Evaluation Board Manual

- Easy Evaluation of the SP7652ER 600kHz, 6A PowerBlox ${ }^{\text {TM }}$ Device
- Built in Low Rds(on) Power FETs
- UVLO Detects Both VCC and VIN
- High Integrated Design, Minimal Components
- High Efficiency: 90\%
- Feature Rich: UVIN, Programmable Softstart, External VCC Supply and Output Dead Short Circuit Shutdown Protection

SP7652EB SCHEMATIC

USING THE EVALUATION BOARD

1) Powering Up the SP7652EB Circuit

Connect the SP7652 Evaluation Board with an external +12V power supply. Connect with short leads and large diameter wire directly to the "VIN" and "GND" posts. Connect a Load between the VOUT and GND2 posts, again using short leads with large diameter wire to minimize inductance and voltage drops.

2) Measuring Output Load Characteristics

It's best to GND reference scope and digital meters using the Star GND post in the center of the board. VOUT ripple can best be seen touching probe tip to the pad for C3 and scope GND collar touching Star GND post - avoid a GND lead on the scope which will increase noise pickup.

3) Using the Evaluation Board with Different Output Voltages

While the SP7652 Evaluation Board has been tested and delivered with the output set to 3.30V, by simply changing one resistor, R2, the SP7652 can be set to other output voltages. The relationship in the following formula is based on a voltage divider from the output to the feedback pin VFB, which is set to an internal reference voltage of 0.80 V .
Standard 1\% metal film resistors of surface mount size 0603 are recommended.

Vout $=0.80 \mathrm{~V}(\mathrm{R} 1 / \mathrm{R} 2+1)=>\mathrm{R} 2=\mathrm{R} 1 /[($ Vout $/ 0.80 \mathrm{~V})-1]$
Where $\mathrm{R} 1=68.1 \mathrm{~K} \Omega$ and for Vout $=0.80 \mathrm{~V}$ setting, simply remove R 2 from the board. Furthermore, one could select the value of R1 and R2 combination to meet the exact output voltage setting by restricting R 1 resistance range such that $50 \mathrm{~K} \Omega \leq \mathrm{R} 1 \leq 100 \mathrm{~K} \Omega$ for overall system loop stability.

Note that since the SP7652 Evaluation Board design was optimized for 12V down conversion to 3.30 V , changes of output voltage and/or input voltage will alter performance from the data given in the Power Supply Data section. In addition, the SP7652EU provides short circuit protection by sensing Vout at GND.

POWER SUPPLY DATA

The SP7652EU is designed with a very accurate 1.0% reference over line, load and temperature. Figure 1 data shows a typical SP7652 Evaluation Board Efficiency plot, with efficiencies to 90% and output currents to 8A. SP7652EU Load Regulation is shown in Figure 2 of only 0.4% change in output voltage from no load to 8A load. Figures 3 and 4 illustrate a 4A to 8A and 0A to 8A Load Step. Start-up Response in Figures 5, 6 and 7 show a controlled start-up with different output load behavior when power is applied where the input current rises smoothly as the Softstart ramp increases. In Figure 8 the SP7652EU is configured for hiccup mode in response to an output dead short circuit condition and will Softstart until the over-load is removed. Figure 9 and 10 show output voltage ripple less than 50 mV at no load to 8 A load.

While data on individual power supply boards may vary, the capability of the SP7652EU of achieving high accuracy over a range of load conditions shown here is quite impressive and desirable for accurate power supply design.

Figure 1. Efficiency vs Load

Figure 3. Load Step Response: 4->8A

Figure 5. Start-Up Response: No Load

Figure 2. Load Regulation

Figure 4. Load Step Response: 0->8A

Figure 6. Start-Up Response: 4A Load

Figure 7. Start-Up Response: 8A Load

Figure 8. Output Load Short Circuit

+5V BIAS SUPPLY APPLICATION SCHEMATIC

In this application example, the SP7652EU is power by an external +5 V bias supply which current consumption of 20 mA Maximum. If this supply is not available than it is recommend Sipex SPX5205 Low-Noise LDO Voltage Regulator which is included on the SP7652 Evaluation Board.

DIFFERENT +5V BIAS SUPPLY SCHEMES APPLICATION SCHEMATIC

The SP7652EU VCC Bias Supply can be derived from Vin or external bias with several biasing options. The transistor plus zener diode +5 V bias supply could also be used as shown in Figure 11.

Figure 11. Transistor plus Zener Diode +5V Supply Application Schematic
Table 1: SP7652EB Suggested Components and Vendor Lists

INDUCTORS - SURFACE MOUNT								
Inductance(UH)	ManufactureriPat No.	Inductor Specification						
		Series R	Isat	Size		Inductor Type		Manufacturer
		mOhnms	(A)	LXM(mm)	Ht. (mm)			Website
1.5	Inter-Technical SC7232-1155M	8.8	13	6.8×6.8	4.5	Shielded Ferrite Core		wame.intertechrical.com
1.5	Coilcratt D03316P-152	9.0	8.0	12.95×9.40	5.5	Non-Stielded Ferrite Core		whw. coilcrat.com
CAPACITORS - SURFACE MOUNT								
Capacitancel UF)	ManufactureriPat No.	Capacitor Specification						
		ESR	Ripple Current	Size		Votage	Capacitor	Manufacturer
		mOhms (max)	(A) @ 45C	$\operatorname{LXM}(\mathrm{mm})$	Ht. (mm)	(M)	Type	Website
22	TDK C $3225 \times 5 \mathrm{R} 1 \mathrm{C2} 26 \mathrm{M}$	2.0	4.0	3.2×2.5	2.0	16.0	X5R Ceramic	maw.tak.com
47	TDK C $3225 \times 5 \times 100476 \mathrm{M}$	2.0	4.0	3.2×2.5	2.5	6.3	X5R Ceramic	whww.tak.com
Note: Compon	nents highlighted in bold are th	hose used on the	SP7652 Evalua	ion Board.				

LOOP COMPENSATION DESIGN

The open loop gain of the SP7652EB can be divided into the gain of the error amplifier Gamp(s), PWM modulator Gpwm, buck converter output stage Gout(s), and feedback resistor divider Gfbk. In order to crossover at the selecting frequency fco, the gain of the error amplifier has to compensate for the attenuation caused by the rest of the loop at this frequency. The goal of loop compensation is to manipulate the open loop frequency response such that its gain crosses over 0 dB at a slope of $-20 \mathrm{~dB} / \mathrm{dec}$.
The open loop crossover frequency should be higher than the ESR zero of the output capacitors but less than $1 / 5$ to $1 / 10$ of the switching frequency fs to insure proper operation. Since the SP7652EB is designed with Ceramic Type output capacitors, a Type III compensation circuit is required to give a phase boost of 180° in order to counteract the effects of the output LC under damped resonance double pole frequency.

Note: Loop Compensation component calculations discussed in this section are further elaborated in the application note \#ANP16, "Loop Compensation of Voltage-Mode Buck Converters". These calculations shown here can be quickly iterated with the Type III Loop Compensation Calculator on the web at: www.sipex.com/files/Application-Notes/TypelllCalculator.xls

Figure 12. SP7652EB Voltage Mode Control Loop with Loop Dynamic
The simple guidelines for positioning the poles and zeros and for calculating the component values for Type III compensation are as follows.
a. Choose fco $=\mathrm{fs} / \mathbf{1 0}$
b. Calculate $\mathbf{f p}$ _LC
$f p _L C=1 / 2 \pi[(L)(C)]^{\wedge} 1 / 2$
c. Calculate fz_ESR
fz_ESR = $1 / 2 \pi$ (Resr) (Cout)
d. Select R1 component value such that $50 \mathrm{k} \Omega \leq \mathrm{R} 1 \leq 100 \mathrm{k} \Omega$
e. Calculate R2 base on the desired Vout

R2 = R1 / [(Vout / 0.80V) - 1]
f. Select the ratio of Rz2 / R1 gain for the desired gain bandwidth Rz2 = R1 (Vramp_pp / Vin_max) (fco / fp_LC)
g. Calculate $\mathbf{C z 2}$ by placing the zero at $1 / 2$ of the output filter pole frequency Cz2 $=1 / \pi(R z 2)\left(f p _L C\right)$
h. Calculate Cp1 by placing the first pole at ESR zero frequency Cp1 = $1 / 2 \pi$ (Rz2) (fz_ESR)
i. Calculate Rz3 by setting the second pole at $1 / 2$ of the switching frequency and the second zero at the output filter double pole frequency Rz3 = 2 (R 1) (fp _LC) / fs
j. Calculate Cz3 from Rz3 component value above $\mathrm{Cz3}=1 / \pi(\mathrm{Rz3})(\mathrm{fs})$
k. Choose $100 \mathrm{pF} \leq \mathbf{C f} 1 \leq 220 \mathrm{pF}$ to stabilize the SP7652EU internal Error Amplify

As a particular example, consider for the following SP7652EB with a type III Voltage Loop Compensation component selections:

Vin $=5$ to 15 V
Vout $=3.30 \mathrm{~V} @ 0$ to 8A load
Select $\mathbf{L}=1.5 \mathbf{u H}=>$ yield $\approx 35 \%$ of maximum 8 A output current ripple.
Select Cout $=47 \mathrm{uF}$ Ceramic capacitors (Resr $\approx 2 \mathrm{~m} \Omega$)
fs $=600 \mathrm{khz}$ SP7652 internal Oscillator Frequency
Vramp_pp = 1.0V SP7652 internal Ramp Peak to Peak Amplitude
a. $\quad \mathbf{f c o}=600 \mathrm{khz} / 10=60 \mathrm{khz}$
b. $\quad f p_{-} L C=1 / 2 \pi[(1.5 u H)(47 u F)]^{\wedge} 1 / 2 \approx 20 k h z$
c. $\quad \mathbf{f z}$ _ESR $=1 / 2 \pi(2 \mathrm{~m} \Omega)(47 \mathrm{uF}) \approx 1.7 \mathrm{Mhz}$
d. $\quad \mathbf{R 1}=68.1 \mathrm{k} \Omega, 1 \%$
e. $\quad \mathbf{R 2}=68.1 \mathrm{k} \Omega /[(3.30 \mathrm{~V} / 0.80 \mathrm{~V})-1] \cong 21.5 \mathrm{k} \Omega, 1 \%$
f. $\quad R z 2=68.1 \mathrm{k} \Omega(1.0 \mathrm{~V} / 15 \mathrm{~V})(60 \mathrm{khz} / 20 \mathrm{khz}) \approx 11.8 \mathrm{k} \Omega, 1 \%$
g. $\quad \mathrm{Cz2}=1 / \pi(11.8 \mathrm{k} \Omega)(20 \mathrm{khz}) \approx 1,000 \mathrm{pF}, \mathrm{X} 7 \mathrm{R}$
h. $\quad \mathbf{C p 1}=1 / 2 \pi(11.8 \mathrm{k} \Omega)(1.7 \mathrm{Mhz}) \approx 10 \mathrm{pF}=>$ Select $\mathbf{C p 1}=22 \mathrm{pF}$ for noise filtering
i. $\quad R z 3=2(68.1 \mathrm{k} \Omega)(20 \mathrm{khz}) / 600 \mathrm{khz} \approx 5.23 \mathrm{k} \Omega, 1 \%$
j. $\quad \mathrm{Cz3}=1 / \pi(5.23 \mathrm{k} \Omega)(600 \mathrm{khz}) \cong 100 \mathrm{pF}, \mathrm{COG}$
k. \quad Cf1 $=100 \mathrm{pF}$ to stabilize SP7652EU internal Error Amplify

PC LAYOUT DRAWINGS

Figure 13. SP7652EB Component Placement

PC LAYOUT DRAWINGS

Figure 14. SP7652EB PC Layout Top Side

Figure 15. SP7652EB PC Layout $2^{\text {nd }}$ Layer Side

PC LAYOUT DRAWINGS

Figure 16. SP7652EB PC Layout ${ }^{\text {rd }}$ Layer Side

Figure 17. SP7652EB PC Layout Bottom Side

		SP7652 Evaluation Board Rev. 02 Listof Materials					4212004
Line	Ref.	Qty.	Manuf.	Manuf.	Lapout	Component	Vendor
No.	Des.			PartNumber	Size		Phone Number
1	PCB	1	Sipex	146.654902	$1.75{ }^{5} \times 2.25^{\prime \prime}$	SP7652E日	978.667.7800
2	U1	1	Sipex	SPP662EU	DFN-26	2.FETs Buck Cith	978.667.7800
3	U2	1	Sipex	SPY5205M5.5.0	807.23.5	150mA LDO Voltage Rey	978.667.7800
4	DBST	1	Vishay Semi	S0101AMS	800-323	15 mASc chotly Diojode	800-344-4539
5	L1	1	Inter-Tecthical	SC7232-1195M	6.8896 .8 mm	1.50 HC Coil 888.80 mmohm	914-347-2474
6	C3	1	TDK	C322565P04760	1210	47uF Ceramic X5P6.3V	978.779.3111
7	C1, 12	2	TDK	C322565R1C226M	1210	22uF Ceramic Y5R 16Y	978.779.3111
8	CVCC	1	TDK	C1608551/1225\%	0603	2.2uF Ceramic Y55 10y	978.779.3111
9	CBST	1	TDK	C160856111105K	0603	1.0uF Ceramic Y56 10y	978.779.3111
10	C2	1	TDK	C1608XP1 11040	0603	0.1UF Ceramic X7R 50Y	978.779.3111
11	C88	1	TDK	C1608X71 1/2233	0603	22,000F Ceramic X7R 50y	978.779.3111
12	CP1	1	TDK	C16880091H220s	0603	22 F C Ceramic COO 50y	978.779.3111
13	CZ2	1	TDK	C16080061H102	0803	1.000p Ceramic coag 50 y	978.779.3111
14	CF1, CZ3	2	TDK	C16080061H101J	0803	100p F Ceramic COG 50y	978.779.3111
15	R22	1	Panasonic	ERNJEKF1182\%	0803	11.8K Ohm ThickFilm Res 1%	800-344-4539
16	R2	1	Panasonic	ERJ 3 EKF2152V	0603	21.5K Ohm ThickFilm Res 1%	800-344-4539
17	R23	1	Panasonic	ERNJEKF5231Y	0803	5.23K Ohm ThickFilm Res 1\%	800-344-4539
18	R1	1	Panasonic	ERNJEKF6812V	0603	68.1KOhm ThickFilm Res 1\%	800-344-4539
19	R3	1	Panasonic	ERJ 3 EK 2003 Y	0603	200KOhm ThickFilm Res 1%	800-344-4539
20	RBST	1	Panasonic	ERJPEKF10FOV	0603	10.00hm ThickFilm Res 1%	800-344-4539
21	R4	1	Panasonic	ERJJEKF1003 ${ }^{\text {P }}$	0603	100K Ohm ThickFilm Res 1\%	800-344-4539
22	VIN, YOUT, GND, GND2	,	Vector Electronic	K24CM	042 Dia	Innotiouthut Temminal Posts	800-344-4539

Table 2: SP7652EB List of Materials

ORDERING INFORMATION

Model	Temperature Range	Package Type
SP7652EB..	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.	.SP7652 Evaluation Board
SP7652EU..	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	26-pin DFN

For further assistance:

```
Email:
WWW Support page:
Sipex Application Notes:
Sipexsupport@sipex.com
http://www.sipex.com/content.aspx?p=support
http://www.sipex.com/applicationNotes.aspx
Loop Compensation Calculator www.sipex.com/files/Application-Notes/TypellICalculator.xls
```


Sipex Corporation Headquarters and Sales Office
233 South Hillview Drive
Milpitas, CA95035
tel: : (408) 934-7500
fax: (408) 935-7600
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

