

C8051T6xx/3xx One Time Programmable (OTP) USB MCUs

Agenda

- C8051T6xx/3xx family overview
- C8051T6xx/3xx family differences from flash-based devices
- OTP development flow
- Other considerations
- Development tools
- Summary

USB OTP Device Family

Introducing the C8051T62x/32x

Reduce cost, simplify design and shorten development time

- USB crystal-less operation capability
- Best-in-class analog capabilities five times faster than any competitor
- Accomplish more work in less time with a high performance processing core
- OTP versions for very cost-sensitive applications

Accelerate time-to-market

- Production-ready software drivers
- Step-by-step application notes and code examples
- Easy-to-use development tools

Pin and code compatible enabling an easy migration path

 OTP C8051T32x is compatible with Flash-based C8051F32x enabling a cost reduction path

USB Design Challenges

- Typical USB microcontrollers lack high-precision analog capabilities creating a more complex and expensive system solution
 - Higher BOM cost: external components are required
 - Significant hardware and software design effort

Most applications require more than just USB connectivity

- Most MCUs are designed to enable only USB connectivity
- Multi-tasking operation can quickly saturate CPU performance

Competitive limitations

- External analog components are required increasing BOM cost and complexity
- Expensive high-end or chip set solutions are implemented to overcome performance bottleneck

OTP and Flash Device Differences C8051T62x/32x vs. C8051F34A

Code Memory Storage

- Flash memory used on C8051F34A family
- Byte-programmable EPROM code memory on the C8051T62x/32x families
 - When pre-fetch engine is enabled (default) timing is similar to flash devices
 - Porting considerations
 - Insure no firmware routines exist to erase code memory
 - In application firmware can write to memory, but only once
 - Add a 4.7 uF capacitor to enable programming the V_{PP} pin to ground
 - C8051T62x and C8051T32x devices

Feature	C8051F34A	C8051T62x/32x
Code memory can be erased and reprogrammed	Yes	No
Programming voltage (V_{PP}) required to program code memory	No	Yes
Code memory can be erased from firmware on the device	Yes	No
Code memory can be written from firmware on the device	Ye	es
Code memory can be read from firmware on the device	Ye	es

Special Function Registers (SFR) (1 of 2)

- Differences related to functionality and features
- SFRs can exist in one family and not another
 - Reading and writing these registers does not cause any problems if not present
 - Porting considerations
 - None
 - Example: P3 register is not found in the C8051T622 and is on the F34A

D8	PCA0CN	PCA0MD	PCA0CPM0	PCA0CPM1	PCAG	CPM2	PCA0CPM3	PCA0CPM4	P3SKIP
D	PSW	REF0CN	SCON1	SBUF1	POS	KIP	P1SKIP	P2SKIP	USB0XCN
CE	TMR2CN	REG01CN (REG0CN)	TMR2RLL	TMR2RLH	тм	R2L	TMR2H	-	SMB0ADM
С	SMB0CN	SMB0CF	SMB0DAT	ADC0GTL	ADC)GTH	ADC0LTL	ADC0LTH	SMB0ADR (P4)
B	IP	CLKMUL	P1MASK (AMX0N)	AMX0P	ADC	OCF	ADC0L	ADC0H	-
в	P3	OSCXCN	OSCICN	OSCICL	SBR	RLL1	SBRLH1	P1MAT (FLSCL)	MEMKEY (FLKEY)
A 9			EMIOCN		SBC	ON1		POMASK	DEEDCN
A		CEKSEL	Liniven		000	·	-	(P4MDOUT)	PFEUCIN
A	P2	CHRSEL	Liniociti		0.00	OUT	P1MDOUT	(P4MDOUT) P2MDOUT	P3MDOUT
A0 98	P2 SCON0	CERCEL	P.3				P1MDOUT CPT0MD	(P4MDOUT) P2MDOUT CPT1MX	P3MDOUT CPT0MX
A0 98 90	P2 SCON0 P1	CHIGEL	P3	3		IMD R3L	P1MDOUT CPT0MD TMR3H	(P4MDOUT) P2MDOUT CPT1MX USB0ADR	P3MDOUT CPT0MX USB0DAT
A0 98 90 88	P2 SCON0 P1 TCON	CHRSEL	P3	8		OUT 1MD R3L	P1MDOUT CPT0MD TMR3H TH1	(P4MDOUT) P2MDOUT CPT1MX USB0ADR CKCON	P3MDOUT CPT0MX USB0DAT PSCTL
A0 98 90 88	P2 SCON0 P1 TCON P0	SP	P3	DPH	PON (EMI	IMD R3L H0 MAT OTC)	P1MDOUT CPT0MD TMR3H TH1 EMI0CF	(P4MDOUT) P2MDOUT CPT1MX USB0ADR CKCON OSCLCN	P3MDOUT CPT0MX USB0DAT PSCTL PCON
A0 98 90 88 80	IE P2 SCON0 P1 TCON P0 0(8) BIt-Addressable	SP 1(9)	P3	DPH 3(B)	P0M (EMI 4(IMD R3L I0 MAT OTC) C)	P1MDOUT CPT0MD TMR3H TH1 EMI0CF 5(D)	(P4MDOUT) P2MDOUT CPT1MX USB0ADR CKCON OSCLCN 6(E)	PSMDOUT CPT0MX USB0DAT PSCTL PCON 7(F)

Special Function Registers (SFR) (2 of 2)

Some registers have additional bits defined

- Peripheral behavior remains unchanged if the default settings are used
- Porting considerations
 - To maintain functionality verify that default bit settings are used for additional bits in common registers
- Example:
 - REF0CN register adds REFBGS to halve the ADC reference voltage
 - Default setting maintains functionality with the C8051F34A

F	8	SPIOCN	PCA0L	PCA0H	PCA0CPL0	PCA0CPH0	PCA0CPL4	PCA0CPH4	VDM0CN
F	0	В	POMDIN	P1MDIN	P2MDIN	PCA0PWM (P3MDIN)	IAPCN (P4MDIN)	EIP1	EIP2
E	8	ADC0CN	PCA0CPL1	PCA0CPH1	PCA0CPL2	PCA0CPH2	PCA0CPL3	PCA0CPH3	RSTSRC
E	0	ACC	XBR0	XBR1	XBR2	IT01CF	SMOD1	EIE1	EIE2
D	8	PCA0CN	PCA0MD	PCA0CPM0	PCA0CPM1	PCA0CPM2	PCA0CPM3	PCA0CPM4	P3SKIP
D	0	PSW	REFOCN	SCON1	SBUF1	POSKIP	P1SKIP	P2SKIP	USBOXCN
С	8	TMR2CN	REG01CN (REG0CN)	TMR2RLL	TMR2RLH	FMR2L	TMR2H	-	SMB0ADM (-)
С	0	SMB0CN	\$МВ0				COLTL	ADC0LTH	SMB0ADR (P4)
в	8	IP	СЦКИ	RF	FOC	2N	DC0L	ADC0H	-
в	0	P3	osox	IXL			BRLH1	P1MAT (FLSCL)	MEMKEY (FLKEY)
A	8	IE	CLKS				-	P0MASK (P4MDOUT)	PFE0CN
A	0	P2	SPI0CFG	SPI0CKR	SPIODAT	POMDOUT	P1MDOUT	P2MDOUT	P3MDOUT
9	8	SCON0	SBUF0	CPT1CN	CPT0CN	CPT1MD	CPT0MD	CPT1MX	СРТОМХ
9	0	P1	TMR3CN	TMR3RLL	TMR3RLH	TMR3L	TMR3H	USB0ADR	USB0DAT
8	8	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	PSCTL
8	0	P0	SP	DPL	DPH	P0MAT (EMI0TC)	EMI0CF	OSCLCN	PCON
		0(8) 1(9) 2(A) 3(B) 4(C) Bit-Addressable		4(C)	5(D)	6(E)	7(F)		
		*T62x and *T32x Register (F34A Register) Devices have different bits, but same SER location			F34A Only				

Analog Considerations

- ADC sample rate increase to 500 ksps
 - SAR clock increased to 8.33 MHz
- Gain setting of 0.5x now available
- Single ended inputs only
- External conversion start timing provides additional options

ADC Diagram

Analog Considerations

- More voltage reference options
- Calibrated temperature sensor

Porting considerations

- AMX0CN register should always be written as 11111b
- Default register settings for the reference selection maintain functionality
- Temperature sensors have different transfer functions and firmware should be adjusted accordingly

Supply Voltage Considerations (1 of 2)

Process technology change and second voltage regulator added

- V_{DD} output now 3.45 V instead of 3.3 V
- Second regulator provides 1.8 V
 - Additional registers to support the regulator functionality (REG01CN)
 - Can be placed in a low power mode
- V_{IO} pin added on some devices in case the port input/output voltages are required to be different from the V_{DD} that the device is operating
- V_{DD} monitor threshold voltage changes
- Porting considerations
 - None for firmware, but care must be observed for electrical connections

Feature	C8051F34A	C8051T63x/32x
Supply voltage range	2.7–3.6 V	1.8–3.6 V
3.3 V regulator for V_{DD}	Yes	No
3.45 V regulator for V_{DD}	No	Yes
1.8 V regulator for internal core voltage	No	Yes
Maximum voltage on any I/O pin	5.8 V	*V _{DD} +3.6 V (5.8V max)

*If supply voltage reduced to 0 V then voltage at the pin must be less than 3.6 V

V_{IO} considerations

- $V_{IO} \leq V_{DD}$
- Not all packages have a V_{IO} pin
- Reset can be pulled up to VDD

V_{PP} considerations

- When using in-application programming (IAP) a 4.7 uF capacitor is required on the V_{PP} pin
- It is not recommended to use the V_{PP} pin as GPIO if IAP to be used
 - If GPIO and IAP are required then the external circuit on the pin must not provide a load when the programming is enabled

Low Power Modes and Clocking

Suspend mode operation turns off the internal oscillator

- C8051F34A requires USB resume signaling or VBUS interrupt to exit suspend
- C8051T62x/32x devices exit suspend using
 - Resume signaling or VBUS interrupt
 - Port match
 - Timer 3 if running from external oscillator or the low frequency internal oscillator

Clocking options vary between devices

- Porting considerations
 - CLKMUL register remains across all devices for compatibility even though the internal oscillator is used to drive the USBCLK directly

Feature	C8051F34A	C8051T62x
Internal calibrated 24.5 MHz oscillator (divided by 1, 2, 4 or 8)	Yes	No
Internal calibrated 48 MHz oscillator (divided by 1,2,4 or 8)	No	Yes
Internal 80 kHz oscillator (divided by 1, 2, 4 or 8)	Yes	Yes
External CMOS clock (digital input)	Yes	Yes
External oscillator in RC or capacitor mode	Yes	Yes
External oscillator in crystal oscillator mode	Yes	Yes

Additional Features

SMBus/I²C

- Optional hardware address recognition and automatic ACK
 - Reduces firmware overhead

Port match

- Allows system events to be triggered by a logic value change on a port pin
- Can generate interrupts
- Can wake the device from suspend mode

PCA

Includes 9, 10 and 11 bit PWM generation

Developing USB OTP Applications

The C8051T62x/32x Development Kit

Kit contents for C8051T620 and C8051T622

- C8051T62x motherboard
- C8051T62x emulation daughter board with C8051F34A installed
- Socket daughter board (one of the following):
 - C8051T62x QFN 32-pin (C8051T620DK)
 - C8051T622 QFN 24-pin (C8051T622DK)
- Twenty device samples (one of the following):
 - C8051T620-GM (C8051T620DK)
 - C8051T622-GM (C8051T622DK)
- C8051Txxx development kit quick-start guide
- Product information CD-ROM includes:
 - Silicon Labs Integrated Development Environment (IDE)
 - Evaluation version of 8051 development tools (macro assembler, linker, C compiler)
 - Source code examples and register definition files
 - Documentation
- AC-to-DC universal power adapter
- Two USB cables

Required software

- Silicon Labs IDE or 3rd party IDE
- C compiler—code limited evaluation versions supplied with the kit

Recommended software

- Configuration wizard—Configuration Wizard 2
- Virtual com port (VCP) drivers
- ToolStick Terminal
- uVision driver for Keil if using the uVision IDE

Software can be downloaded at http://www.silabs.com/mcudownloads

Using the Kits

Attaching a Daughter Card

Development can start using the flash-based C8051F34A

 Plug the C8051T62x EDB emulation daughter board into the motherboard sockets P1 and P2 (C8051T62x EDB has the C8051F34A device)

Using the C8051F34A for Development

Making Mother Board Connections

Verify jumper settings with the DK user's guide

Connect USB cable to the mother board P5

- Provides code download and debug capability
- Provides interface to targets UART peripheral if enabled using J11

Connect the AC/DC power adapter to the barrel plug P3

Verify Tool Flow

Build a sample project

- Open T620_Blinky_C.wsp project using the Silicon Labs IDE
 - Found in the C:\Silabs\MCU\Examples\C8051T620_1_T320_3 directory
- Build, connect, download and run the project

Blinking the LED

- When the application is running LED1 should be blinking
- Code can be modified and downloaded multiple times using the C8051F34A

Running the Test Application

Developing the Application

- Make modifications to the example code to provide the required system functionality (recommended) or write the application from scratch
- Using the flash-based C8051F34A many code iterations can be done without having to burn the code into the OTP device
 - Since OTP devices can only be programmed once they would have to be discarded after each code test

Porting the Application to the OTP Device

- Once the application code has been completed on the flash-based MCU migrate the project to the OTP version
 - Make necessary porting changes based on MCU differences
 - USB clock recovery step size

Flash Code Flow

Clock Recovery Port Example

ABS

Using the Oscillator

- Internal oscillator is now 48 MHz instead of 12 MHz
- For backward compatibility the clock multiplier registers remain although they provide no functionality

// Sysclk_Init 11 // Return Value - None // Parameters - None 11 // Initialize system clock to maximum frequency. 11 11 void Sysclk_Init(void) #ifdef _USB_LOW_SPEED_ OSCICN |= 0x03; // Configure internal oscillator for // its maximum frequency and enable // missing clock detector CLKSEL = SYS_INT_OSC; // Select System clock // Select USB clock CLKSEL |= USB INT OSC DIV 2; #else OSCICN |= 0x03; // Configure internal oscillator for // its maximum frequency and enable // missing clock detector // This clock multiplier code is no longer necessary, but it is retained // here for backwards compatibility with the 'F34x. $CLKMUL = 0 \times 00$; // Select internal oscillator as // input to clock multiplier $CLKMUL | = 0 \times 80;$ // Enable clock multiplier Delav(); // Delay for clock multiplier to begin CLKMUL |= 0xC0; // Initialize the clock multiplier Delay(); // Delay for clock multiplier to begin while(!(CLKMUL & 0x20)); // Wait for multiplier to lock CLKSEL = SYS INT OSC; // Select system clock CLKSEL |= USB_4X_CLOCK; // Select USB clock #endif /* USB LOW SPEED */

Code remains from the C8051F34A. It can be removed when using the C8051T62x.

Applications with an ADC

- Voltage reference options can be optimized for dynamic range
- C8051T62x/32x is single ended and doesn't have a mux for the negative input
- > SAR clock can remain the same or can be increased for faster sample rates

//		//		
// ADC0_Init		// ADC0_:	Init	
// // Return Value: None // Parameters: None // // Configures ADCO to make single-ende //	d analog measurements on pin P1.1	// Return // Parame // // Config	n Value: None eters: None gures ADCO to make single-ende	ed analog measurements on pin P2.5.
void ADC0_Init (void)		void ADC)_Init (void)	
{ ADCOCN = 0x02;	<pre>// ADC0 disabled, normal tracking, // conversion triggered on TMR2 overflow</pre>	{ ADCOCI	I = 0x02;	<pre>// ADC0 disabled, normal tracking, // conversion triggered on TMR2 overflow</pre>
REFOCN = 0x03;	<pre>// Enable on-chip VREF and buffer</pre>		I = 0x03;	$\ensuremath{\sim}$ Enable on-chip VREF and buffer
AMXOP = 0x13; AMXON = 0x1F;	<pre>// ADC0 positive input = P1.1 // ADC0 negative input = GND</pre>	AMXOP	= 0x0D;	<pre>// ADC0 positive input = P2.5</pre>
	// i.e., single ended mode	ADCOCH	F = ((SYSCLK/3000000)-1)<<3;	// Set SAR clock to 3MHz
ADCOCF = ((SYSCLK/3000000)-1)<<3; -	77 set SAR clock to 3MHz	ADCOCT	$r = 0 \times 00$	// Right-justify results
ADCOCF = 0x00;	<pre>// right-justify results</pre>	ADCOCH	F = 0x01;	// Gain = 1
EIE1 = 0x08;	$\ensuremath{\mathcal{W}}$ enable ADC0 conversion complete int.	EIE1	= 0x08;	$\ensuremath{\sc \prime\prime}$ Enable ADC0 conversion complete int.
ADOEN = 1; }	// enable ADCO	ADOEN }	= 1;	// Enable ADC0

Flash Code Flow

ADC Example

OTP Code Flow

Measuring Temperature

Temperature sensor measurements differ between the two families

Transfer function of the temperature sensors is different

> OTP devices have temperature compensation at 0 °C using V_{DD}

#define COMP_ADDRESS 0x3FFA // Location of TOFFH and TOFFL Compensation value stored U16 code COMPENSATION _at_ COMP_ADDRESS; // TOFFH and TOFFL stored in EPROM in code memory // memory ADC0_Init 🗥 Return Value : None 🗸 Parameters 👘 : None Initialize the ADC to use the temperature sensor void ADC0_Init (void) REFOCN = 0x0E: // VREF is VDD, Temp. Sensor ON, Bias ON ADC uses V_{DD} as V_{REF} AMXOP = 0x1E;// Selects Temp. Sensor ADCOCF = ((SYSCLK/3000000)-1)<<3; // Set SAR clock to 3MHz Mux input set to temp sensor ADCOCF |= 0x04;// ADC0 is left justified ADCOCN = 0x82; // ADC ON, starts on TMR2 overflow EIE1 |= 0x08; // Enable ADC0 conversion complete int. // Calculate rounded temperature temp_scaled *= SLOPE; •Firmware uses the new slope, offset and With a left-justified ADC, we have to shift the decimal place // of temp scaled to the right so we can match the format of // OFFSET. Once the formats are matched, we can subtract OFFSET. compensation to determine temperature temp_scaled = temp_scaled >> OVER_ROUND;

SILICON LABS

temp comp = temp_scaled - COMPENSATION; // Apply TOFFH and TOFFL

// Apply offset to temp

temp_scaled -= OFFSET;

Change the Daughter Card

Once code porting has been completed

- Attach the C8051T620 SKT DB daughter card into the motherboard sockets P1 and P2
 - C8051T62x QFN SKT DN has a socket for the specific device package
 - Sample devices provided in the kit

Attaching the C8051T62x Daughter Card

Build, Download and Run the Application

Test the OTP application

Build, connect, download and run the project

Silicon Labs IDE

Available Documentation and Software

- Product data sheets available (www.silabs.com/USB)
- Data shorts available (www.silabs.com/USB)
- Example code included on IDE installation (www.silabs.com/MCUdownloads)
- USBXpress drivers (www.silabs.com/USBXpress)
- Application Notes available (www.silabs.com/USB)
 - AN169 USBXpress programmer's guide
 - AN200 USB boot loader with shared USBXpress library
 - AN220 USB driver customization
 - AN249 Human interface device tutorial
 - AN368 Difference between the C8051F34A and the C8051T62x and C8051T32x device families
 - AN455 Porting code for C8051F320/1 devices to C8051T320/1 devices
 - AN456 Porting code for C8051F326/7 devices to C8051T326/7 devices
 - AN456 Porting code for C8051F326/7 to C8051T326/7 devices
 - AN532 HID library API specification
- Best-in-class product support and comprehensive software ecosystem
 - Silicon Labs offers free vendor PID (www.silabs.com/products/mcu/Pages/request-PID.aspx)
 - Pre-programming services

Summary

Silicon Labs USB solutions are designed to reduce cost, simplify design and shorten development time

- Best-in-class analog capabilities five times faster than any competitor
- Accomplish more work in less time with a high performance processing core
- USB crystal-less operation capability
- OTP versions for cost sensitive applications

22 new products supported by a comprehensive development ecosystem

- Production-ready software
- Step-by-step application notes and code examples
- Easy-to-learn development tools

Pin and code compatible enabling an easy migration path

- C8051F38x is pin and code compatible with the C8051F34x
- OTP C8051T32x is compatible with flash-based C8051F32x enabling a cost reduction path

www.silabs.com/USB