
BOURNS®

- Designed for Complementary Use with the BD250 Series
- 125 W at 25°C Case Temperature
- 25 A Continuous Collector Current
- 40 A Peak Collector Current
- Customer-Specified Selections Available

This model is currently available, but not recommended for new designs. For more information, see http://bourns.com/data/global/pdfs/TSP1203_SOT93_POM.pdf.

Pin 2 is in electrical contact with the mounting base.

MDTRAAA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	BD249		55	
Collector-emitter voltage ($R_{BE} = 100 \Omega$)	BD249A	V	70	V
Collector Crimiter Voltage (TIBE = 100 22)	BD249B	V _{CER}	90	٧
	BD249C		115	
	BD249		45	
Collector-emitter voltage (I _C = 30 mA)	BD249A	V	60	V
Collector-entitles voltage (IC = 30 IIIA)	BD249B	V _{CEO}	80	
	BD249C		100	
Emitter-base voltage			5	V
Continuous collector current			25	Α
Peak collector current (see Note 1)			40	Α
Continuous base current			5	Α
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)			125	W
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3)			3	W
Unclamped inductive load energy (see Note 4)			90	mJ
Operating junction temperature range			-65 to +150	°C
Storage temperature range			-65 to +150	°C
Lead temperature 3.2 mm from case for 10 seconds	T _L 250		°C	

NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$.

- 2. Derate linearly to 150°C case temperature at the rate of 1 W/°C.
- 3. Derate linearly to 150°C free air temperature at the rate of 24 mW/°C.
- 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = 0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = 20 V.

electrical characteristics at 25°C case temperature

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
V _{(BR)CEO}	Collector-emitter breakdown voltage	$I_C = 30 \text{ mA}$ $I_B = 0$ (see Note 5)	1 -0	BD249 BD249A	45 60			V
			BD249B BD249C	80 100			V	
	Collector-emitter	V _{CE} = 55 V V _{CE} = 70 V	V _{BE} = 0 V _{BE} = 0	BD249 BD249A			0.7 0.7	mA
I _{CES}	cut-off current	$V_{CE} = 70 \text{ V}$ $V_{CE} = 90 \text{ V}$ $V_{CE} = 115 \text{ V}$	$V_{BE} = 0$	BD249B BD249C			0.7 0.7 0.7	
I _{CEO}	Collector cut-off current	$V_{CE} = 113 \text{ V}$ $V_{CE} = 30 \text{ V}$ $V_{CE} = 60 \text{ V}$	$I_{B} = 0$ $I_{B} = 0$	BD249/249A BD249B/249C			1	mA
I _{EBO}	Emitter cut-off current	V _{EB} = 5 V	I _C = 0				1	mA
h _{FE}	Forward current transfer ratio	$V_{CE} = 4 V$ $V_{CE} = 4 V$ $V_{CE} = 4 V$	$I_{C} = 1.5 A$ $I_{C} = 15 A$ $I_{C} = 25 A$	(see Notes 5 and 6)	25 10 5			
V _{CE(sat)}	Collector-emitter saturation voltage	I _B = 1.5 A I _B = 5 A	$I_{\rm C} = 15 {\rm A}$ $I_{\rm C} = 25 {\rm A}$	(see Notes 5 and 6)			1.8 4	٧
V _{BE}	Base-emitter voltage	$V_{CE} = 4 V$ $V_{CE} = 4 V$	l _C = 15 A l _C = 25 A	(see Notes 5 and 6)			2 4	٧
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	I _C = 1 A	f = 1 kHz	25			
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	I _C = 1 A	f = 1 MHz	3			

NOTES: 5. These parameters must be measured using pulse techniques, t_p = 300 μ s, duty cycle \leq 2%.

thermal characteristics

PARAMETER			TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			42	°C/W

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS †		MIN	TYP	MAX	UNIT	
t _{on}	Turn-on time	I _C = 5 A	$I_{B(on)} = 0.5 A$	$I_{B(off)} = -0.5 A$		0.3		μs
t _{off}	Turn-off time	$V_{BE(off)} = -5 V$	$R_1 = 5 \Omega$	$t_{\rm p} = 20 \ \mu s, \ dc \le 2\%$		0.9		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN vs **COLLECTOR CURRENT** TCS635AD 1000 $V_{CE} = 4 V$ $T_{\rm C} = 25^{\circ}{\rm C}$ $t_p = 300 \mu s$, duty cycle < 2%h_{FE} - DC Current Gain 100 10 0.1 1.0 10 100 I_c - Collector Current - A

Figure 1.

COLLECTOR-EMITTER SATURATION VOLTAGE

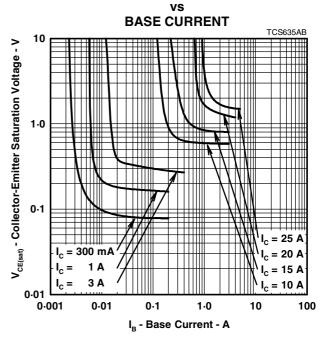


Figure 2.

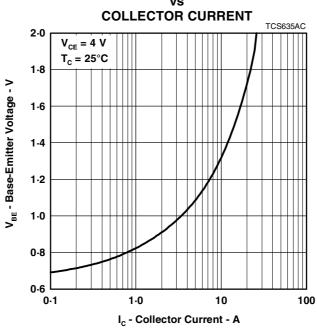
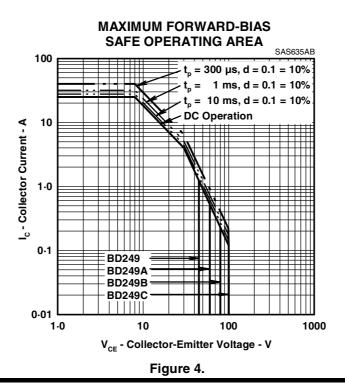



Figure 3.

MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

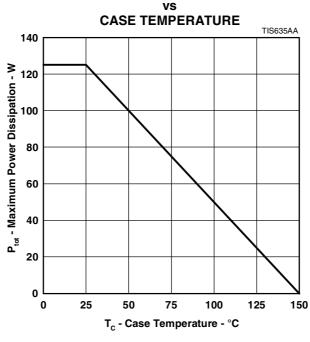


Figure 5.