

32-bit
Microcontrollers

Application Note

Rev. 32066A-AVR32-02/08

AVR32705: AVR32AP7 Networking Performance

Features
• Linux TCP and UDP performance measurements

- ATSTK1000 (32-bit SDRAM bus width)
- ATNGW100 (16-bit SDRAM bus width)

• Improved RX buffer management in the Linux MACB driver

1 Introduction
This application note documents the TCP/IP and UDP/IP performance of the
ATSTK®1000 and ATNGW100 development boards running the 2.6.23-rc7 version
of the Linux® kernel. It also describes three optimizations of the MACB driver’s
receive path and documents how they impact the performance.Details on the
optimization techniques applied to the MACB driver for the Linux kernel is
described in this document. The result of this optimization work is available through
Atmel®’s Linux Kernel through Atmel’s Linux Support webpages.

Prior knowledge to Linux is not required to understand the optimization techniques,
although preferred. Development Tools (ATSTK1000 and ATNGW100) for the
AVR32AP7 micro-controllers are available from Atmel.

2 AVR32705
32066A-AVR32-02/08

2 Benchmarking tools

2.1 Iperf: The TCP/UDP Bandwidth Measurement Tool
Iperf is a TCP and UDP bandwidth measurement tool [1]. It can measure the
maximum TCP bandwidth as well as UDP data loss at a given bandwidth, making it
very suitable for measuring the impact of optimizations across the whole TCP/IP
stack. In this application note, it is used to measure the performance of the low-level
MACB Ethernet driver in particular.

The most basic use of iperf involves running one instance in server mode and one
instance in client mode, sending packets from the client to the server. Thus, to
measure how the target’s TCP/IP stack performs on the receive (RX) side, first start
iperf in server mode on the target:

iperf –s

Then, run iperf in client mode on the development host:

iperf –c 192.168.1.2

Replace “192.168.1.2” with the target’s actual IP address.

By default, the iperf client will generate packets as fast as possible for 10 seconds
and report the average bandwidth. For details about how to customize this, please
see the iperf documentation.

To measure the target’s transmit (TX) performance, simply do the above procedure
the other way around: Start iperf in server mode on the development host, then start it
in client mode on the target with the host’s IP address as a parameter.

3 Linux MACB driver improvements
The transmit and receive paths of the MACB ethernet driver have stayed mostly the
same since the initial version distributed with the STK1000 BSP 1.0. This section
describes three optimizations that can be done to improve the performance of the
receive path:

1. Store the first fragment of each packet into RAM with a two-byte offset.
2. Use non-coherent memory for the RX buffers.
3. Pass the RX buffers up the stack without copying them into a linear buffer first.

3.1 Linux socket buffers (skbuff)
The Linux kernel stores all information related to a network packet in a structure
called “skbuff”, or SKB for short [2]. The raw packet data can be stored in a linear
data area in the SKB itself, but the SKB also contains a list of “fragments” where
additional data can be passed. Each fragment is passed as a physical page reference
along with offset and size information indicating which part of the page contains the
data. The structure is declared in include/linux/skbuff.h and looks like this:

struct skb_frag_struct {

 struct page *page;

 __u32 page_offset;

 __u32 size;

};

 AVR32705

 3

32066A-AVR32-02/08

As the Linux networking stack processes the incoming packets, data is copied from
the fragments into the linear data area as needed. The code parsing the Ethernet
header, however, does not do this, so a minimum of 14 bytes must be copied into the
linear data area by the driver.

3.2 Optimization 1: Offset the first RX buffer by two bytes
An Ethernet header is 14 bytes long. This is not a multiple of 4, so if the packet data
is word-aligned initially, whatever comes after the Ethernet header will not be,
resulting in poor performance. The existing MACB driver solves this by adding two
bytes of padding to the SKB data area, making the Ethernet payload properly word-
aligned. However, since the DMA buffer does not have the same padding, the source
and destination buffers will be aligned differently when the data is copied, resulting in
poor performance of the copy operation itself.

The MACB controller includes a RBOFF field in the NCFG register which specifies the
amount of padding to be added before a packet is stored in RAM. For packets that
span multiple buffers, this padding is only added to the first buffer. By specifying 2
bytes of padding in this field and adjusting the RX copying code accordingly, a minor
performance increase is expected due to faster memcpy performance.

Even though this optimization may not increase performance much by itself, it is a
prerequisite for the last optimization where the buffers are passed up the stack as-is.

3.3 Optimization 2: Use non-coherent memory as RX buffers
The MACB driver currently uses coherent, i.e. non-cacheable, memory to store the
RX data. This simplifies the code a bit because there’s no need for any cache
synchronization with such buffers, but it may also give suboptimal performance. By
mapping the RX DMA buffers in non-coherent, cacheable memory, the CPU will be
able to do burst accesses to transfer data from memory into the data cache.

The second patch replaces the coherent DMA buffers with regular pages obtained
from the page allocator. Since each MACB receive buffer is 128 bytes and the default
page size is 4096 bytes, each of these pages map 32 RX buffers.

Using single pages as receive buffers is also a prerequisite for the third optimization
since the SKB fragment list consists of a list of single pages.

3.4 Optimization 3: Avoid copying of fragments into the linear data area
When one or more packets have been received, the current incarnation of the MACB
driver scans the receive DMA descriptors and copies all the 128-byte DMA buffers
that make up a packet into the linear data area of the SKB. The last optimization aims
to avoid this copying by passing one or more references to the DMA buffers
themselves up the stack.

Since Optimization 2 already replaced the single contiguous, coherent DMA buffer
with multiple single pages, this becomes relatively straightforward. An SKB is
allocated with just enough room for the Ethernet header plus the alignment padding.
Then, each page that covers one or more of the receive buffers is added to the
fragment list, after having its reference count incremented using get_page(). Finally,
the Ethernet header is copied into the linear data area and the page offset and size of
the first fragment is adjusted so that it doesn’t cover the Ethernet header anymore.

When the SKB isn’t needed anymore, kfree_skb() is called, freeing the linear data
buffer and decrementing the reference count of all the pages in the fragment list using

4 AVR32705
32066A-AVR32-02/08

put_page(). Eventually, when a page has been freed from all the fragment lists it was
on and it is no longer used as a DMA buffer, the reference count drops to zero and
the page is freed.

4 Results
The iperf measurement results are shown in Table 3-1. The measurements were
obtained as follows.

• TCP RX bandwidth: “iperf –s” on the target and “iperf –c 192.168.1.231” on the
host.

• TCP TX bandwidth: “iperf –s” on the host and “iperf –c 192.168.1.21” on the
target.

• UDP RX datagram loss: “iperf –s –u” on the target and “iperf –c 192.168.1.231 –u
–b 60000000” on the host.

• UDP TX datagram loss: “iperf –s –u” on the host and “iperf –c 192.168.1.21 –u –b
60000000” on the target.

Table 3-1. Iperf measurement results
TCP Bandwidth (Mbit/s) UDP Datagram Loss @ 60 Mbps

Board Kernel RX TX RX TX

2.6.23-rc7 54.6 69.1 14% 0%

 + RX offset 54.5 71.3 17% 0%

 + noncoherent RX 58.8 70.3 0.039% 0%
ATSTK1000 + avoid RX copy 66.1 65.5 0% 0%

2.6.23-rc6 43.6 56.3 44% 0%

 + RX offset 43.6 55.3 50% 0%

 + noncoherent RX 47.6 55.7 46% 0%

ATNGW100 + avoid RX copy 50.7 50.9 19% 0%
In the end, the three optimizations combined result in a 21% bandwidth increase on
the STK1000 and a 16.3% bandwidth increase on the NGW100.

5 Further improvements
Some of the results were a bit surprising. Since the NGW100 has lower memory
bandwidth than the STK1000 (16- vs 32-bit SDRAM databus), it is very strange that it
apparently had less benefit from avoiding the copy operation. Also, the TCP TX
bandwidth became lower on both the STK®1000 and the NGW100 when the “avoid
RX copy” patch was applied.

Unless this is pure noise, it seems to indicate that the new driver handles certain
corner cases less than optimally, and there might be more room for improvement in
the driver.

6 References
Information about AT32AP7 is available on http://www.atmel.com/avr32/

1. Iperf website: http://dast.nlanr.net/Projects/Iperf/
2. How SKBs work: http://vger.kernel.org/~davem/skb.html

http://www.atmel.com/avr32/
http://dast.nlanr.net/Projects/Iperf/
http://vger.kernel.org/%7Edavem/skb.html

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr32@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR®, STK® and others, are the registered
trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

32066A-AVR32-02/08

	1 Introduction
	2 Benchmarking tools
	2.1 Iperf: The TCP/UDP Bandwidth Measurement Tool

	3 Linux MACB driver improvements
	3.1 Linux socket buffers (skbuff)
	3.2 Optimization 1: Offset the first RX buffer by two bytes
	3.3 Optimization 2: Use non-coherent memory as RX buffers
	3.4 Optimization 3: Avoid copying of fragments into the linear data area

	6 References

