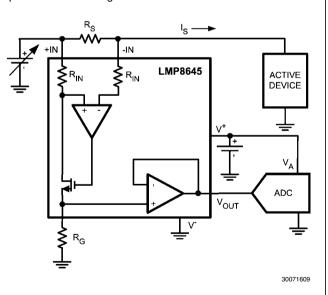
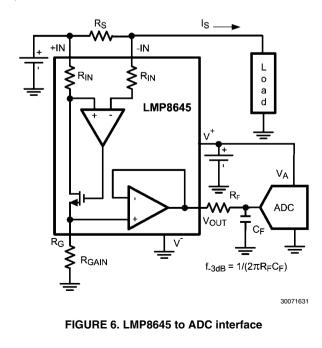


FIGURE 5. LMP8645 in current monitor application


Example 2

The LMP8645 is used to monitor the current in a high brightness LED application together with LM340x LED drivers. The LMP8645 is supplied at 3.3V and the max voltage at LED's string is 30V, the LED brightness is controlled with the dimming (MOSFET in parallel to the LED). The approach of the high current sense is used especially in automotive application where the cathode of the LED needs to be directly connected to the chassis of the car (Ground of the system). Even though LMP8645 will work in all 3 Ranges as in the previous example, R_{GAIN} will be calculated according to Range 3 because the purpose is regulating the current in the LEDs when the external MOSFET is OFF (LMP8645 at high V_{CM}). Even if this approach makes the LMP8645 able to sense high peak current only in Range 3 where the dynamic output is higher than Range 1 the current resolution is maximized. At each switch ON/OFF of the MOSFET the LMP8645 goes from Range 1 (MOSFET ON, string of LED OFF), to Range 3 (MOSFET OFF, string of LED ON) passing through Range 2 (MOSFET OFF, string of LED OFF). Since the purpose of the application is to sense the current with high precision when the LED string is ON, the R_{GAIN} will be calculated according to the Range 3.

To summarize, the ${\sf R}_{\sf GAIN}$ will be calculated according to the range of operation in which the application will mainly work. Once selected the range, will be taken in account the more stringent constraint

DRIVING ADC

The input stage of an Analog to Digital converter can be modeled with a resistor and a capacitance versus ground. So if the voltage source doesn't have a low impedance an error in the amplitude's measurement will occur. In this Range a buffer is needed to drive the ADC. The LMP8645 has an internal output buffer able to drive a capacitance load up to 30 pF or the input stage of an ADC. If required an external low pass RC filter can be added at the output of the LMP8645 to reduce the noise and the bandwidth of the current sense. Any other filter solution which implies a capacitance connected to the $R_{\rm G}$ pin is not suggested due to the high impedance of that pin.

SENSING CURRENT IN LED DRIVER APPLICATIONS

The LMP8645 is the right choice in the applications which reguires high side current sense, such as High Brightness LED for automotive where the LED's cathode has to be connected to the Range (ground) of the car. In this Range the classical low side current sense with a shunt resistor connected between the LED's cathode and the Range doesn't guarantee the ground connection. In Figure 7, the LMP8645 monitors the current for the LM3406 a constant current buck regulator. The LMP8645 is supplied by the internal LDO of the LM3406 thorough the pin VCC, the current which flows in the LED is programmed according the following formula: $I_F = V_{CS}$ (R_s *Gain), where Gain = R_{GAIN} *Gm and V_{CS} =200 mV. In this application the current which flows in the HB LED is in the Range between 350 mA and 1A, so in order to reduce the power dissipation on the shunt resistor and have a good accuracy, the R_s should be in the Range between 50 m Ω and 200 m Ω . In the table below two examples are analyzed.

	I _F =350mA	I _F =1A
R _{GAIN}	40kΩ	36kΩ
R _S	77mΩ	27mΩ
Dissipated Power	9.5mW	27mW
Total Accuracy	≊5%	≊5%

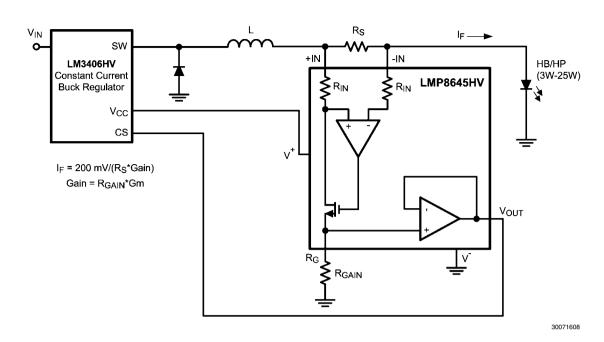
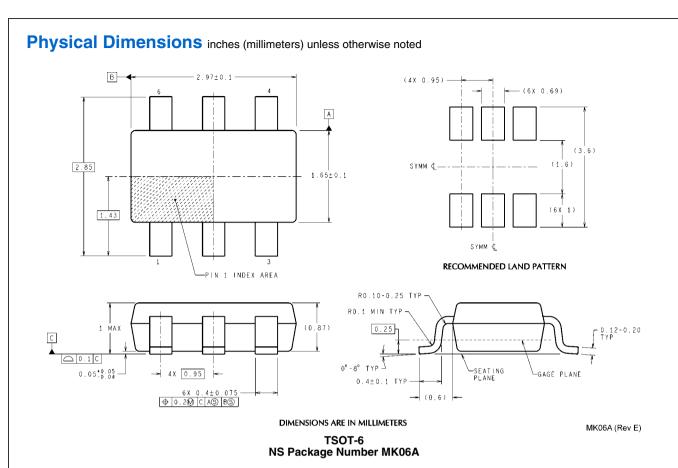



FIGURE 7. High Side Current Sensing in Driving HP/HB LED

Notes

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pr	oducts	Des	ign Support
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated