
BOURNS®

- Designed for Complementary Use with the BD246 Series
- 80 W at 25°C Case Temperature
- 10 A Continuous Collector Current
- 15 A Peak Collector Current
- Customer-Specified Selections Available

This model is currently available, but not recommended for new designs. For more information, see http://bourns.com/data/global/pdfs/TSP1203_S0T93_POM.pdf.

Pin 2 is in electrical contact with the mounting base.

MDTRAAA

1

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING			VALUE	UNIT
	BD245		55	
Collector emitter voltage (P. = 100.0)	BD245A	V	70	V
Collector-emitter voltage ($R_{BE} = 100 \Omega$)	BD245B	V _{CER}	90	v
	BD245C		115	
	BD245		45	
Collector-emitter voltage (I _C = 30 mA)	BD245A	V	60	V
	BD245B	V _{CEO}	80	
	BD245C		100	
Emitter-base voltage			5	V
Continuous collector current			10	Α
Peak collector current (see Note 1)			15	Α
Continuous base current			3	Α
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)			80	W
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3)			3	W
Unclamped inductive load energy (see Note 4)			62.5	mJ
Operating junction temperature range			-65 to +150	°C
Storage temperature range			-65 to +150	°C
Lead temperature 3.2 mm from case for 10 seconds			250	°C

NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$.

- 2. Derate linearly to 150°C case temperature at the rate of 0.64 W/°C.
- 3. Derate linearly to 150°C free air temperature at the rate of 24 mW/°C.
- 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = 0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = 20 V.

electrical characteristics at 25°C case temperature

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT	
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = 30 mA	I _B = 0	BD245 BD245A	45 60			V	
(511)020		(see Note 5)	BD245B BD245C	80 100					
	V _{CE}	V _{CE} = 55 V	$V_{BE} = 0$	BD245			0.4	mA	
I _{CES}	Collector-emitter	$V_{CE} = 70 \text{ V}$	$V_{BE} = 0$	BD245A			0.4		
CES	cut-off current	V _{CE} = 90 V	$V_{BE} = 0$	BD245B			0.4		
		V _{CE} = 115 V	$V_{BE} = 0$	BD245C			0.4		
	Collector cut-off	V _{CE} = 30 V	I _B = 0	BD245/245A			0.7	mA	
I _{CEO}	current	$V_{CE} = 60 \text{ V}$	$I_B = 0$	BD245B/245C			0.7		
I _{EBO}	Emitter cut-off current	V _{EB} = 5 V	I _C = 0				1	mA	
	Forward current transfer ratio	V _{CE} = 4 V	I _C = 1 A		40				
h_{FE}		$V_{CC} = 4 V$	$V_{CE} = 4 V$	$I_C = 3 A$	(see Notes 5 and 6)	20			
		$V_{CE} = 4 V$	$I_{\rm C} = 10 {\rm A}$		4				
V == (,)	Collector-emitter	I _B = 0.3 A	$I_C = 3 A$	(see Notes 5 and 6)			1	٧	
V _{CE(sat)}	saturation voltage	I _B = 2.5 A	$I_{\rm C} = 10 {\rm A}$				4	·	
V _{BE}	Base-emitter	V _{CE} = 4 V	I _C = 3 A	(see Notes 5 and 6)			1.6	٧	
▼BE	voltage	V _{CE} = 4 V	$I_{C} = 10 \text{ A}$				3	v	
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	I _C = 0.5 A	f = 1 kHz	20				
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	I _C = 0.5 A	f = 1 MHz	3				

NOTES: 5. These parameters must be measured using pulse techniques, t_p = 300 μ s, duty cycle \leq 2%.

thermal characteristics

	PARAMETER	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.56	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			42	°C/W

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS †			MIN	TYP	MAX	UNIT
t _{on}	Turn-on time	I _C = 1 A	$I_{B(on)} = 0.1 A$	$I_{B(off)} = -0.1 A$		0.3		μs
t _{off}	Turn-off time	$V_{BE(off)} = -3.7 \text{ V}$	$R_1 = 20 \Omega$	$t_{\rm p} = 20 \ \mu s, \ dc \le 2\%$		1		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

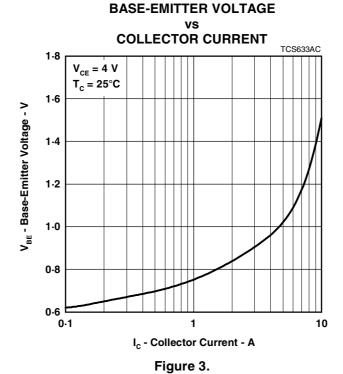
^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

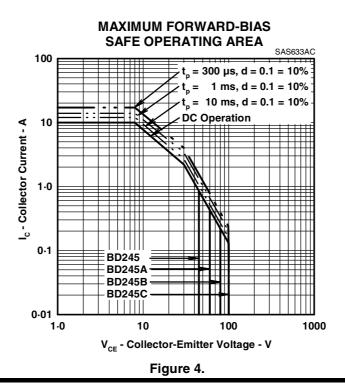
TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN VS COLLECTOR CURRENT $T_{CS633AG}$ $T_{C} = 25^{\circ}C$ $T_{C} = 300 \ \mu s, \ duty \ cycle < 2\%$ 100 1-0 1-0 $T_{C} = 100 \ duty$ $T_{C} = 100 \ duty$

Figure 1.

COLLECTOR-EMITTER SATURATION VOLTAGE


Figure 2.

PRODUCT INFORMATION

MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

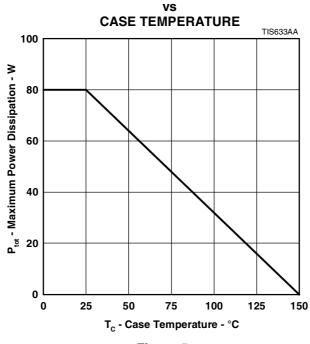


Figure 5.