LM3421

Application Note 2009 LM3421 SEPIC LED Driver Evaluation Board for

Automotive Applications

Literature Number: SNVA414A

LM3421 SEPIC LED Driver Evaluation Board for Automotive Applications

National Semiconductor Application Note 2009 Steve Solanyk February 4, 2011

Introduction

This application note describes an evaluation board consisting of the LM3421 controller configured as a SEPIC constant current LED driver. It is capable of converting input voltages from 8V to 18V and illuminating up to six LEDs with approximately 350mA of drive current.

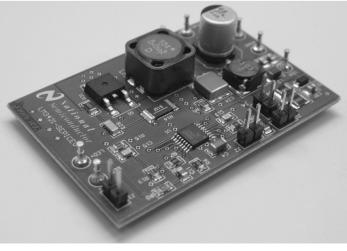
Additional features include analog and pulse-width modulated (PWM) dimming, over-voltage protection, under-voltage lockout and cycle-by-cycle current limit.

A bill of materials is included that describes the parts used in this evaluation board. A schematic and layout have also been included along with measured performance characteristics.

Key Features

- Designed to CISPR-25, Class 3 limits
- 0 to 10V analog dimming function
- PWM dimming function
- Input under-voltage protection
- Over-voltage protection
- Cycle-by-cycle current limit
- · NoPB and RoHS compliant bill of materials

Applications


- Emergency lighting modules
- LED light-bars, beacons and strobe lights
- Automotive tail-light modules

Performance Specifications

Based on an LED V₄ = 3.15V

Symbol	Parameter	Min	Тур	Max
V _{IN}	Operating Input Supply Voltage	8	12	18
V _{IN(MAX)}	Input Supply Voltage Surge Voltage	-	50 V	-
V _{OUT}	LED String Voltage	-	18.9V (6 LEDs)	-
I _{LED}	LED String Average Current	-	345 mA	-
-	Efficiency (V _{IN} =12V, I _{LED} =345mA, 6 LEDs)	-	85.4%	
f _{SW}	Switching Frequency	-	132 kHz	-
-	LED Current Regulation	-	< 1% Variation	
I _{LIMIT}	Current Limit	-	2.5 A	-
V _{UVLO}	Input Undervoltage Lock-out Threshold (V _{IN} Rising)	-	7.2V	-
V _{UVLO(HYS)}	Input Undervoltage Lock-out Hysteresis	-	1V	-
V _{OVP}	Output Over-Voltage Protection Threshold	-	37 V	-
V _{OVP(HYS)}	Output Over-Voltage Protection Hysteresis	-	3.5 V	-

Demo Board

³⁰¹⁰⁷⁵⁴⁶

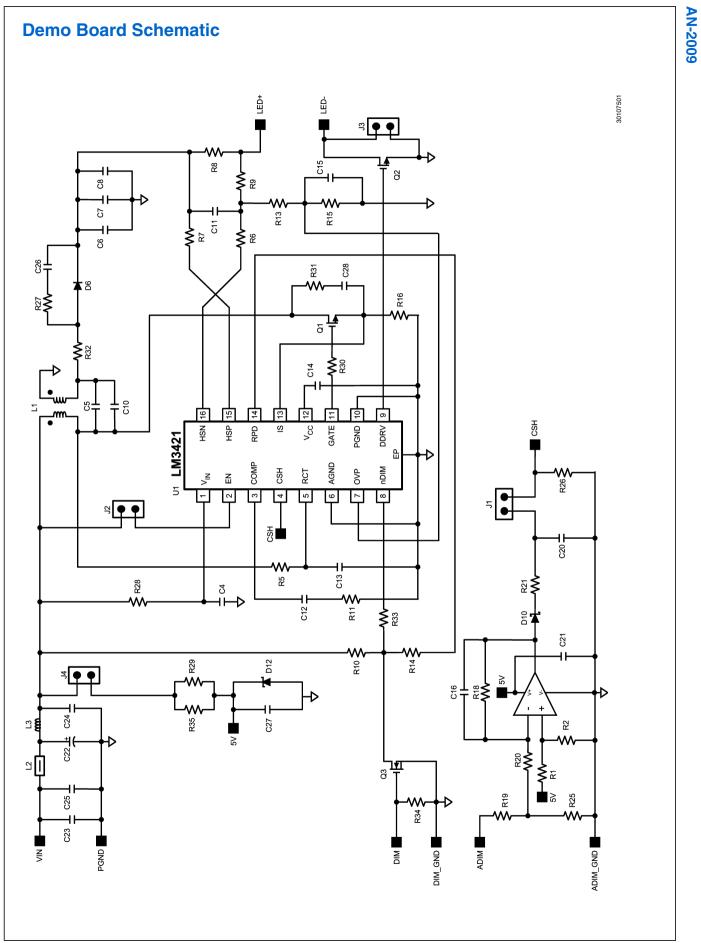
M3421 SEPIC LED Driver Evaluation Board for Automotive Applications

AN-2009

General Information

This evaluation board uses the LM3421 controller configured as a SEPIC converter for use in automotive based LED lighting modules. The described circuit can also be used as a general starting point for designs requiring robust performance in EMI sensitive environments.(*Note 1*)

The design is based on the LM3421 controller integrated circuit (IC). Inherent to the LM3421 design is an adjustable highside current sense voltage which allows for tight regulation of the LED current with the highest efficiency possible. Additional features include analog dimming, over-voltage protection, under-voltage lock-out and cycle-by-cycle current limit.

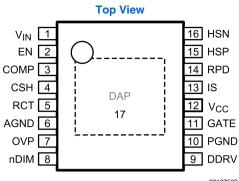

The operating input voltage range is from 8V to 18V. The design however is able to withstand input voltages up to 50V to account for power surges and load dump situations. (*Note 2*) Up to six LEDs can be powered with approximately 350mA of current which is sufficient to drive a variety of available high brightness (HB) LEDs on the market.

In order to comply with EMI requirements for automotive applications, an input filter and snubber components have also been designed into the circuit. This minimizes the time needed to optimize the design for specific EMI qualifications pertaining to individual automobile manufacturers and ensures faster product time to market.

The demo board consists of a 1.6" x 2.4" four-layer PCB board. Test terminals in the form of turrets are available to connect the input power supply and an LED string as well as apply an analog or PWM dimming signal.

Note 1: Although this evaluation board can be used as a reference design for automotive applications, it is up to the user to verify and qualify that the final design and BOM meets any AECQ-100 requirements.

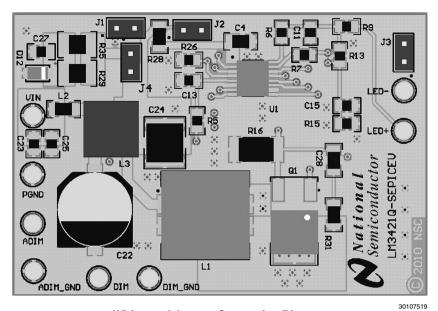
Note 2: Analog dimming circuit must not be connected when applying surge voltages greater than 21V.



Bill of Materials

Designator	Value	Package	Description	Manufacturer	Part Number
C4	1.0 µF	1206	Ceramic, C Series, 100V, 20%	TDK	C3216X7R2A105M
C5	-	-	DNP	-	-
C6	10 µF	2220	CAP, CERM, 50V, +/-10%, X7R	TDK	C5750X7R1H106K
C7	10 µF	2220	CAP, CERM, 50V, +/-10%, X7R	TDK	C5750X7R1H106K
C8	0.10 µF	805	Ceramic, X7R, 100V, 10%	TDK	C2012X7R2A104K
C10	4.7 µF	2220	Ceramic, X7R, 100V, 10%	MuRata	GRM55ER72A475KA01L
C11	0.10 µF	805	Ceramic, X7R, 50V, 10%	Yageo America	CC0805KRX7R9BB104
C12	0.22 µF	805	Ceramic, X7R, 50V, 10%	TDK	C2012X7R1H224K
C13	1000 pF	805	Ceramic, C0G/NP0, 50V, 1%	AVX	08055A102FAT2A
C14	2.2 µF	805	Ceramic, X5R, 16V, 10%	AVX	0805YD225KAT2A
C15	47 pF	805	Ceramic, C0G/NP0, 50V, 5%	MuRata	GQM2195C1H470JB01D
C16	0.1 µF	805	Ceramic, X7R, 25V, 10%	MuRata	GRM21BR71E104KA01L
C20	1.0 µF	805	Ceramic, X7R, 25V, 10%	MuRata	GRM216R61E105KA12D
C21	1.0 uF	805	Ceramic, X5R, 25V, 10%	MuRata	GRM216R61E105KA12D
C22	68 µF	Radial Can - SMD	CAP ELECT 68UF 63V FK	Panasonic	EEE-FK1J680UP
C23	0.01 µF	805	CAP, CERM, 100V, +/-10%, X7R	TDK	C2012X7R2A103K
C24	4.7 μF	2220	CAP, CERM, 100V, +/-10%, X7R	TDK	C5750X7R2A475K
C25	1000 pF	805	CAP, CERM, 100V, +/-10%, X7R	TDK	C2012X7R2A102K
C26	1.2 nF	1206	CAP, CERM, 100V, +/-20%, X7R	AVX	12061A122JAT2A
C27	0.10 µF	805	Ceramic, X7R, 25V, 10%	TDK	C2012X7R1E104K
C28	2.7 nF	1206	CAP, CERM, 100V, +/-20%, X7R	AVX	12065C272KAT2A
D6	-	SOD-123	Diode Schottky, 60V, 1A	Rohm	RB160M-60TR
D10	-	SOD-123	Vr = 100V, lo = 0.15A, Vf = 1.25V	Diodes Inc.	1N4148W-7-F
D12	-	SOD-123	SMT Zener Diode	Diodes Inc.	MMSZ5231B-7-F
J1	-	Through	Header, 100mil, 1x2, Gold plated,	Samtec Inc.	TSW-102-07-G-S
		hole	230 mil above insulator		
J2 - Through H hole		U U	Header, 100mil, 1x2, Gold plated, 230 mil above insulator	Samtec Inc.	TSW-102-07-G-S
		Through hole	Header, 100mil, 1x2, Gold plated, 230 mil above insulator	Samtec Inc.	TSW-102-07-G-S
J4 - Thro		Through hole	Header, 100mil, 1x2, Gold plated, 230 mil above insulator	Samtec Inc.	TSW-102-07-G-S
L1	100 µH	SMD	Coupled inductor	Coilcraft	MSD1278-104ML
		1206	6A Ferrite Bead, 160 Ohm @ 100MHz	Steward	HI1206T161R-10
L3	10 µH	SMD	Inductor, Shielded Drum Core, Ferrite, 2.1A, 0.038Ω	Coilcraft	MSS7341-103MLB
Q1 - DPAK		DPAK	MOSFET N-CH 100V 6.2A	Fairchild Semiconductor	FDD3860
Q2	-	SOT-23	MOSFET, N-CH, 30V, 4.5A	Vishay-Siliconix	SI2316BDS-T1-E3
Q3	-	SOT-23	MOSFET, N-CH, 60V, 0.24A	Vishay-Siliconix	2N7002E-T1-E3
R1	40.2 kΩ	805	1%, 0.125W	Vishay-Dale	CRCW080540K2FKEA
R2	40.2 kΩ	805	1%, 0.125W	Vishay-Dale	CRCW080540K2FKEA
R5	174 kΩ	805	1%, 0.125W	Panasonic	ERJ-6ENF1743V
R6	1.0 kΩ	805	1%, 0.125W	Vishay-Dale	CRCW08051k00FKEA
R7	1.0 kΩ	805	1%, 0.125W	Vishay-Dale	CRCW08051k00FKEA
	1.0 KS2			Vishay-Dale	WSL2010R3000FEA
R8	0.2 Ω	2010	1%, 0.5W		WSDAADCANALEA

Designator	Value	Package	Description	Manufacturer	Part Number
R10	21.5 kΩ	805	1%, 0.125W	Vishay-Dale	CRCW080521K5FKEA
R11	100 Ω	805	5%, 0.125W	Vishay-Dale	CRCW0805100RJNEA
R13	174 kΩ	805	1%, 0.125W	Panasonic	ERJ-6ENF1743V
R14	4.32 kΩ	805	1%, 0.125W	Vishay-Dale	CRCW08054K32FKEA
R15	6.04 kΩ	805	1%, 0.125W	Panasonic	ERJ-6ENF6041V
R16	0.10 Ω	2512	1%, 1W	Vishay-Dale	WSL2512R1000FEA
R18	60.4 kΩ	805	1%, 0.125W	Vishay-Dale	CRCW080560K4FKEA
R19	40.2 kΩ	805	1%, 0.125W	Vishay-Dale	CRCW080540K2FKEA
R20	40.2 kΩ	805	1%, 0.125W	Vishay-Dale	CRCW080540K2FKEA
R21	22.1 kΩ	805	1%, 0.125W	Vishay-Dale	CRCW080522K1FKEA
R25	40.2 kΩ	805	1%, 0.125W	Vishay-Dale	CRCW080540K2FKEA
R26	11.8 kΩ	805	1%, 0.125W	Vishay-Dale	CRCW080511K8FKEA
R27	0 Ω	1206	1%, 0.25W	Yageo America	RC1206JR-070RL
R28	10.0 Ω	1206	1%, 0.25W	Vishay-Dale	CRCW120610R0FKEA
R29	590 Ω	1210	1%, 0.5W	Vishay/Dale	CRCW1210590RFEA
R30	10 Ω	805	1%, 0.125W	Vishay-Dale	CRCW080510R0FKEA
R31	2.2 Ω	1206	1%, 0.25W	Vishay-Dale	CRCW12062R20FKEA
R32	0 Ω	1206	5%, 0.25W	Yageo America	RC1206JR-070RL
R33	4.99 kΩ	805	0.1%, 0.125W	Yageo America	RT0805BRD074K99L
R34	10.0 kΩ	805	1%, 0.125W	Vishay-Dale	CRCW080510K0FKEA
R35	590 Ω	1210	1%, 0.5W	Vishay/Dale	CRCW1210590RFEA
TP1 - TP8	-	Through	Terminal, Turret, TH, Double	Keystone	1573-2
		Hole		Electronics	
U1	-	TSSOP-16	N-Channel Controller for Constant	National	LM3421MH
		EP	Current LED Drivers	Semiconductor	
U3	-	SC70-6	2.4V R-R Out CMOS Video OpAmp	National	LMH6601MG
			with Shutdown	Semiconductor	


LM3421 Device Pin-Out

Pin Description 16-Lead TSSOP EP

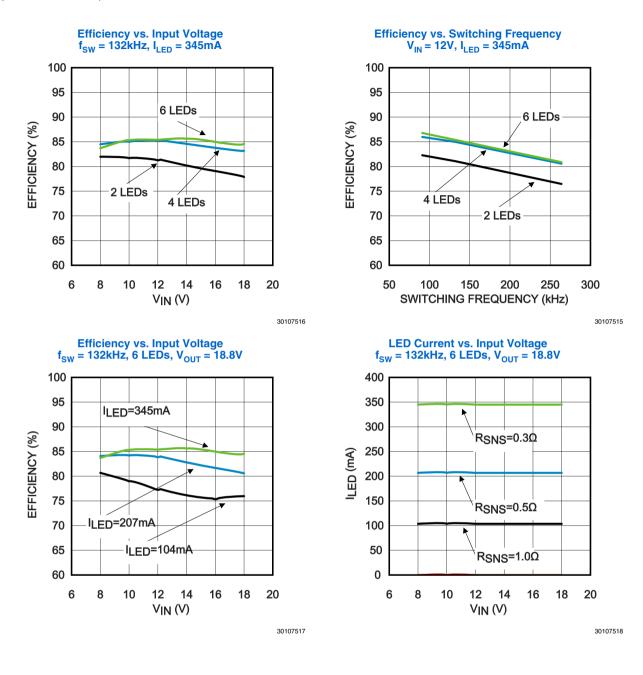
Pin #	Name	Description	
1	V _{IN}	Bypass with 100 nF capacitor to AGND as close to the device as possible in the circuit board layout.	
2	EN	Connect to AGND for zero current shutdown or apply > 2.4V to enable device.	
3	COMP	Connect a capacitor to AGND to set the compensation.	
4	CSH	Connect a resistor to AGND to set the signal current. For analog dimming, connect a controlled current	
		source or a potentiometer to AGND as detailed in the Analog Dimming section.	
5	RCT	External RC network sets the predictive "off-time" and thus the switching frequency.	
6	AGND	Connect to PGND through the DAP copper pad to provide ground return for CSH, COMP, RCT, and TIMR.	
7	OVP	Connect to a resistor divider from V _O to program output over-voltage lockout (OVLO). Turn-off threshold	
		is 1.24V and hysteresis for turn-on is provided by 23 µA current source.	
8	nDIM	Connect a PWM signal for dimming as detailed in the PWM Dimming section and/or a resistor divider	
		from V_{IN} to program input under-voltage lockout (UVLO). Turn-on threshold is 1.24V and hysteresis for	
		turn-off is provided by 23 μA current source.	
9	DDRV	Connect to the gate of the dimming MosFET.	
10	PGND	Connect to AGND through the DAP copper pad to provide ground return for GATE and DDRV.	
11	GATE	Connect to the gate of the main switching MosFET.	
12	V _{CC}	Bypass with 2.2 μ F–3.3 μ F ceramic capacitor to PGND.	
13	IS	Connect to the drain of the main N-channel MosFET switch for R _{DS-ON} sensing or to a sense resistor	
		installed in the source of the same device.	
14	RPD	Connect the low side of all external resistor dividers (VIN UVLO, OVP) to implement "zero-current"	
		shutdown.	
15	HSP	Connect through a series resistor to the positive side of the LED current sense resistor.	
16	HSN	Connect through a series resistor to the negative side of the LED current sense resistor.	
EP (17)	EP	Star ground connecting AGND and PGND.	

Evaluation Board Connection Overview

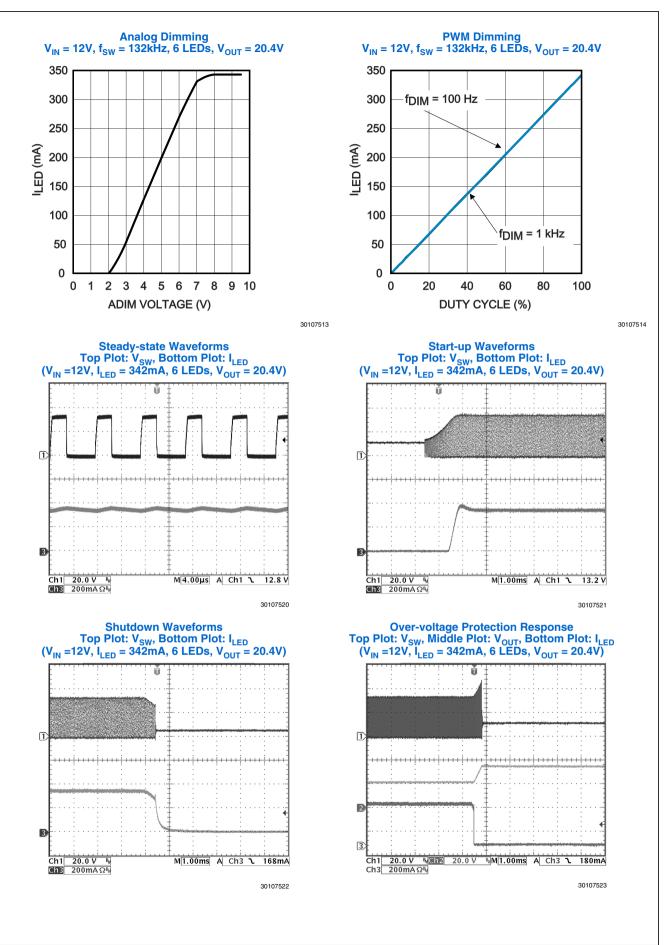
Wiring and Jumper Connection Diagram

Name	I/O	Description
VIN	Input	Power supply voltage.
PGND	Input	Ground.
DIM	Input	PWM Dimming Input
		Apply a pulse-width modulated dimming voltage signal with varying duty cycle. Maximum dimming
		voltage level is 20V. Maximum dimming frequency is 1kHz.
DIM_GND	Input	PWM dimming ground.
ADIM	Input	0 - 10V Dimming Input
		Apply a 0 - 10V analog dimming voltage signal. See "Theory of Operation" section for more details.
ADIM_GND	Input	Analog dimming ground.
LED+	Output	LED Constant Current Supply
		Supplies voltage and constant-current to anode of LED array.
LED-	Output	LED Return Connection (not GND)
		Connects to cathode of LED array. Do NOT connect to GND.

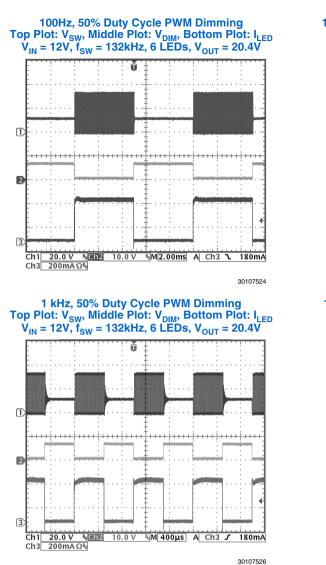
Evaluation Board Modes of Operation Overview

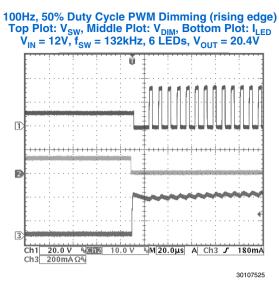

The available modes of operation for this evaluation board are enabled utilizing the jumper configurations described in the following table.

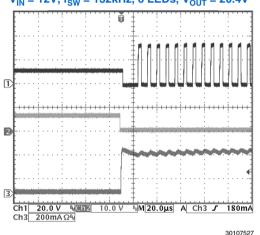
J1	J2	J3	J4	Mode of Operation
-	OPEN	CLOSED OPEN		LM3421 is disabled and placed into low-power shutdown.
OPEN	CLOSED			LM3421 is enabled and powered on. The evaluation board will now run under standard operation.
CLOSED	CLOSED			LM3421 is enabled and powered on. The analog dimming function is now enabled.
OPEN	PEN CLOSED OPEN OPEN		OPEN	LM3421 is enabled and powered on. The PWM dimming function is now enabled.

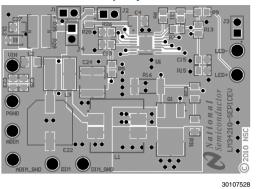

AN-2009

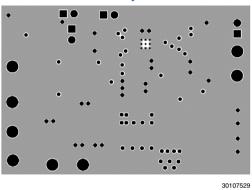
Typical Performance Characteristics


 $T_A = 25^{\circ}C$ and LED $V_f = 3.15V$ unless otherwise specified.

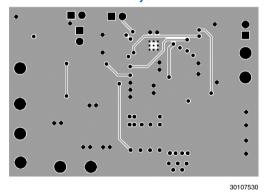


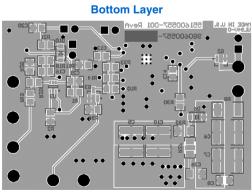



1 kHz, 50% Duty Cycle PWM Dimming (rising edge) Top Plot: V_{SW} , Middle Plot: V_{DIM} , Bottom Plot: I_{LED} $V_{IN} = 12V$, $f_{SW} = 132$ kHz, 6 LEDs, $V_{OUT} = 20.4V$


PCB Layout

AN-2009





Mid-Layer 1

Mid-Layer 2

Theory of Operation

INPUT EMI LINE FILTER

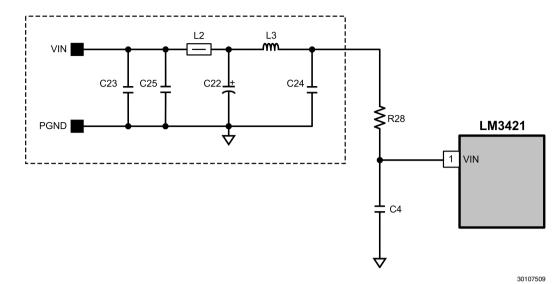
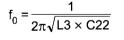
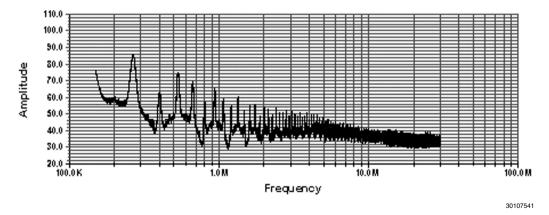
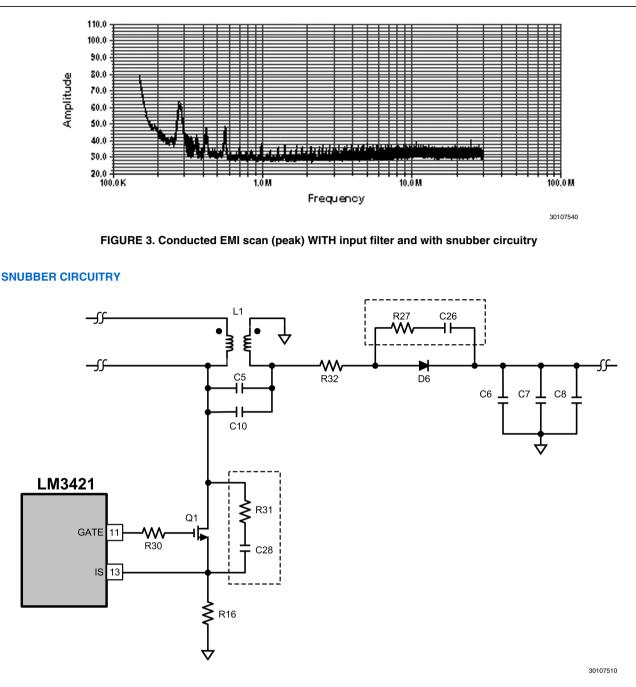



FIGURE 1. Input filter circuit

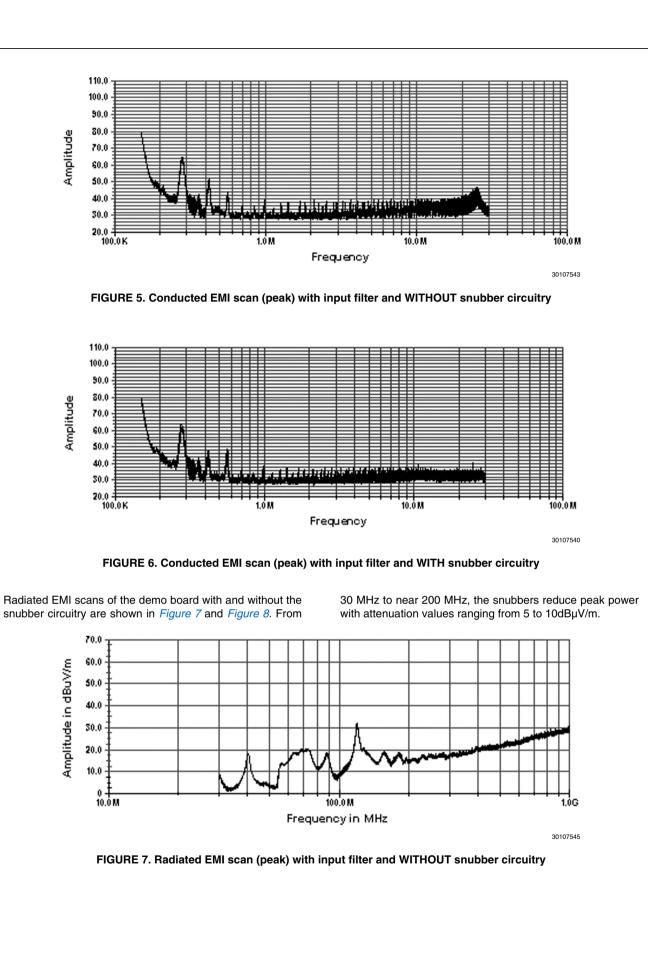

A low-pass input filter (highlighted in *Figure 1*) has been added to the front-end of the circuit. Its primary purpose is to minimize EMI conducted from the LM3421 circuit to prevent it from interfering with the electrical network supplying power to the LED driver. Frequencies in and around the LED driver switching frequency (i.e. $f_{SW} = 132$ kHz) are primarily addressed with this filter. The ferrite bead, L2, has been chosen to help attenuate EMI frequencies above 10MHz in conjunction with snubber circuitry that has been designed into the driver circuitry which will be discussed in the next section.

This low pass filter has a cut-off frequency that is determined by the inductor and capacitor resonance of L3 and C22 as described in the following equation,



The input filter needs to attenuate the fundamental frequency and associated harmonics of the demo board's switching frequency which is designed to be 132kHz. Plugging the chosen values of L3 and C22 as 10µH and 68uF respectively gives a roll-off frequency of 6.1kHz. The ferrite bead chosen has a nominal impedance of 160 Ohm at 100Mhz for 1A of current and will help attenuate higher frequency noise.

Conducted EMI scans of an earlier prototype evaluation board with and without an input filter are shown in *Figure 2* and *Figure 3*. (NOTE: These scans were originally done per CISPR-22, however for the purpose of evaluating filter performance this EMI data is acceptable. The actual EMI performance for this evaluation board will be discussed later in this document.). Frequencies from 300kHz to 10 MHz show noticeable attenuation of peak frequencies with the input filter in place. Harmonics of the driver switching frequency are reduced up to $22dB\mu V/m$.



Snubber circuitry (highlighted in *Figure 4* has been added around the switching elements of Q1 and D6 in the form of series resistor-capacitor (RC) pairs. The purpose of these snubbers is to reduce the rising/falling edge rate of the switching voltage waveform when Q1 and D6 transition from an "on" to "off" state and vice versa. This helps reduce both conducted and radiated EMI in the higher test frequency ranges. For lower EMI frequencies particularly during conducted EMI testing, the input filter is utilized as the primary EMI attenuator as previously discussed.

Conducted EMI scans of an earlier prototype evaluation board with and without snubber circuitry are shown in *Figure 5* and *Figure 6*. (NOTE: These scans were originally done per CISPR-22, however for the purpose of evaluating filter performance this EMI data is acceptable. The actual EMI performance for this evaluation board will be discussed later in this document.). From 10 MHz to 30 MHz, the snubbers reduce peak power for all frequencies with noticeable attenuation of peak power between 20 MHz and 30 MHz. AN-2009

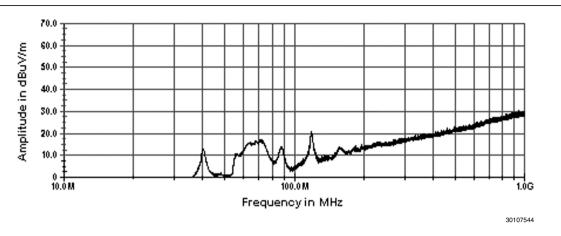
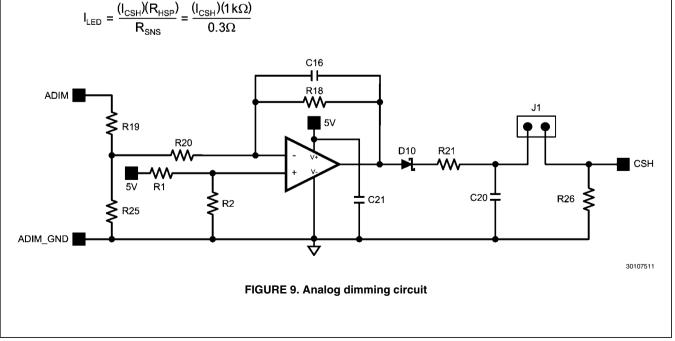


FIGURE 8. Radiated EMI scan (peak) with input filter and WITH snubber circuitry

Although the snubber circuits help reduce the EMI signature of the evaluation board, they do so at the cost of lowering the maximum achievable driver efficiency. Since each board design and application is unique, it is recommended that the user investigate different snubber configurations and values to provide the optimal balance of EMI performance and system efficiency.

ANALOG DIMMING

The analog dimming circuitry is highlighted in *Figure 9*. Closing jumpers J1 and J4 connects the analog dimming circuitry to the LED driver and thus enables this feature. Analog dimming of the LED current is performed by adjusting the CSH pin current (I_{CSH}) from the LM3421. The relationship between I_{CSH} and the average LED current is described in the following equation,


$$\mathsf{I}_{\text{LED}} = \frac{(\mathsf{I}_{\text{CSH}})(\mathsf{R}_{\text{HSP}})}{\mathsf{R}_{\text{SNS}}}$$

For the demo board R_{HSP} is 1k Ω and R_{SNS} is 0.3 Ω and so the equation becomes,

When no analog dimming is being applied, the $\rm I_{CSH}$ current is described by the following equation,

$$I_{CSH} = \frac{1.24V}{R_{CSH}}$$

The value of R_{CSH} is 11.8k Ω and this gives I_{CSH} as 105µA. The method used to adjust I_{CSH} for analog dimming is with an external variable current source consisting of an on-board opamp circuit. When a 0 to 10V voltage signal is applied to the ADIM test point, the op-amp will adjust its output current accordingly. This output current is sourced into the node consisting of the CSH pin and resistors R21 and R26 which adjusts the I_{CSH} current from the original 105µA based on the 0 to 10V analog dimming signal. A low analog dimming voltage will source more current into the CSH pin effectively dimming the LEDs while a high analog dim voltage will source less current resulting in less dimming. ADIM should be a precise external voltage reference.

AN-2009

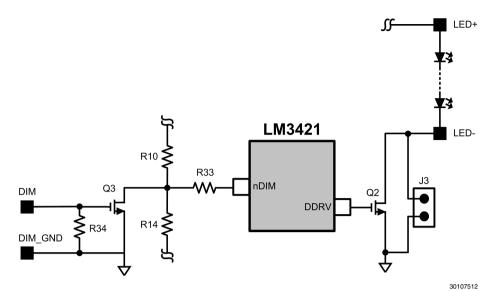


FIGURE 10. PWM dimming circuit

The circuitry associated with pulse-width modulation (PWM) dimming is highlighted in *Figure 10* and closing jumper J3 enables this function. A logic-level PWM signal can be applied to the DIM pin which in turn drives the nDIM pin thought the MosFET Q3. A pull down resistor (R34) has also been added to properly turn off Q3 if no signal is present. The nDIM pin

controls the dimming NFET (Q2) which is in series with the LED stack. The brightness of the LEDs can be varied by modulating the duty cycle of the PWM signal. LED brightness is approximately proportional to the PWM signal duty cycle, so for example, 30% duty cycle equals approximately 30% LED brightness.

AN-2009

Conducted EMI Analysis

Several automobile manufacturers base their conducted EMI limit requirements on the CISPR-25, Class 3 standard. However each manufacturer in the end specifies their own individual method for EMI qualification, and so there is not at this time a universally adopted set of EMI limits and performance requirements. This makes it challenging to design a single LED driver circuit to comprehensively meet the EMI requirements for each and every auto manufacturer. Therefore the Class 3 limits described by CISPR-25 were used as a reference point for the EMI performance of the LM3421 SEPIC design. From this data, specific auto manufacturer EMI limits and requirements can be applied to the data to determine if additional optimization of the reference design is required for compliance.

Conducted EMI tests were performed with a six LED load running 345mA of LED current with an input power supply voltage of 12V. In the following EMI scan of *Figure 11*, the CISPR-25 Class 3 "peak" limits are designated as blue and the "average" limits are designated in green. No enclosure was used around the board. Due to limitations in the data gathering equipment only the peak EMI data from 100kHz to 30MHz could be acquired, and so the conducted EMI performance of the evaluation board at other frequencies and versus quasi-peak and average CISPR25 limits can only be roughly interpreted.

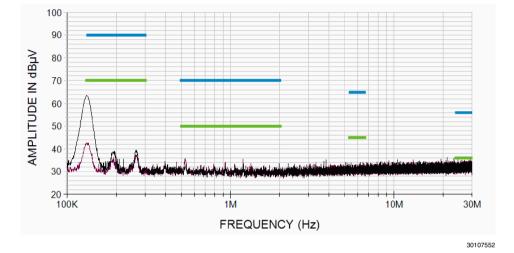


FIGURE 11. Conducted "Peak" scan per CISPR-25 with Class 3 limits

Radiated EMI Analysis

Similar to the conducted EMI testing described previously, several automobile manufacturers base their radiated EMI limit requirements on the CISPR-25, Class 3 standard. However each manufacturer in the end specifies their own individual method for EMI qualification, and so there is not at this time a universally adopted set of EMI limits and performance requirements. This makes it challenging to design a single LED driver circuit to comprehensively meet the EMI requirements for each and every auto manufacturer. Therefore the Class 3 limits described by CISPR-25 were used as a reference point for the EMI performance of the LM3421 SEPIC design. From this data, specific auto manufacturer EMI limits and requirements can be applied to the data to determine if additional optimization of the reference design is required for compliance.

Radiated EMI tests were performed with a six LED load running 345mA of LED current with an input power supply voltage of 12V. No enclosure was used around the board. In the EMI scan of *Figure 12*, the CISPR-25 Class 3 "peak" limits are shown in blue. For the EMI scan of *Figure 13*, the CISPR-25 Class 3 "average" limits are shown in green. Some frequency bands have multiple limits associated with them. In these instances, the frequency bands have multiple RF spectrum allocations (e.g. FM, CB, VHF, etc...), and so all applicable limits are being shown even if they overlap. Due to limitations in the data gathering equipment only the peak EMI data from 10Mhz to 1GHz could be acquired, and so the radiated EMI performance of the evaluation board at other frequencies and versus quasi-peak and average CISPR25 limits can only be roughly interpreted.

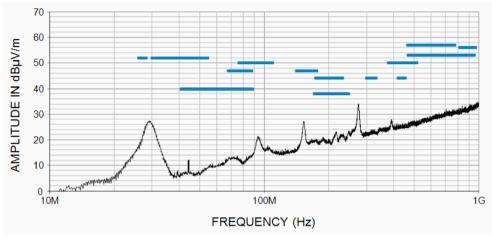


FIGURE 12. Radiated "Peak" scan data per CISPR-25 with Class 3 "Peak" limits

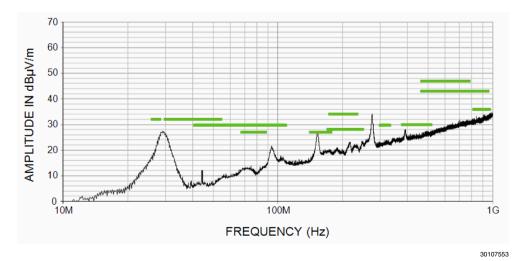
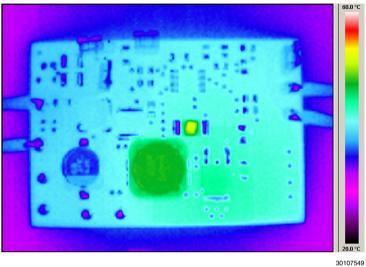
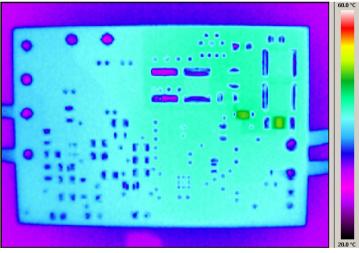



FIGURE 13. Radiated "Peak" scan data per CISPR-25 with Class 3 "Average" limits


Thermal Analysis

Thermal scans were taken of the stand-alone LED demo board at room temperature with no airflow. Primary hot spots on the top and bottom layers are associated with the snubber resistors R27 and R31. Test Conditions: V_{IN} = 12.1V, I_{IN}=651mA, V_{OUT} = 20.4V (6 LEDs), I_{LED} = 336mA, P_{IN} = 7.88W, P_{OUT} = 6.85W, Efficiency = 86.9%, Time = 75 minutes, T_a = Room temp, No airflow, No enclosure

Thermal Scan, Top Layer

Thermal Scan, Bottom Layer

www.national.com						
Pr	oducts	Design Support				
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench			
Audio	www.national.com/audio	App Notes	www.national.com/appnotes			
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns			
Data Converters	www.national.com/adc	Samples	www.national.com/samples			
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards			
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging			
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green			
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts			
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality			
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback			
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy			
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions			

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

Mil/Aero

SolarMagic™

University

PowerWise® Design

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

Serial Digital Interface (SDI)

Temperature Sensors

PLL/VCO

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com

www.national.com/sdi

www.national.com/tempsensors

www.national.com/wireless

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com

www.national.com/milaero

www.national.com/training

www.national.com/solarmagic

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated