

High-Performance Synchronous Buck EVM Using the TPS51220

Contents

1	Description	2
2	Electrical Performance	2
3	Schematic	3
4	Test Setup and Procedure	4
5	Configuration	4
6	Bill of Materials	7
7	EVM Assembly Drawing and PCB Layout	9
8	Reference	11

List of Figures

1	HPA302 EVM Schematic Diagram (DCR-Sensing)	3
2	Equipment Setup for TPS51220EVM Board	4
3	(CH1) Cut Trace Underneath R6	6
4	(CH2) Cut Trace Underneath R20	6
5	Top Layer/ Assembly	9
6	Inner Layer 1	9
7	Inner Layer 2	10
8	Bottom Layer/ Assembly	10

List of Tables

1	Switching Frequency Selection	5
2	Skip Mode Selection	5
3	Current-Sensing Scheme Selection (CH1)	5
4	Current Sensing Scheme Selection (CH2)	5
5	TRIP/ Discharge Mode Selection	6
6	Control Mode/OVP Selection	6
7	Soft-Start Setting Selection	6
8	Bill of Materials	7

1 Description

The TPS51220 is a dual, peak-current mode, synchronous step-down controller with three low-dropout (LDO) regulators. It is optimized for 5-V /3.3-V notebook system power supplies. A 99% duty cycle operation enables designers to complete Li-ion battery applications from 2-cells to 4-cells cost effectively. The TPS51220 supports high-efficiency, fast transient response and 99% duty cycle operation. DCR current sensing provides lossless current sensing and free MOSFET selection; resistor sensing supports accurate current-sensing operation. It supports supply input voltages ranging from 4.5 V to 30 V and output voltages from 1 V to 12 V. High-current, 5 V at 100 mA, 3.3 V at 10 mA, onboard linear regulators have glitch-free switchover function to SMPS, and the 2-V reference has a 100-µA capability.

A peak current-sensing current mode and fixed-frequency control scheme support the full range of current mode operation including simplified loop compensation, ceramic output capacitors, as well as a seamless transition to reduced frequency operation at light-load condition.

This evaluation module demonstrates the performance of the high-current/ high-efficiency TPS51220 buck converter

SPECIFICATIONS		TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Input voltage range (VIN)		8	12	20	V
CH1	Output voltage			5		V
	Operating frequency	VIN = 12 V, lout1 = 6 A		280		kHz
	Output current	VIN = 8 V to 20 V	6			А
	Over current limit	VIN = 12 V		9		А
	Output ripple voltage	VIN = 12 V, lout1 = 6 A		15		mVp-p
CH2	Output voltage			3.3		V
	Operating frequency	VIN = 12 V, lout2 = 6 A		280		kHz
	Output current	VIN = 8 V to 20 V	6			А
	Over current limit	VIN = 12 V		9		А
	Output ripple voltage	VIN = 12 V, lout2 = 6 A		15		mVp-p

2 Electrical Performance

3 Schematic

4 Test Setup and Procedure

4.1 Test Setup

Connect test equipment and HPA302-EVM board as shown in Figure 2.

Figure 2. Equipment Setup for TPS51220EVM Board

4.2 Test Procedure

- 1. Ensure that the switches S1 (EN1), S2 (EN2), and S3 (EN) are in OFF position.
- Ensure that the shunt jumpers for JP1 (TRIP) is set 7-pin to 8-pin (VREG5; Vocl = 60 mV, Discharge-enabled), JP2 (FUNC) is set 1-pin to 2-pin (GND; UVP/OVP-enabled), and JP3, JP4 are set 3-pin to 4-pin (VREF2; Auto-skip).
- 3. Apply appropriate VIN voltage to VIN and GNDI terminals. Check that VREG3 (3.3V-LDO) starts up.
- 4. Turn S3 (EN) to ON. Check that VREG5 (5V-LDO) and VREF2 (2V-Ref) start up.
- 5. When S1 (EN1) is turned to ON, CH1-output starts up.
- 6. When S2 (EN2) is turned to ON, CH2-output starts up.

5 Configuration

4

Users can configure this EVM per the following configurations.

5.1 Switching Frequency Selection

The switching frequency can be set by the RF-resistor (R15) or applying external clock into RF pin on the EVM.

Default setting is 280-kHz using RF resistor.

Table 1. Switching Frequency Selection					
Connection					
Internal	Add RF-resistor from RF to GND and be R31 open $f_{sw} = \frac{1 \times 10^8}{\text{RF}[\Omega]} \text{ [kHz]}$				
External	Apply external clock signal to SYNC (5 Vpp and 50% duty) , remove R15 in addition, and add 0-Ω to R31.				

5.2 Skip Mode and Control Scheme Selection

The skip mode can be set by the SKIPSEL1,2 pins using JP3 and JP4 on the EVM.

Default setting is Auto-skip.

Table 2. Skip Mode	Selection
--------------------	-----------

Jumper (JP3, JP4) set to	SKIPSEL1,2	Skip
Top (1-2 pin shorted)	GND	CCM
Second (3-4 pin shorted)	VREF2	Auto-skip
Third (5-6 pin shorted)	VREG3	OOA (<400-kHz)
Bottom (7-8 pin shorted)	VREG5	OOA (>400-kHz)

5.3 Current-Sensing Selection

The current-sensing scheme can be set by the external current sensing devices, using some resistors on the EVM.

Default setting is Inductor DCR sensing

				J - · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	R8	R29	R35	R36	R6	R7	R25
Inductor DCR	Put on ⁽¹⁾	Put on ⁽¹⁾ (if necessary)	Put on ⁽¹⁾	Put on ⁽¹⁾	Open	Open	Open
External Resistor	Put on ⁽¹⁾	Put on ⁽¹⁾ (if necessary)	Put on ⁽¹⁾	Open	Put on ⁽¹⁾ Cut trace	Open	Open

Table 3. Current-Sensing Scheme Selection (CH1)

⁽¹⁾ "Put on" means add appropriate resistor.

Table 4. Current Sensing Scheme Selection (CH2)

	R18	R28	R33	R37	R20	R19	R26
Inductor DCR	Put on ⁽¹⁾	Put on ⁽¹⁾ (if necessary)	Put on ⁽¹⁾	Put on ⁽¹⁾	Open	Open	Open
External Resistor	Put on ⁽¹⁾	Put on ⁽¹⁾ (if necessary)	Put on ⁽¹⁾	Open	Put on ⁽¹⁾ Cut trace	Open	Open

⁽¹⁾ "Put on" means add appropriate resistor.

For external resistor sensing, cut the trace as follows.

Figure 3. (CH1) Cut Trace Underneath R6

Figure 4. (CH2) Cut Trace Underneath R20

5.4 Overcurrent Limit and Discharge Selection

The overcurrent limit threshold and discharge function can be set by the TRIP pin using JP1 on the EVM. **Default setting is 60 mV and discharge enabled.**

Table 5.	TRIP/	Discharge	Mode	Selection
----------	-------	-----------	------	-----------

Jumper (JP2) set to	TRIP	VOCL	Discharge
Top (1-2 pin shorted)	GND	31 mV	Enabled
Second (3-4 pin shorted)	VREF2	31 mV	Disabled
Third (5-6 pin shorted)	VREG3	60 mV	Disabled
Bottom (7-8 pin shorted)	VREG5	60 mV	Enabled

5.5 Control Mode and Protection Selection

The control mode and protection function can be set by the FUNC pin using JP2 on the EVM.

Default setting is current mode and UVP/OVP-enabled.

Table 6. Cor	ntrol Mode/	OVP Selection
--------------	-------------	---------------

Jumper (JP2) set to	FUNC	Mode	OVP
Top (1-2 pin shorted)	GND	Current	Enabled
Second (3-4 pin shorted)	VREF2	D-CAP	Disabled
Third (5-6 pin shorted)	VREG3	D-CAP	Enabled
Bottom (7-8 pin shorted)	VREG5	Current	Disabled

5.6 Soft-Start Setting Selection

Output voltage soft-start time can be set by the ENx pin using some capacitors on the EVM. **Default setting is integrated soft start.**

Table 7.	Soft-Start	Setting	Selection ⁽¹⁾
----------	------------	---------	--------------------------

	CH1 (C20)	CH2 (C7)
Integrated soft start	Open (adding small bypass-capacitor; 100 pF)	Open (adding small bypass-capacitor; 100 pF)
External soft start	Put on	Put on

⁽¹⁾ When external soft start is selected, add appropriate capacitor on C20 and/or C7.)

5.7 Output Voltage Adjustment

Output voltage is programmable by changing R2, R3, and R5 for CH1 and R21, R23, and R24 for CH2.

Default setting is 5 V for CH1 and 3.3 V for CH2.

$$V_{out}(CH1) = \frac{(R5 + R2 + R3)}{R3} \times V_{ref} (= 1 \text{ V})$$
(1)

When $V_{out}(CH1)$ is set above 5 V, V5SW input resistor (R22) must be open.

$$V_{out}(CH2) = \frac{(R21 + R23 + R24)}{R24} \times V_{ref} (= 1 \text{ V})$$
(2)

6 Bill of Materials

Table 8. Bill of Materials

Reference	Qty	Description	Size	Mfr	Part Number
C1, C14, C26	3	Capacitor, Ceramic, 10 nF, 50V, X7R, 20%	0603	Std	Std
C2, C3	2	Capacitor, SPCAP, 150 μF, 6.3-V, 15-mΩ, 20%	7343	Panasonic	EEFCX0J151R
C4, C5, C6, C21, C22, C23	6	Capacitor, Ceramic, 0.1 µF, 50V, X7R, 20%	0603	TDK	C1608X7R1H104K
C7, C16, C20, C27	4	Capacitor, Ceramic, 100 pF, 50V, CH, 5%	0603	TDK	C1608CH1H101J
C8, C33	0	Capacitor, Ceramic, 10 µF, 25V, X7R, 20%	1210	-	-
C9, C18, C19, C32	4	Capacitor, Ceramic, 10 $\mu\text{F},$ 25V, X7R , 20%	1210	Murata	GRM32DR71E106KA
C10	1	Capacitor, Ceramic, 2.2 F, 6.3V, X7R (or X5R), 10%	0603	Murata TDK	GRM188R70J225KA C1608X5R0J225K
C11	0	Capacitor, Ceramic	0603	_	-
C12	1	Capacitor, Ceramic, 47pF, 50V, CH, 5%	0603	TDK	C1608CH1H470J
C13	1	Capacitor, Ceramic, 0.22 F, 50V, X7R, 10%	0630	TDK	C1608X7R1E224K
C15	1	Capacitor, Ceramic, 10 F, 10V, X7R (or X5R), 10%	0805	Murata TDK	GRM21BR71A106K C2012X5R0J106K
C17	0	Capacitor, Ceramic	0603	-	-
C24, C29	0	Capacitor	7343	-	-
C25, C30	2	Capacitor, SPCAP, 220 F, 4-V, 15-mΩ, 20%	7343	Panasonic	EEFCX0G221R
C28	0	Capacitor, Ceramic	0603	-	-
C31	0	Capacitor, Ceramic	0603	-	-
D1, D2	0	Diode	0.1 × 0.049 inch	-	-
L1	1	Inductor, 4.7µH, 10.2A, 12.9-mΩ	0.4 × 0.4 inch	токо	FDV1040-4R7M
L2	1	Inductor, 3.3μH, 10.7A, 10.5-mΩ	0.4 × 0.4 inch	токо	FDV1040-3R3M
Q1, Q3	2	MOSFET, N-ch, 30-V, 14-A, 9.7-m Ω	SO8	ТІ	CSD17307Q5A
Q2, Q4	2	MOSFET, N-ch, 30-V, 21-A, 4.5-mΩ	SO8	ТІ	CSD17310Q5A
R1, R4, R9, R17, R22, R34, R35,R36, R37	9	Resistor, Chip, 0Ω, 1/10W, 1%	0603	Std	Std
R2	1	Resistor, Chip, 120kΩ, 1/10W, 1%	0603	Std	Std
R3	1	Resistor, Chip, 30kΩ, 1/10W, 1%	0603	Std	Std
R5, R23	2	Resistor, Chip 49.9 or 51Ω , 1/10W, 1%	0603	Std	Std
R6	0	Resistor, Chip, m Ω , 1 W, 1%	3712	Std	Std
R7, R25	0	Resistor, Chip	0603	Std	Std
R8	1	Resistor, Chip, 7.5k Ω , 1/10W, 1%	0603	Std	Std
R10	0	Resistor, Chip	0603	Std	Std
R11, R14	2	Resistor, Chip, 470kΩ, 1/10W, 1%	0603	Std	Std
R12, R13	2	Resistor, Chip, 10kΩ, 1/10W, 1%	0603	Std	Std
R15	1	Resistor, Chip, 360k Ω , 1/10W, 1%	0603	Std	Std

www.t	i.com
-------	-------

Table 8. Bill of Materials	(continued)
----------------------------	-------------

Reference	Qty	Description	Size	Mfr	Part Number
R16	0	Resistor, Chip	0603	Std	Std
R18, R28	2	Resistor, Chip, 5.6kΩ, 1/10W, 1%	0603	Std	Std
R19, R26	0	Resistor, Chip	0603	Std	Std
R20	0	Resistor, Chip, mΩ, 1 W, 1%	3712	Std	Std
R21	1	Resistor, Chip, 62kΩ, 1/10W, 1%	0603	Std	Std
R24	1	Resistor, Chip, 27kΩ, 1/10W, 1%	0603	Std	Std
R27	0	Resistor, Chip	0603	Std	Std
R32	0	Resistor, Chip	0603	Std	Std
R29	1	Resistor, Chip, 4.7kΩ, 1/10W, 1%	0603	Std	Std
R30, R33	2	Resistor, Chip, 15.4Ω, 1/10W, 1%	0603	Std	Std
R31	0	Resistor, Chip	0603	Std	Std
R38	1	Resistor, Chip, 0Ω, 1/10W, 1%	0603	Std	Std
R39	1	Resistor, Chip, 0Ω, 1/10W, 1%	0603	Std	Std
S1, S2, S3	3	Switch, ON-ON Mini Toggle	0.28 × 0.18"	Nikkai	G12AP
J1, J2	2	Terminal Block, 2-pin, 15A, 5,1mm	0.40 × 0.35inch	OST	ED1609
JP1, JP2, JP3, JP4	4	Header, 2×4-pin, 100mil spacing (36-pin strip)	0.20 × 0.40inch	Sullins	PTC36DAAN
—	4	Shunt, 100-mil, Black	0.100	Std	Std
TP1, TP2	2	Pin, Probe monitor (VOUT1)	0.12(D) × 0.4 inch	Keystone or MAC8	5002 LC-2-S
TP3, TP10, TP11	3	Pin, Probe monitor (EN, ENx)	0.12(D) × 0.4 inch	Keystone or MAC8	5002 LC-2-S
TP4, TP17	2	Pin, Probe monitor (SW-node)	0.12(D) × 0.4 inch	Keystone or MAC8	5002 LC-2-S
TP5	0	Pin, Probe monitor (IMON)	0.12(D) × 0.4 inch	Keystone or MAC8	5002 LC-2-S
TP6, TP18	2	Pin, Probe monitor (PGOOD)	0.12(D) × 0.4 inch	Keystone or MAC8	5002 LC-2-S
TP7, TP8, TP9	3	Pin, Probe monitor (LDO)	0.12(D) × 0.4 inch	Keystone or MAC8	5002 LC-2-S
TP12, TP13	2	Pin, Probe monitor (VOUT2)	0.12(D) × 0.4 inch	Keystone or MAC8	5002 LC-2-S
TP14, TP15	2	Pin, Probe monitor (VIN)	0.12(D) × 0.4 inch	Keystone or MAC8	5002 LC-2-S
TP16	0	Pin, Probe monitor (IMON)	0.12(D) × 0.4 inch	Keystone or MAC8	5002 LC-2-S
U1	1	IC, Dual Peak Current Mode, Sync. Step-down Controller	QFN32	ті	TPS51220RHB
VIN, GNDI	2	Pin, Wiring Terminal (VIN)	0.12(D) × 0.4 inch	Mill Max or MAC8	3183-2-00-15-00-00-080 or WT-3-1
VOUT1, GND1, GND3	3	Pin, Wiring Terminal (VOUT1)	0.12(D) × 0.4 inch	Mill Max or MAC8	3183-2-00-15-00-00-080 or WT-3-1
VOUT2, GND2, GND4	3	Pin, Wiring Terminal (VOUT2)	0.12(D) × 0.4 inch	Mill Max or MAC8	3183-2-00-15-00-00-080 or WT-3-1
SYNC, GNDS	2	Pin, Wiring Terminal (SYNC)	0.12(D) × 0.4 inch	Mill Max or MAC8	3183-2-00-15-00-00-080 or WT-3-1

7 EVM Assembly Drawing and PCB Layout

Figure 5. Top Layer/ Assembly

Figure 6. Inner Layer 1

Figure 7. Inner Layer 2

Figure 8. Bottom Layer/ Assembly

1. TPS51220; Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller data sheet (SLVS785)

Reference

 TPS51221, Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller data sheet (<u>SLVS786</u>)

Evaluation Board/Kit Important Notice

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM Warnings and Restrictions

It is important to operate this EVM within the input voltage range of 4.5 V to 25 V and the output voltage range of 1 V to 12 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 60°C. The EVM is designed to operate properly with certain components above 85°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated