LM2593

Application Note 1207 LM2593HV Evaluation Board

Literature Number: SNOA406A

LM2593HV Evaluation Board

Specifications of the Board

The board is designed for a nominal DC input of 48V, but can safely withstand up to 60V. The regulated DC output is 12V at a maximum load current of 2A. It uses the Adjustable Version of the LM2593HV in 7 lead Surface Mount Package (TO263). Relying on careful layout, it eliminates the need for a snubber across the diode and uses a minimum number of components. It has shutdown capability and error flag output available on the board. It incorporates soft-start and delayed output error signaling and has an overall efficiency higher than 85%.

The board uses no external heatsinks, or through-hole parts and is therefore suitable for a fully automatic production process. It requires only 1.7 x 2.0 x 0.7 cu. inches of space. The printed circuit board is standard 1.6 mm thick (62 mils) ' $\frac{1}{2}$ oz' double-sided FR4 laminate, with additional cooper plating, totaling a little over 1 oz of copper ("1 oz" is 1.4 mils/35 µm thick). The traces have been left unmasked to allow solder to deposit on the traces during reflow, so as to aid thermal dissipation. The converter is designed for continuous operation at rated load under natural convection up to a maximum ambient of 40°C.

Component Selection

We set

 $V_{IN} = 48V$ $V_O = 12V$ $I_O = 2A$

INDUCTOR

We define 'D' as the Duty Cycle and 'r' the ripple current ratio $\Delta I/I_{O}$. See Application Note AN-1197 for more details on the terms and equations used here.

We choose r to be 0.3 here as per the design procedure inductor nomographs in the LM2593HV datasheet as well as the guidelines in the referenced Application Note. 'r' is related to the inductance through the equation

$$r = \frac{Et}{L \cdot I_{DC}}$$

where 'Et' is the applied Voltµsecs, $I_{\rm DC}$ is the maximum rated load in Amps, and L is the inductance in $\mu H.$

The Duty Cycle is

$$D = \frac{V_0 + V_D}{V_{IN} - V_{SW} + V_D}$$

where V_D is the diode forward voltage drop (=0.5V), and V_{SW} is the drop across the switch when it is ON, plus any parasitics (=1.5V). So

$$D = \frac{12 + 0.5}{48 - 1.5 + 0.5} = 0.27$$

National Semiconductor Application Note 1207 Sanjaya Maniktala July 2001 R

The switch ON-time is

$$t_{ON} = \frac{D}{f} = \frac{(12 + 0.5) \times 10^6}{(48 - 1.5 + 0.5) \times 150000} \ \mu \text{secs}$$

 t_{ON} = 1.77 μs So the Voltµseconds 'Et' is Et = (V_{IN} - V_{SW} - V_O) x t_{ON} = (48–1.5–12) x 1.77 Vµs Et = 61.1 Vµs

Estimated inductance is therefore

$$L = \frac{Et}{r \times l_0} \mu H$$
$$L = \frac{61.1}{0.3 \times 2.0} \mu H$$

L = 101.8 µH

The first pass selection of the inductor is usually on the basis of the inductance calculated above and the max load current. But if the Input Voltage exceeds 40V, as it does here, we need to evaluate the inductor further to ensure that the converter withstands damage if the outputs are overloaded/shorted. Here we have chosen a 100 µH/1.8A drum core type (large inherent air gap) from Coilcraft, which saturates above 3A. It is designed for a 40°C rise in temperature at a maximum ambient of 85°C. We have accepted its use at a load current slightly higher than its continuous rating since the maximum ambient temperature for the demo-board is only 40°C not 85°C, and since we also know it does not saturate at the maximum load current.

INPUT CAPACITOR

The Voltage rating of the input capacitor must be higher than the DC Input. Tantalum capacitors were not considered suitable here due to their 50V maximum rating, and their inherent surge current limitations (which are always of concern especially at high input voltages). We have chosen a 63V aluminum electrolytic SMT capacitor from Panasonic, sized to handle the RMS current as calculated below:

$$I_{RMS_{IN}} = I_0 \cdot \sqrt{D \cdot \left[1 - D + \frac{r^2}{12}\right]} A$$

$$I_{\text{RMS}_{-}\text{IN}} = 2 \cdot \sqrt{0.27 \cdot \left[1 - 0.27 + \frac{0.3^2}{12}\right]} = 0.89 \text{ A}$$

The capacitor we chose is 100 μF with an RMS current rating of 1.02A at 100 kHz.

AN-1207

Component Selection (Continued)

OUTPUT CAPACITOR

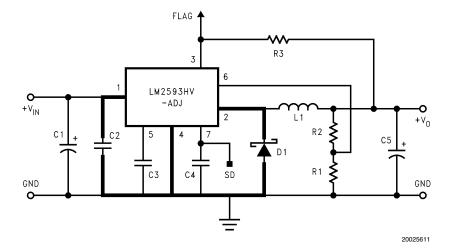
We have chosen a capacitor type similar to the input capacitor mainly for logistic reasons. It was initially sized simply to handle the RMS current as calculated below, and with a voltage rating just higher than the output voltage. Subsequently, a Bode plot for the feedback loop confirmed that the phase margin was acceptable at around 40°. This validated the initial selection. The required RMS rating of the output capacitor is:

$$I_{\text{RMS}_{\text{OUT}}} = I_0 \cdot \frac{r}{\sqrt{12}} \text{ A}$$
$$I_{\text{RMS}_{\text{OUT}}} = 2 \cdot \frac{0.3}{\sqrt{12}} = 0.17 \text{ A}$$

The capacitor we chose is 47 $\mu\text{F}/16\text{V}$ with an RMS current rating of 0.24A at 100 kHz and an ESR of 0.36 $\Omega.$

CATCH DIODE

The Voltage rating must be higher than the input voltage. We have picked a 60V Schottky diode here. The average current in the catch diode is


 $I_{AVG_D} = I_O \bullet (1-D)$

$I_{AVG D} = 2 \bullet (1-0.27) = 1.47A$

Usually the average current would be a starting point for the diode selection. But 60V Schottky diodes have a higher forward voltage drop than low voltage Schottkys, unless they are 'over-sized' in terms of their current rating. So to force good efficiency, we wanted to consider a diode with a 'hot-drop' (the forward drop with the diode hot) of no greater than 0.5V (at an instantaneous forward current of about 2A). This meant using a 3A/60V Schottky diode from International Rectifier.

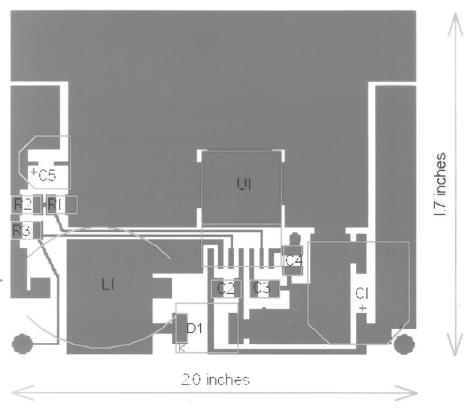
Schematic

The board schematic is presented in *Figure 1*. The key layout suggestions are also indicated on the schematic. Shutdown capacity is available and the pinout marked 'SD' on the board can be taken low to cause the output of the converter to fall to 0V. The 'Flag' pin output is also available and it goes high (pulled up by R3 to the 12V rail) to indicate that the output is well-regulated. When the output is 'not OK', this pin is pulled down internally by the IC and in this condition it sinks 12V/21K=0.6 mA. The maximum voltage on the Flag pin should not exceed 45V and the current into it should not be higher than 3 mA. Therefore in our case it cannot be connected directly to the input voltage rail. The resistors R1 and R2 from a simple voltage divider designed to give 1.23V at the feedback pin when the output is at 12V.

Layout Suggestions

a) Traces shown in BOLD need to be short (not wide) as they pass high frequency current pulses. Wide copper planes with switching current/voltage can radiate excessively.

b) Trace to Feedback Pin (Pin 6) should not pass directly under L1 (to avoid pickup).


FIGURE 1.

Layout and Bill of Material

The two sides of the board are presented in *Figures 2, 3*. The Bill of Material is presented in *Table 1*.

Designator	Description	Manufacturer	Part Number	Quantity
U1	LM2593HVS-ADJ	National Semiconductor	LM2593HVS-ADJ	1
D1	3A/60V Schottky	International Rectifier	MBRS360TR	1
L1	100 µH/1.8A	Coilcraft	DO5022-104	1
C1	100 µF/63V	Panasonic	EEVFC1J101Q	1
C2, C3, C4	0.1 µF/100V	Vishay-Vitramon	VJ1206Y104KXBA	3
C5	47 μF/16V	Panasonic	EEVFK1C470P	1
R1	2.37K/1%	Vishay	CRCW12062371F	1
R2, R3	21K/1%	Vishay	CRCW12062102F	2

20025612

FIGURE 2. Top Side (Component Side) of PCB

Layout and Bill of Material (Continued)

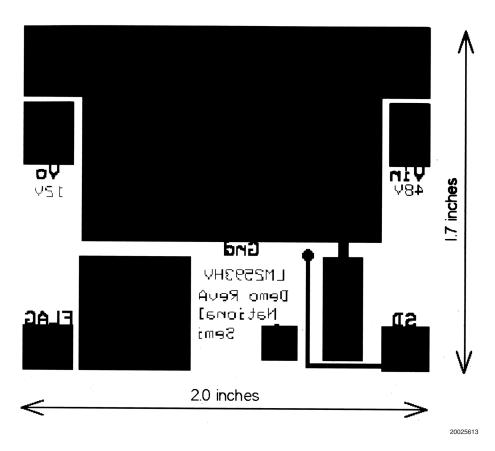


FIGURE 3. Bottom Side of PCB Viewed from Top

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Keinal Semiconductor Corporation Americas Email: support@nsc.com www.national.com

 National Semiconductor

 Europe

 Fax:
 +49 (0) 180-530 85 86

 Email:
 europe.support@nsc.com

 Deutsch
 Tel:
 +49 (0) 69 9508 6208

 English
 Tel:
 +44 (0) 870 24 0 2171

 Français
 Tel:
 +30 (0) 141 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated