

3.125 Gbps 4x4 LVDS Crosspoint Switch with Transmit Pre-emphasis and Receive Equalization

DS25CP104 Evaluation Kit

USER MANUAL

Part Number: DS25CP104EVK

For the latest documents concerning these products and evaluation kit, visit lvds.national.com. Schematics and gerber files are also available at lvds.national.com.

Table of Contents

Table of Contents	2
Overview	3
DS25CP104 EVK Description	4
CP104 Evaluation	
SMBus Evaluation	
Typical Performance	16

Overview

The DS25CP104EVK is an evaluation kit designed for demonstrating performance of DS25CP104, a 3.125 Gbps 4x4 LVDS Crosspoint Switch with Transmit Pre-emphasis and Receive Equalization. The evaluation kit is comprised of the DS25CP104 with its associated input and output SMA connectors and jumpers to manually select the desired pre-emphasis or equalization, a USB to SMBus conversion circuit to control the SMBus with a PC, and three FR4 striplines (15" (38.1cm), 30" (76.2cm), and 60" (152.4cm)) to exercise the devices' signal conditioning features (pre-emphasis and equalization).

The purpose of this document is to familiarize the user with the DS25CP104EVK, to suggest test setup procedures and instrumentation to test the device optimally, and to guide the user through some typical measurements that demonstrate the performance of the DS25CP104 in typical applications.

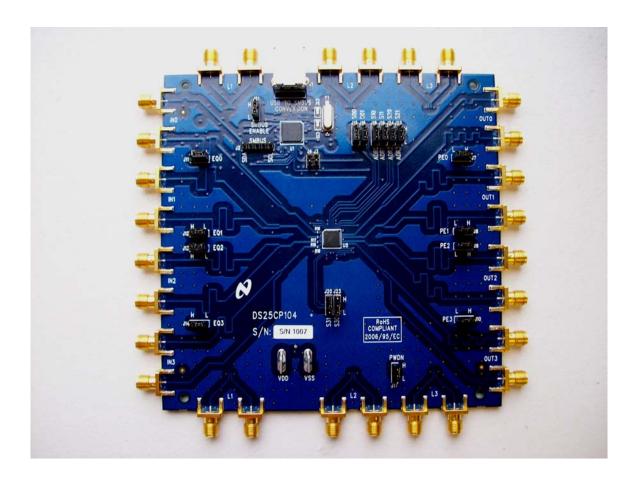


Figure 1. Photo of the DS25CP104EVK

DS25CP104EVK Description

Figure 2 shows the top layer drawing of the PCB with the silkscreen annotations. The 4.5 by 4.5 inch, eight-layer PCB is designed to evaluate the functions of the DS25CP104.

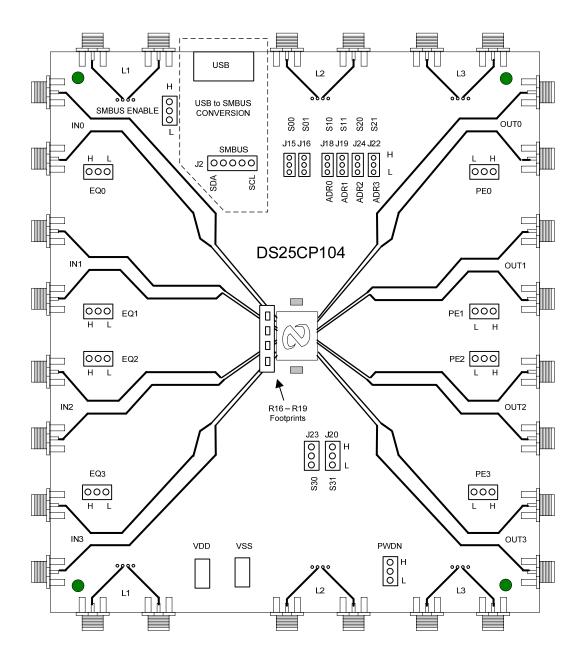


Figure 2. Top Layer DS25CP104EVK

For descriptive purposes the DS25CP104EVK can be broken into three parts:

- 1. The **DS25CP104** IC with associated connectors and jumpers is the main part of the board. The block diagram of the DS25CP104 is shown in Figure 3. The receive buffers can be set to Off and Low equalization by the external pins EQ0 EQ3; the transmit buffers can be set to Off and Med. levels of pre-emphasis by the external pins PE0 PE3. Since data capabilities are 3.125 Gbps, SMA connectors are used to ensure minimal loss. More information can be found about the DS25CP104 on the data sheets.
- 2. A **USB to SMBus converter** has been added to the evaluation kit to implement SMBus switch configuration to control the signal conditioning. Through the SMBus the DS25CP104 currently features four levels (Off, Low, Medium, and High) of preemphasis and two levels (Off, Low) of equalization.
- 3. **Three channels of stripline** have been added to the evaluation kit to test the preemphasis and equalization functions (15" (38.1cm), 30" (76.2cm), and 60" (152.4cm)). In practical applications, devices often drive long backplanes or cables. To help reduce jitter caused from long backplanes or cables, pre-emphasis can be used for the drivers and equalization for the receivers.

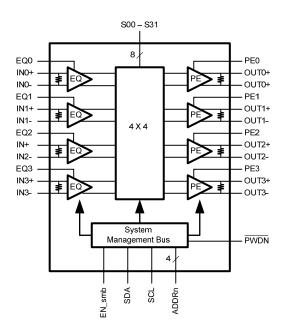


Figure 3. DS25CP104 Block Diagram

DS25CP104 Evaluation

The DS25CP104 is a 3.125 Gbps LVDS Crosspoint Switch with four levels of transmit pre-emphasis and two levels of receive equalization configured in the SMBus Mode and two levels of transmit pre-emphasis and two levels of receive equalization configured via external jumpers on the evaluation board in the Pin Mode.

Initial Pin Settings for Pin Mode Testing

Pin	Setting	Note
SMBus Enable	L	Disable SMbus
EQ0 – EQ 3	L	Equalization off,
		See table
PE0 – PE3	L	Pre-Emphasis off,
		See table
PWDN	Н	Power Down off

Switch Configuration Truth Tables

S01	S00	Input Selected
0	0	IN0
0	1	IN1
1	0	IN2
1	1	IN3

Table 1. Input Select Pins Configuration for the Output OUT0

S11	S10	Input Selected
0	0	IN0
0	1	IN1
1	0	IN2
1	1	IN3

Table 2. Input Select Pins Configuration for the Output OUT1

S21	S20	Input Selected
0	0	IN0
0	1	IN1
1	0	IN2
1	1	IN3

Table 3. Input Select Pins Configuration for the Output OUT2

S31	S30	Input Selected
0	0	IN0
0	1	IN1
1	0	IN2
1	1	IN3

Table 4. Input Select Pins Configuration for the Output OUT3

Signal Conditioning Tables

Output OUTn, n={0,1,2,3}				
Pre-Emphasis Control Pin (PEn) State Pre-Emphasis Level				
0	Off			
1	Medium			

Table 5. Transmit Pre-emphasis Truth Table

Input INn, n={0,1,2,3}				
Equalization Control Pin (EQn) State	Equalization Level			
0	Off			
1	Low			

Table 6. Receive Equalization Truth Table

Stripline Length Table (also known as Test Channels)

Stripline	Length	Loss (dB) @ 1250 MHz
L1	15" (38.1cm)	-3.6
L2	30" (76.2cm)	-8.2
L3	60" (152.4cm)	-14.5

Table 7. Stripline length table

Jitter Performance Testing with No Signal Conditioning

- 1. Configure the test setup as shown in Figure 4.
- 2. Set the desired INn to OUTn drivers by selecting S00, S01, S10, S11, S20, S21, S30, S31 according to Tables 1 4.
- 3. Select the PEn and EQn jumpers to 0, according to tables 5 and 6.
- 4. Apply + supply (3.3V typical) to the VDD and supply (ground) to the VSS connectors.
- 5. Connect a signal source (signal generator, data source, or an LVDS driver) to the desired INn inputs on the board and adjust the signal parameters (VOH, VOL, VCM) so that they comply with the device input recommendations.
- 6. Connect an oscilloscope to the selected OUTn outputs and view the output signals with an oscilloscope with the bandwidth of at least 5 GHz.

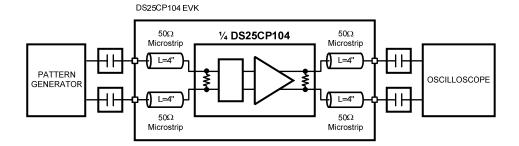


Figure 4. Jitter Performance Test Circuit

Pre-Emphasis Performance Testing

In applications where data transmits over cables or long backplanes, the pre-emphasis feature on the DS25CP104 transmitter helps to overcome media loss and reduce bit errors; hence the DS25CP104EVK has three lengths of stripline to test the pre-emphasis function.

- 1. Configure the test setup as shown in figure 5; select the desired test channel lengths in Table 7.
- 2. Set the desired INn to OUTn drivers by selecting S00, S01, S10, S11, S20, S21 according to Tables 1 4.
- 3. Select the PEn jumpers to 1 and the EQn jumpers to 0, according to Tables 5 and 6.
- 4. Apply + supply (3.3V typical) to the VDD and supply (ground) to the VSS connectors.
- 5. Connect a signal source (signal generator, data source, or an LVDS driver) to the desired INn inputs on the board and adjust the signal parameters (VOH, VOL, VCM) so that they comply with the device input recommendations.
- 6. Connect an oscilloscope to the selected OUTn outputs and view the output signals with an oscilloscope with a bandwidth of at least 5 GHz.

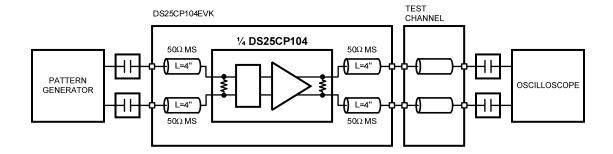


Figure 5. Pre-Emphasis Performance Test Circuit

Equalization Performance Testing

In some applications, data transmits over cables or long backplanes. The equalization function on the DS25CP104 receivers helps to compensate for loss of certain media; hence the DS25CP104EVK has three lengths of stripline to test the equalization function.

- 1. Configure the test setup as shown in Figure 6; select the desired test channel, lengths in Table 7.
- 2. Set the desired INn to OUTn drivers by selecting S00, S01, S10, S11, S20, S21, S30, S31 according to Tables 1 4.
- 3. Select the PEn jumpers to 0 and the EQn jumpers to 1, according to Tables 5 and 6.
- 4. Apply + supply (3.3V typical) to the VDD and supply (ground) to the VSS connectors.
- 5. Connect a signal source (signal generator, data source, or an LVDS driver) to the desired INn inputs on the board and adjust the signal parameters (VOH, VOL, VCM) so that they comply with the device input recommendations.
- 6. Connect an oscilloscope to the selected OUTn outputs and view the output signals with an oscilloscope with a bandwidth of at least 5 GHz.

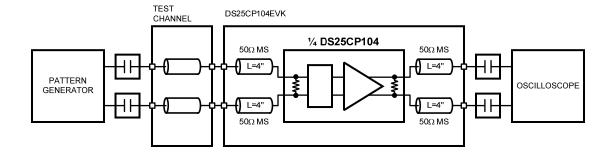


Figure 6. Equalization Performance Test Circuit

Pre-Emphasis and Equalization Performance Testing

In some applications, data transmits over cables or long backplanes. The pre-emphasis and equalization functions on the DS25CP104 help to compensate for loss of certain media; hence the DS25CP104EVK has three lengths of stripline to test the pre-emphasis and equalization functions.

- 1. Configure the test setup as shown in Figure 7; select the desired test channel, lengths in Table 7.
- 2. Set the desired INn to OUTn drivers by selecting S00, S01, S10, S11, S20, S21, S30, S31 according to Tables 1 4.
- 3. Select the PEn jumpers to 1 and the EQn jumpers to 1, according to Tables 5 and 6.
- 4. Apply + supply (3.3V typical) to the VDD and supply (ground) to the VSS connectors.
- 5. Connect a signal source (signal generator, data source, or an LVDS driver) to the desired INn inputs on the board and adjust the signal parameters (VOH, VOL, VCM) so that they comply with the device input recommendations.
- 6. Connect an oscilloscope to the selected OUTn outputs and view the output signals with an oscilloscope with a bandwidth of at least 5 GHz.

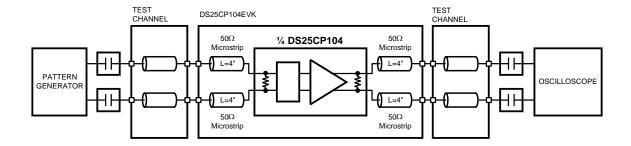


Figure 7. Pre-emphasis and Equalization Performance Test Circuit

SMBus Evaluation

Introduction:

The CP104 can be evaluated in the Pin Mode using the external pins, or in the SMBus mode. The following section describes how to load and run the Analog Launch Pad from National Semiconductor, a proprietary interface, used to access the SMBus registers of the CP104. The 1st time the application is run on a PC, and only the 1st time, the application file needs to be downloaded, extracted, and then the appropriate driver needs to be enabled. Any time after that, on the same PC, you need only to setup the CP104EVK and then proceed to using the Analog Launch Pad.

Loading and running the application file

- Download the application file from http://www.national.com/appinfo/lvds/ds25cp104evk.html
- Place in any folder on your PC, and run the file by double clicking on the file from Windows Explorer (or My Computer); this will extract the file and place it in C:\Program Files\National Semiconductor Corp folder.
- The Analog Launch Pad will now function only in the Demo mode.
- The Analog Launch Pad is designed to function on Windows 98/2000/xp

Setup the CP104EVK

(When using the USB, power should be off to the CP104 and USB unplugged when changing cables or changing the jumper pins.)

1. Install jumper pins as follows:

J21, SMBus Enable	Н	Enables the SMBus
J 4	inserted	USB Controller Reset
J3	removed	EEPROM write protect
J15, J16	removed	S00 (SCL), S01 (SDA)
J18, J19	L	Address
J24, J22	Н	Address
J20, J23	L	

Table 8. Jumpers on the CP104EVK for SMBus use

- 2. Configure the test setup as desired, examples are fig. 4 fig. 7.
- 3. Supply 3.3 V Power to board.

Load the driver

This needs to be done only once for a particular PC.

- Plug in the USB cable from the PC to the CP104 EVK; a small window should appear in the lower right corner of the PC recognizing new hardware. If the bubble says "USB device not recognized", or nothing happens, check the jumper configuration, if still does not work remove jumper on J4 for 5 sec, and then replace. The USB controller is now reset and should be in communication with the PC; this can be known by "Hi speed USB device plugged into non Hi Speed USB hub" appearing in the window.
- Follow the instructions for New Hardware Wizard, which may take up to one minute to run.
 - a. select "Install from a list or specific location"
 - b. select "Don't search I will choose the driver to install"
 - c. select "Have disk"
 - d. Browse to "C:\Program Files\National Semiconductor Corp\Analog LaunchPAD v1.07\Drivers"
 - e. select "NSC ALP Nano" from the list
 - f. install the driver
 - g. hit "Continue Anyway" if windows compatibility window is displayed
 - h. finish, you are now ready to run the Analog Launch Pad

Using the Analog Launch Pad for the CP104EVK

The Analog Launch Pad from National Semiconductor is a proprietary interface created to assist developers to test their designs and systems using National's evaluation boards; the CP104EVK interface has been designed into the Analog Launch Pad. The registers of the CP104 can be accessed through this interface enabling all the functions accessed through the SMBus. Below is a picture of the Analog Launch Pad, CP104 interface:

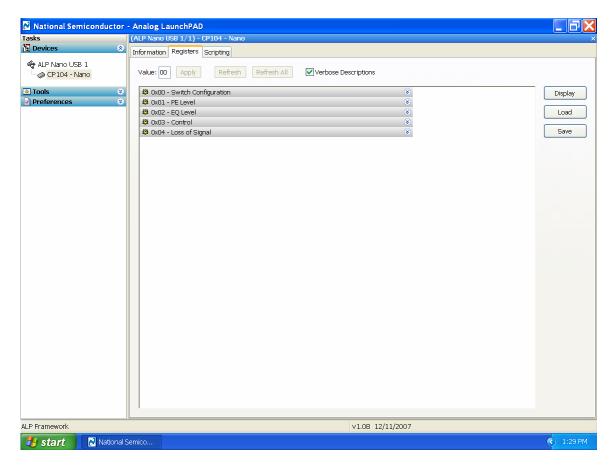
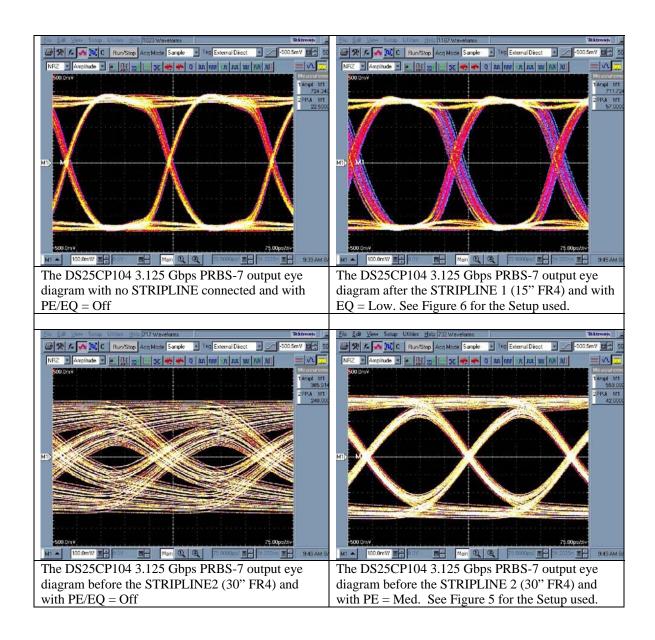
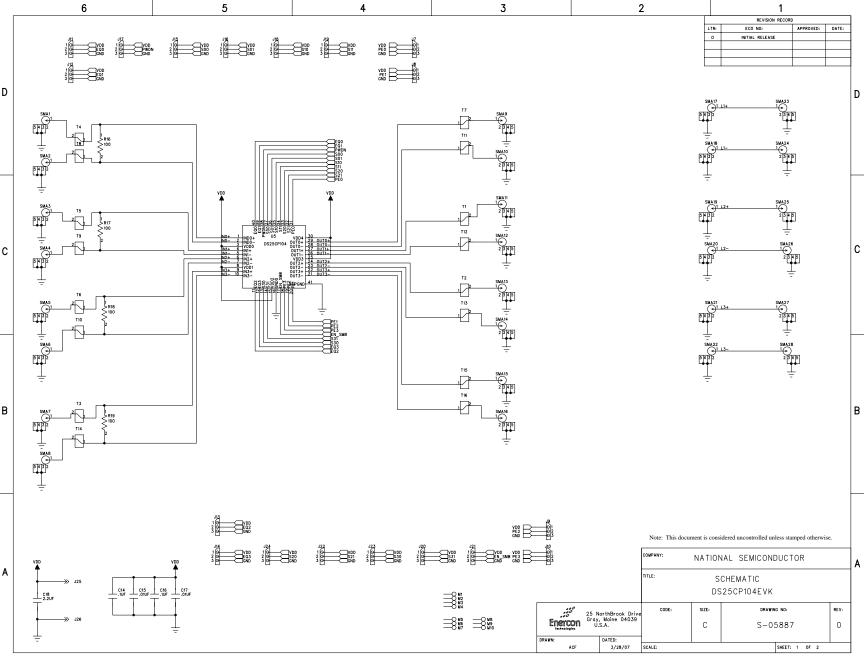
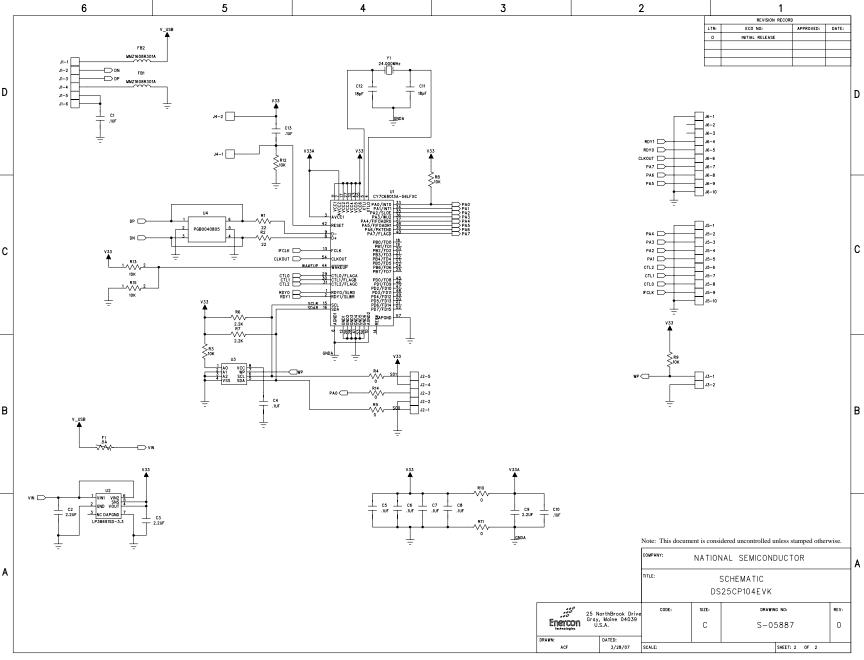


Figure 8. Analog Launch Pad, CP104 interface


DS25CP104EVK User Manual


To use the interface:


- Run the application Analog Launch Pad and select CP104 Nano. For the Analog Launch Pad to connect, the board must be powered with the appropriate jumper selections and the USB driver must be functioning. Otherwise it will open into the Demo mode.
- Select the "Register" folder and enter the register that you want to change, make the appropriate changes, and then hit **Apply**. Register descriptions can be found in the DS25CP104 datasheets.
- Use only Apply to make changes; Refresh, Refresh All, Display, Load, and Save bubbles should not be used.
- A selected square corresponds to a '1' while a blank square corresponds to a '0'.
- To change the levels of Pre Emphasis or Equalization, you must first go to "Control" register and enable "Ignore External PE" and "Ignore External EQ" before adjusting the signal conditioning through the SMBus.
- To use the "Loss of Signal", you must first go to "Control" register and enable "LOS".
- The Verbose Description square switches to a more descriptive text.

• Typical Performance

When evaluating the CP104 EVK, the eye diagram response should be similar to those below (measured on the Tektronix CSA 8000)

ENERCON - BILL OF MATERIALS

Main Product:
PCBA, DS25CP104 EVK

NATIONAL SEMICONDUCTOR
PCBA, DS25CP104EVK, ROHS

 PL Number:
 Rev:
 Rev By:
 Rev Date:
 PL Status:

 Z3071-01
 0
 3/28/2007
 Released

 Responsible Eng/Mgr:
 Creator:
 Creation Date:

 Arlene Fox
 3/28/2007

Item	Part Type	Part Number/Value	Mfg	NoSub	Description	Qty	SMT	Ref Des	Notes	Rev
1	PCB	P-05885R0			DS25CP104EVK: 5.25x5.25x.060in, 8 layer	1			Bd: (133.35x 133.35mm) Panel: (10.60x5.25in) (269.24x 133.35mm) 2 bds/panel	0
2										
3	IC	24LC128-I/SN	MICROCHIP		128K bit Serial EEPROM 2.5V, SOIC8, Pb-Free	1	Х	υ3		0
4	IC	CY7C68013A-56LFXC	CYPRESS		EZ-USB FX2 USB Microcontroller, QFN56, Pb-Free	1	Х	U1		0
5	IC	DS25CP104	NAT			1		υ 5	Customer Supplied	0
6	IC	LP38691SD-3.3/NOPB	NAT		Linear Regulator, 3.3V, LLP6, Pb-Free	1	Х	U2		0
7	IC	PGB1040805	LF		ESD Suppressor, 0805, Pb-Free	1	Х	U4		0
8										
9	RES	ERJ-3GEY0R00	PANA		0 Ohm 1/10W ±5% 0603, Pb-Free	3	Х	R4,5,14		0
	<alt></alt>	CRCW06030000Z0EA	VISHAY		0 Ohm 1/10W ±5% 0603, Pb-Free					
	<alt></alt>	MCR03EZPJ000	ROHM		0 Ohm 1/10W ±5% 0603, Pb-Free					
	<alt></alt>	RC0603JR-070RL	YAGEO		0 Ohm 1/10W ±5% 0603, Pb-Free					
10	RES	ERJ-3GEYJ103	PANA		10K 1/10W ±5% 0603 200ppm, Pb-Free	5	Х	R3,8-9,12,13		0
	<alt></alt>	CRCW060310K0JNEA	VISHAY		10K 1/10W ±5% 0603 200ppm, Pb-Free					
	<alt></alt>	RK73B1JTTD103J	KOA		10K 1/10W ±5% 0603 200ppm, Pb-Free					
11	RES	ERJ-3GEYJ220	PANA		22 Ohm 1/10W ±5% 0603 200ppm, Pb-Free	2	Х	R1-2		0
	<alt></alt>	CRCW060322R0JNEA	VISHAY		22 Ohm 1/10W ±5% 0603 200ppm, Pb-Free					
	<alt></alt>	RK73B1JTTD220J	KOA		22 Ohm 1/10W ±5% 0603 200ppm, Pb-Free					
12	RES	ERJ-3GEYJ222	PANA		2.2K 1/10W ±5% 0603 200ppm, Pb-Free	2	Х	R6,7		0
	<alt></alt>	CRCW06032K20JNEA	VISHAY		2.2K 1/10W ±5% 0603 200ppm, Pb-Free					
	<alt></alt>	RK73B1JTTD222J	KOA		2.2K 1/10W ±5% 0603 200ppm, Pb-Free					
13	RES	ERJ-8GEY0R00	PANA		0 Ohm 1/4W ±5% 1206, Pb-Free	2	Х	R10-11		0

ENERCON - BILL OF MATERIALS

Main Product:
PCBA, DS25CP104 EVK

NATIONAL SEMICONDUCTOR PCBA, DS25CP104EVK, ROHS

TITLE:

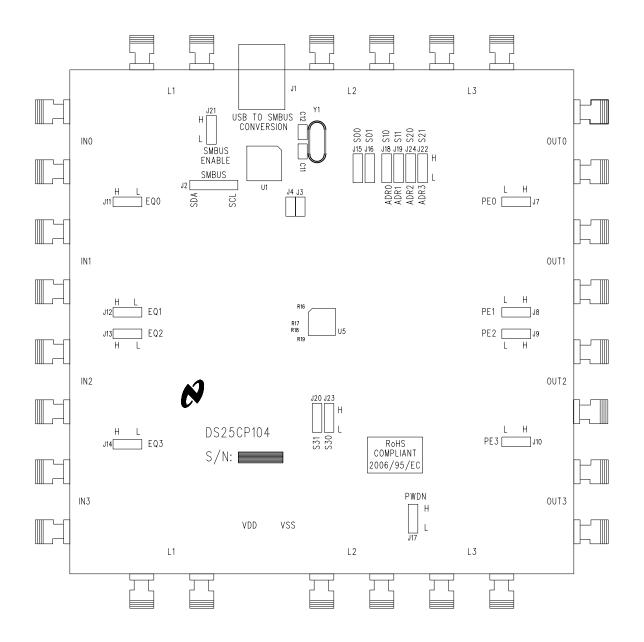
 PL Number:
 Rev:
 Rev By:
 Rev Date:
 PL Status:

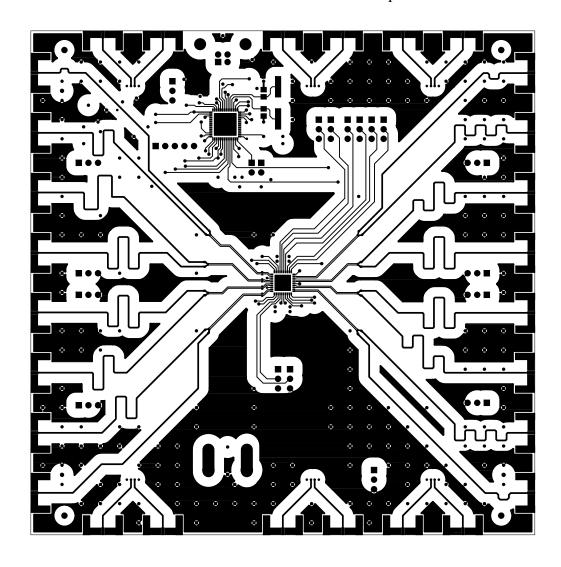
 Z3071-01
 0
 3/28/2007
 Released

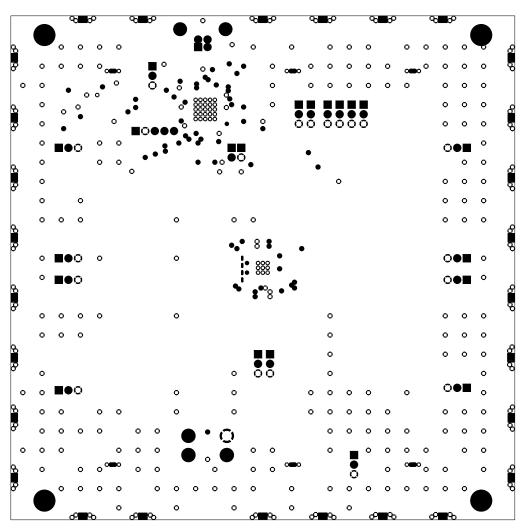
 Responsible Eng/Mgr:
 Creator:
 Creation Date:

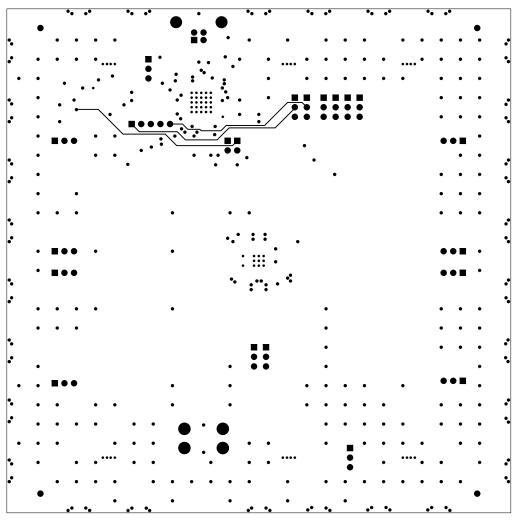
 Arlene Fox
 3/28/2007

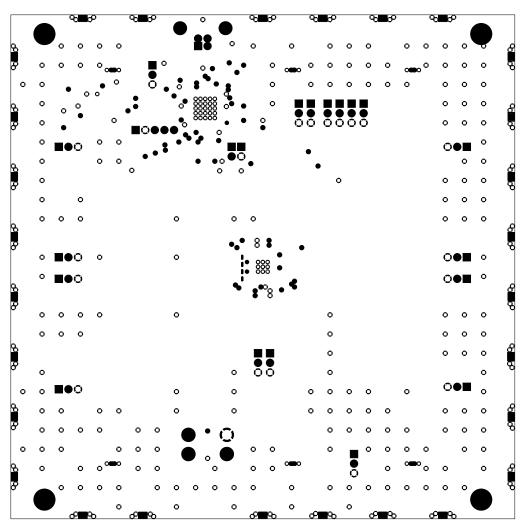
Item	Part Type	Part Number/Value	Mfg	NoSub	Description	Qty	SMT	Ref Des	Notes	Rev
	<alt></alt>	CRCW12060000Z0EA	VISHAY		0 Ohm 1/4W ±5% 1206, Pb-Free					
14										
15	CAP	0402YC103KAT	AVX		.01μF, 16V, ±10%, 0402, Ceramic, X7R, Pb-Free	2	Х	C15,17		0
	<alt></alt>	C0402C103K4RAC	KEMET		.01μF, 16V, ±10%, 0402, Ceramic, X7R, Pb-Free					
	<alt></alt>	ECJ-0EB1C103K	PANA		.01µF, 16V, ±10%, 0402, Ceramic, X7R, Pb-Free					
16	CAP	08055A180JAT	AVX		18pF, 50V, ±5%, 0805, Ceramic, NPO, Pb- Free	2	Х	C11-12		0
	<alt></alt>	C0805C180J5GAC	KEMET		18pF, 50V, ±5%, 0805, Ceramic, NPO, Pb- Free					
	<alt></alt>	ECJ-2VC1H180J	PANA		18pF, 50V, ±5%, 0805, Ceramic, NPO, Pb-Free					
17	CAP	C0402C104K8RAC	KEMET		$.1\mu\text{F},~10\text{V},~\pm10\text{\$},~040\text{2},~\text{Ceramic},~\text{X7R},~\text{Pb-Free}$	10	Х	C1,4-8,10,13- 14,16		0
18	CAP	C1206C225K4RAC	KEMET		2.2μF, 16V, ±10%, 1206, Ceramic, X7R, Pb-Free	4	Х	C2,3,9,18		0
	<alt></alt>	ECJ-3YB1C225K	PANA		2.2μF, 16V, ±10%, 1206, Ceramic, X7R, Pb-Free					
19										
20	FILTER	MMZ1608R301A	TDK		Ferrite, 300 Ohm, .5A, 0603, Pb Free	2	Х	FB1-2		0
21										
22	XTAL	HCM49-24.000MABJ	CITIZEN		Crystal, 24.0000MHz, SMD, 18pF, Pb-Free	1	Х	Y1		0
23										
24	FUSE	1206L050	LF		.5A, Resettable, SMT, .09 Ohms, Pb Free	1	Х	F1		0
25										
26	CONN	1287-ST	KEYSTONE		Faston, Male, .250x.032, Pb-Free	2		J25-26		0
27	CONN	142-0701-851	EMERSON		SMA, Jack Receptacle, 50 OHM, Pb-Free	28		SMA1-28		0
28	CONN	61729-0010	FCI		USB-B, 4p, R/A, Pb-Free	1		J1		0
29	CONN	TSW-102-07-G-S	SAMTEC		Header, 2p, Male, .100"sp, Gold, Pb-Free	2		J3-4		0
30	CONN	TSW-103-07-G-S	SAMTEC		Header, 3p, Male, .100"sp, Gold, Pb-Free	18		J7-24		0

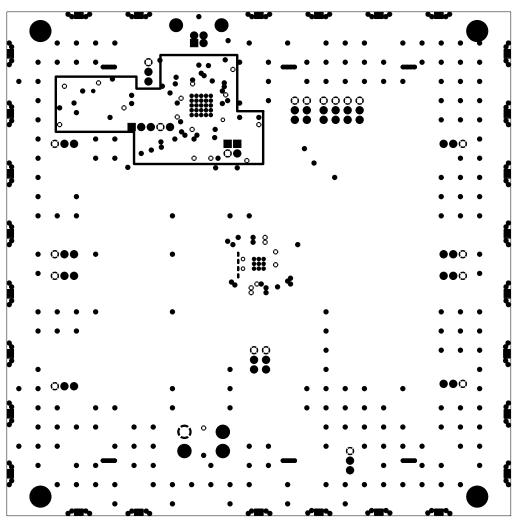

ENERCON - BILL OF MATERIALS	TITLE:	NATIONAL SEMICONDUCTOR PCBA. DS25CP104EVK. ROHS	PL Number: Rev: Rev E Z3071-01 0		ev By: Rev Date: 3/28/2007	PL Status: Released
Main Product: PCBA, DS25CP104 EVK			Responsible Eng	٠ ١	Creator: Arlene Fox	Creation Date: 3/28/2007

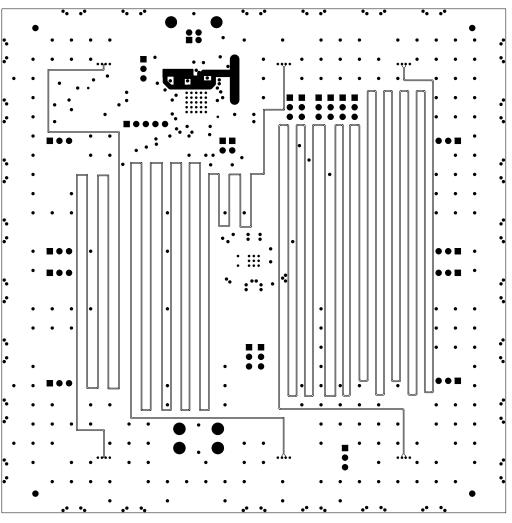

Item	Part Type	Part Number/Value	Mfg	NoSub	Description	Qty	SMT	Ref Des	Notes	Rev
31	CONN	TSW-105-07-G-S	SAMTEC		Header, 5p, Male, .100"sp, Gold, Pb-Free	1		Ј2		0
32										
33	STENCL	T-05889R0	ENERCON		STENCIL FABRICATION, TOP, DS25CP104EVK	1				0
34	STENCL	T-05890R0	ENERCON		STENCIL FABRICATION, BOTTOM, DS25CP104EVK	1				0
35										
36	REF	C-05886R0	ENERCON		FABRICATION DWG, DS25CP104EVK					0
37	REF	C-05888R0	ENERCON		PALLET DWG, DS25CP104EVK					0
38	REF	S-05887R0	ENERCON		SCHEMATIC, DS25CP104EVK					0
39										
40										
41										

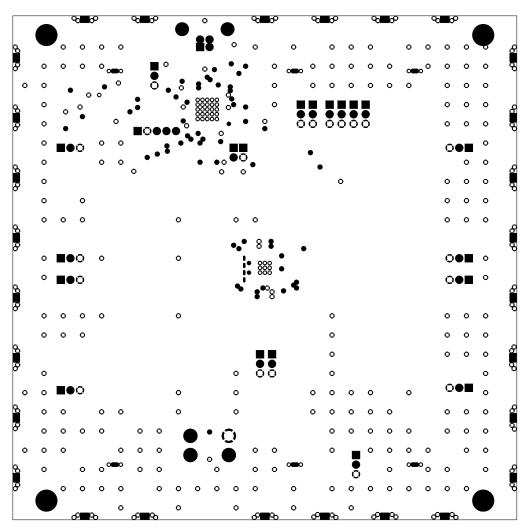

Notes:

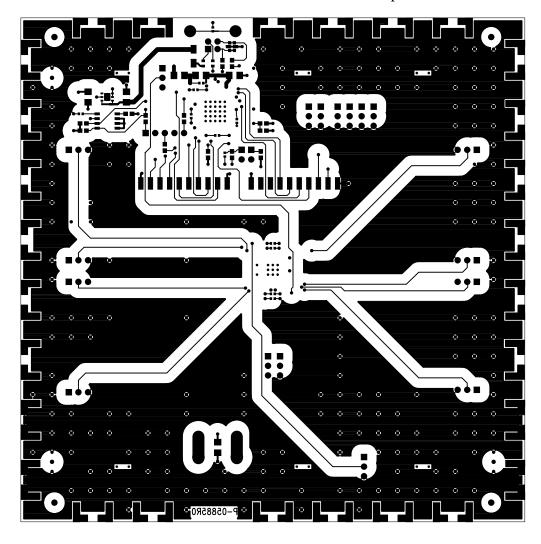

DO NOT STUFF:

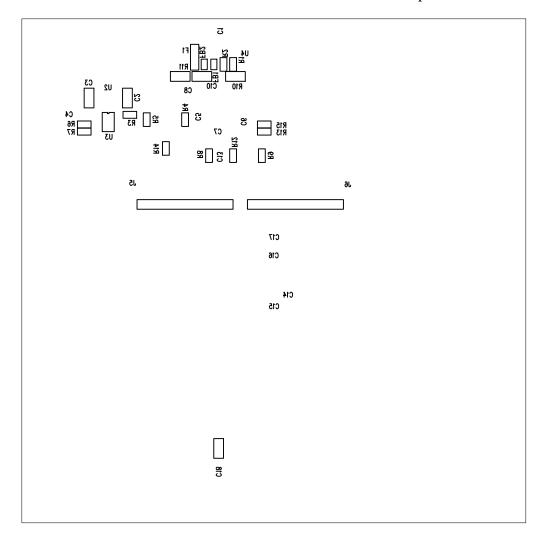

R15,16,17,18,19 J5,6

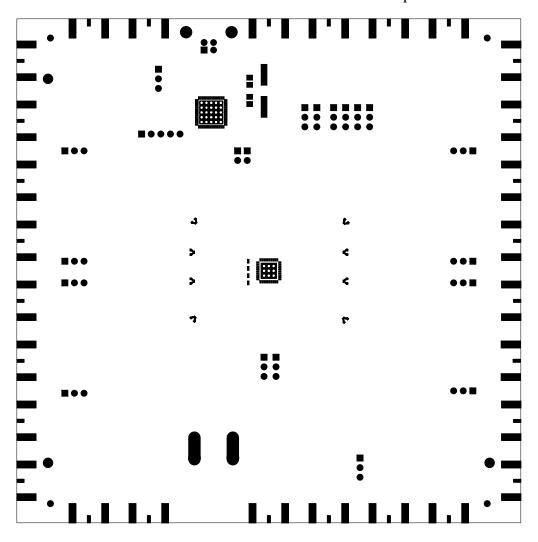


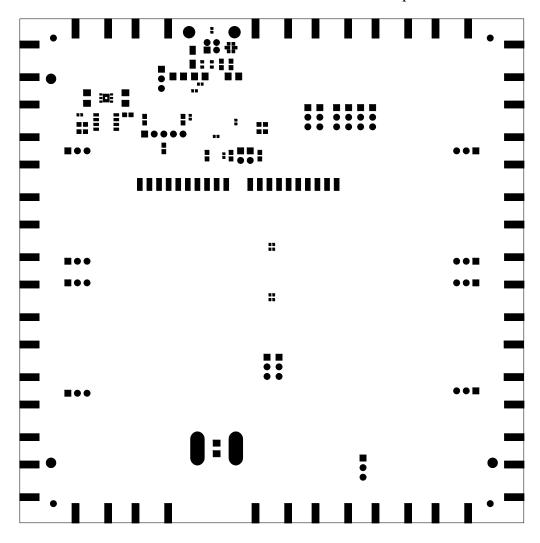


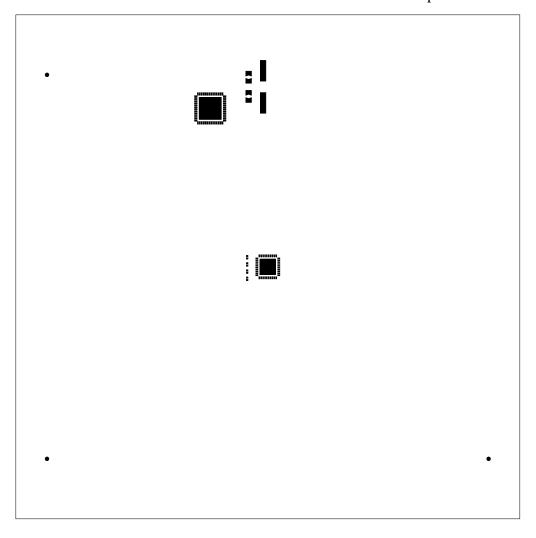


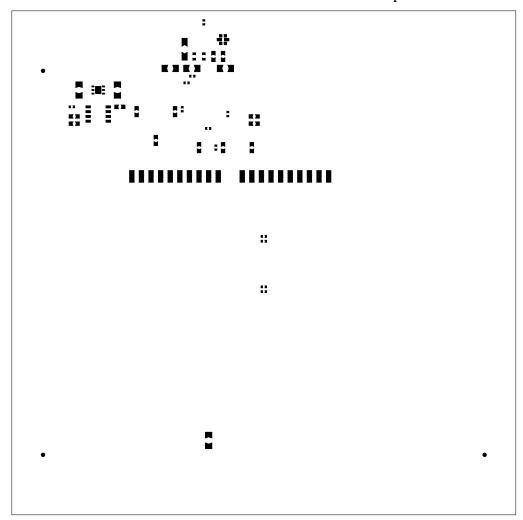












IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Applications

Automotive and Transportation www.ti.com/automotive

e2e.ti.com

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

		•	
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Products

Audio

Wireless Connectivity www.ti.com/wirelessconnectivity

www.ti.com/audio

TI E2E Community Home Page

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated