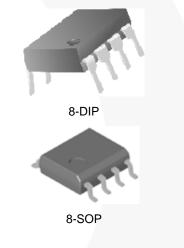


Features

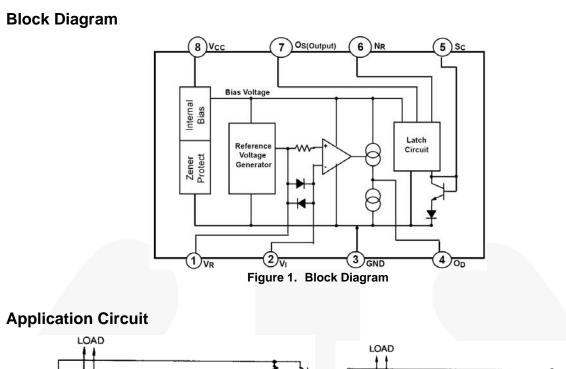
- Low Power Consumption: 5mW, 100V/200V
- Built-In Voltage Regulator

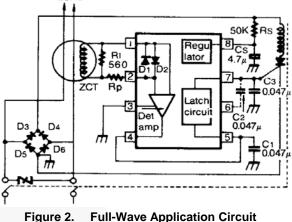
FAIRCHILD


- High-Gain Differential Amplifier
- 0.4mA Output Current Pulse to Trigger SCRs
- Low External Part Count
- DIP & SOP Packages, High Packing Density
- High Noise Immunity, Large Surge Margin
- Super Temperature Characteristic of Input Sensitivity
- Wide Operating Temperature Range: T_A = -25°C to +80°C
- Operation from 12V to 20V Input

Functions

- Differential Amplifier
- Level Comparator
- Latch Circuit


Description


The KA2803B is designed for use in earth leakage circuit interrupters, for operation directly off the AC line in breakers. The input of the differential amplifier is connected to the secondary coil of ZCT (Zero Current Transformer). The amplified output of differential amplifier is integrated at external capacitor to gain adequate time delay specified in KSC4613. The level comparator generates a high level when earth leakage current is greater than the fixed level.

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method	
KA2803B	-25 to +80°C	8-Lead, Dual Inline Package (DIP)	Tube	
KA2803BD	-25 to +80°C	8-Lead, Small Outline Package (SOP)	Tape and Reel	

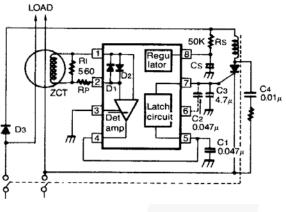


Figure 3. Half-Wave Application Circuit

Application Information

(Refer to full-wave application circuit in Figure 2)

Figure 2 shows the KA2803B connected in a typical leakage current detector system. The power is applied to the V_{CC} terminal (Pin 8) directly from the power line. The resistor R_S and capacitor C_S are chosen so that Pin 8 voltage is at least 12V. The value of C_S is recommended above 1µF.

If the leakage current is at the load, it is detected by the zero current transformer (ZCT). The output voltage signal of ZCT is amplified by the differential amplifier of the KA2803B internal circuit and appears as a half-cycle sine wave signal referred to input signal at the output of the amplifier. The amplifier closed-loop gain is fixed about 1000 times with internal feedback resistor to compensate for zero current transformer (ZCT) variations. The resistor R_L should be selected so that the breaker satisfies the required sensing current. The protection resistor R_P is not usually used when high current is injected at the breaker; this resistor should be

used to protect the earth leakage detector IC (KA2803B). The range of R_P is from several hundred Ω to several k Ω .

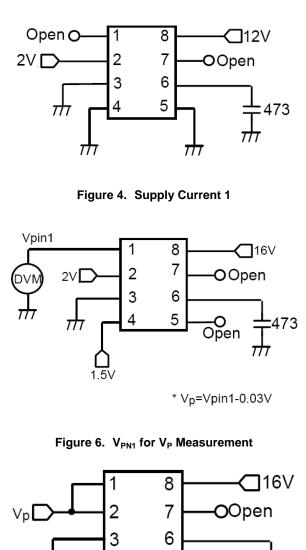
Capacitor C_1 is for the noise canceller and a standard value of C_1 is 0.047µF. Capacitor C2 is also a noise canceller capacitance, but it is not usually used.

When high noise is present, a 0.047μ F capacitor may be connected between Pins 6 and 7. The amplified signal finally appears at the Pin 7 with pulse signal through the internal latch circuit of the KA2803B. This signal drives the gate of the external SCR, which energizes the trip coil, which opens the circuit breaker. The trip time of the breaker is determined by capacitor C₃ and the mechanism breaker. This capacitor should be selected under 1µF to satisfy the required trip time. The full-wave bridge supplies power to the KA2803B during both the positive and negative half cycles of the line voltage. This allows the hot and neutral lines to be interchanged.

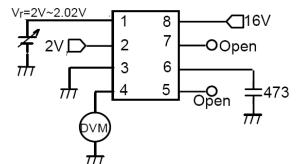
Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

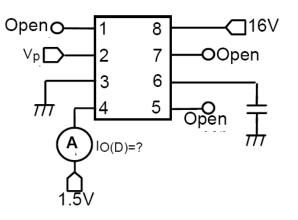
Symbol	Parameter	Min.	Max.	Unit
V _{cc}	Supply Voltage		20	V
I _{CC}	Supply Current		8	mA
PD	Power Dissipation		300	mW
TL	Lead Temperature, Soldering 10 Seconds		260	°C
T _A	Operation Temperature Range	-25	+80	°C
T _{STG}	Storage Temperature Range	-65	+150	°C

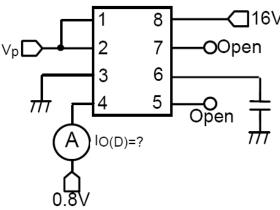

Electrical Characteristics

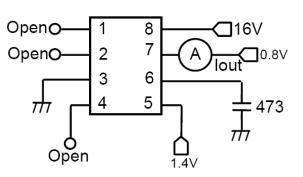
 $T_A = -25^{\circ}C$ to +80°C unless otherwise specified.


Symbol	Parameter	Conditions		Test Circuit	Min.	Тур.	Max.	Unit s
I _{CC}	Supply Current 1	V _{CC} =12V V _R =OPEN V _I =2V	T _A = -25°C	Figure 4			580	μΑ
			T _A = +25°C		300	400	530	
			T _A = +80°C				480	
V _T	Trip Voltage	V _{CC} =16V, V _R =2V~2.02V, V _I =2		Figure 5	14	16	18	mV
		Note 1		12.5	14.2	17.0	(ms)	
I _{O(D)}	Differential Amplifier Current Current 1	V_{CC} =16V, V_{R} ~ V_{I} =30mV, V_{OD} =1.2V		Figure 7	-12	20	-30	
	Differential Amplifier Current Current 2	V _{CC} =16V, V _C V _I Short=V _P	_{DD} =0.8V,V _R ,	Figure 8	17	27	37	μA
	Output Current	$V_{SC} = 1.4V,$ $V_{OS} = 0.8V,$	T _A = -25°C	Figure 9	200	400	800	μΑ
I _O			T _A = +25°C		200	400	800	
			T _A = +80°C		100	300	600	
V _{SCON}	Latch-On Voltage	V _{CC} =16V		Figure 10	0.7	1.0	1.4	V
I _{SCON}	Latch Input Current	V _{CC} =16V		Figure 11	-13	-7	-1	μA
I _{OSL}	Output Low Current	V _{CC} =12V, V _{OSL} =0.2V		Figure 12	200	800	1400	μA
VIDC	Differential Input Clamp Voltage	V _{CC} =16V, I _{IDC} =100mA		Figure 13	0.4	1.2	2.0	V
V _{SM}	Maximum Current Voltage	I _{SM} =7mA		Figure 14	20	24	28	V
I _{S2}	Supply Current 2	V _{CC} =12.0V, V _{OSL} =0.6V		Figure 15	200	400	900	μA
V _{SOFF}	Latch-Off Supply Voltage	V _{OS} =12.0V				8	9	v
		V _{SC} =1.8V		Figure 16	7			
		I _{IDC} =100.0mA						
t _{ON}	Response Time	V_{CC} =16V, V_{R} - V_{I} =0.3V, 1V< V_{X} <5V		Figure 17	2	3	4	ms

Note:


1. Guaranteed by design, not tested in production.


Test Circuits



16V

47

8

7

6

5

> 6V

16V

π

473

OOpen

Open

Icc=?

0.6V

473

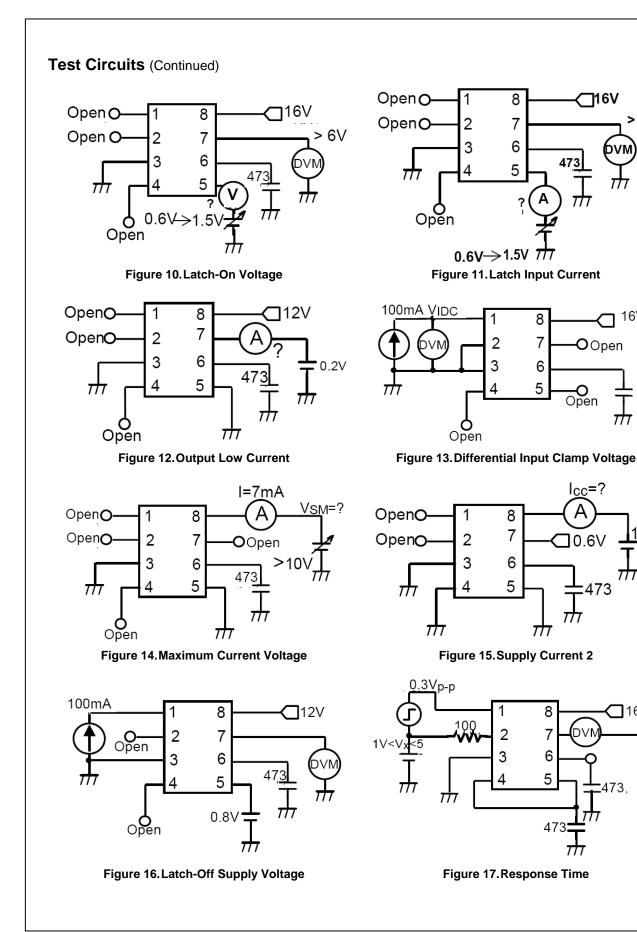
116V

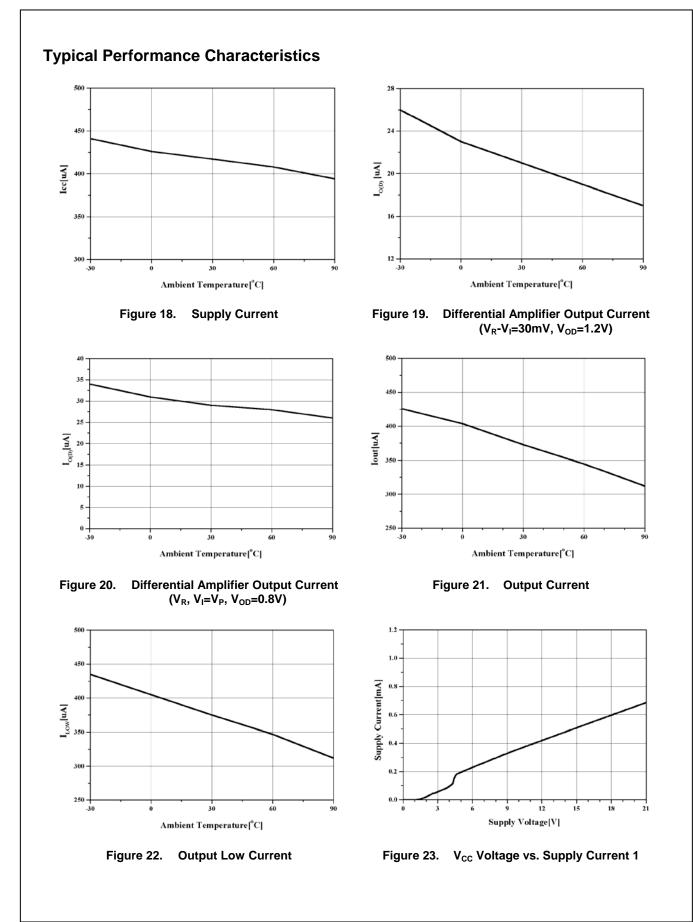
473 m

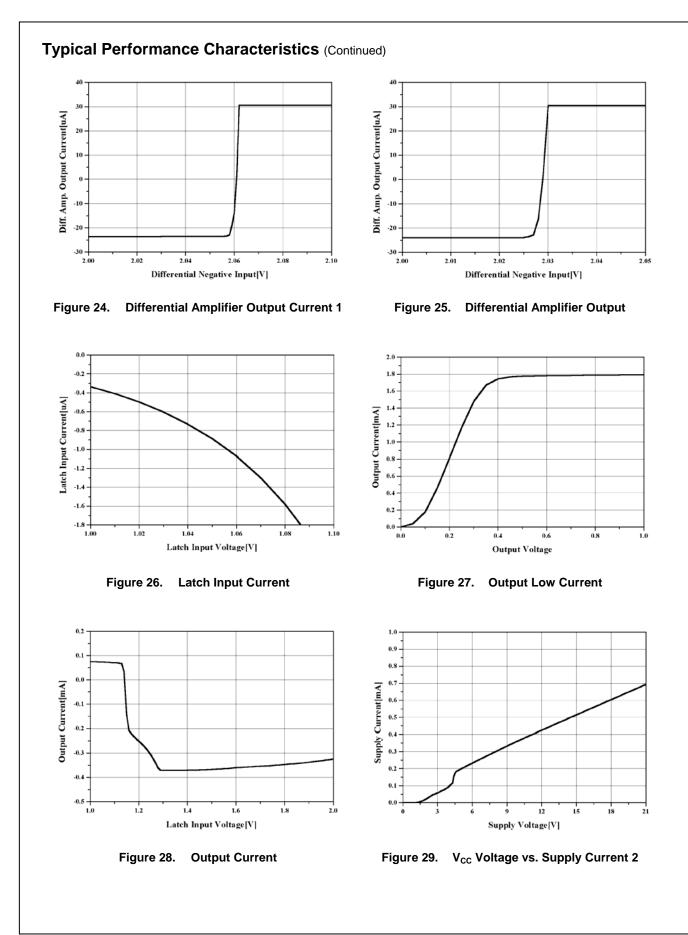
Δ

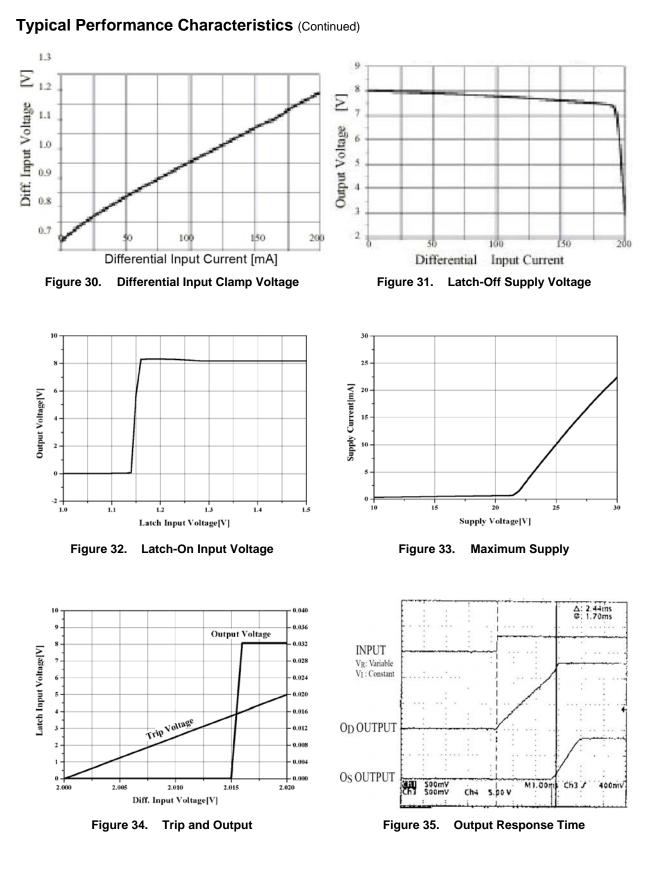
 Π

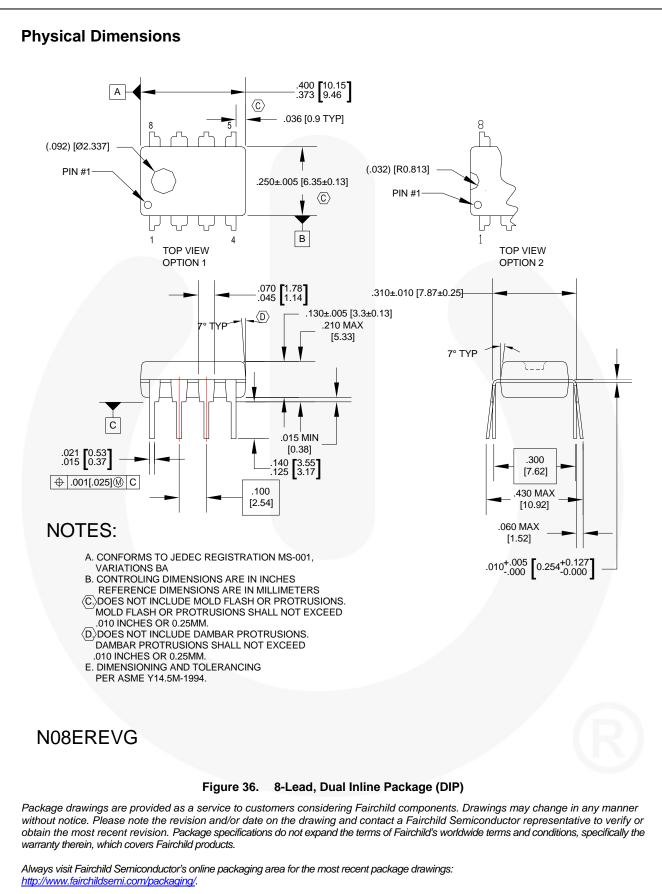
 π


8


7


6


5


473

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>.

