
Copyright ©2011 Zilog®, Inc. All rights reserved.
www.zilog.com

Zilog Developer Studio II –
Z8 Encore!®

UM013034-1210

User Manual

http://www.zilog.com

 UM013034-1210

ii

Zilog Developer Studio II – Z8 Encore!®

User Manual

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY
ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF ZILOG CORPORATION.

As used herein
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life
and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be
reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or
system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its
safety or effectiveness.

Document Disclaimer
©2011 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described
is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR
PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles
of electrical and mechanical engineering.

Z8, Z8 Encore!, and Z8 Encore! XP are registered trademarks of Zilog, Inc. All other product or service names are the property of
their respective owners.

Warning:

UM013034-1210 Revision History

Zilog Developer Studio II – Z8 Encore!®

User Manual

iii

Revision History

Date
Revision
Level Section Description

Dec 2010 34 ZDS II System Requirements on page
xxv.

Updated for the ZDS II 5.0.0 release.

Using the Integrated Development
Environment chapter, Options—Editor
Tab on page 126.

Updated section for content; inserted
new screen captures.

Using the Integrated Development
Environment chapter, Options—Edi-
tor—Advance Editor Options on
page 129.

Updated section for content; inserted
new screen captures.

Using the Editor on page 137. Added new section.

May 2008 33 All Updated for the ZDS II 4.11.0 release.

Dec 2006 32 New Project on page 39 and Debugger
Page on page 99.

Added description of the Use Page Erase
Before Flashing check.

UARTS on page 83. Described new Place ISR into PRAM
checkboxes.

Flash Loader on page 113. Added description of the Use Page Erase
checkbox.

Firmware Upgrade (Selected Debug
Tool) on page 121.

Added path for Ethernet Smart Cable
upgrade information.

ORG on page 290. Updated section.

Memory Window on page 369. Updated the note about PRAM.

Using the Macro Assembler on page
261 and Appendix E. Compatibility
Issues on page 497.

Deleted PL, PW, PAGEWIDTH, and
PAGELENGTH.

Structures and Unions in Assembly
Code on page 295.

Added new section.

Appendix D. Using the Command Pro-
cessor on page 465.

Added the checksum, fillmem, load-
mem, and savemem commands.

Jul 2006 31 All Updated for the ZDS II 4.10.0 release.

Revision History UM013034-1210

iv

Zilog Developer Studio II – Z8 Encore!®

User Manual

Sep 2005 30 Setup on page 100. Added Ethernet target.

Debug Tool on page 103. Added Ethernet target.

Front-End Warning and Error Messages
on page 248.

Updated section.

Optimizer Warning and Error Messages
on page 258.

Added new section.

Date
Revision
Level Section Description

UM013034-1210 Table of Contents

Zilog Developer Studio II – Z8 Encore!®

User Manual

v

Table of Contents

Revision History .iii

List of Figures . xvii

List of Tables. .xxiii

Introduction . xxv
ZDS II System Requirements . xxv

Supported Operating Systems . xxv
Recommended Host System Configuration . xxvi
Minimum Host System Configuration . xxvi
When Using the Serial Smart Cable . xxvi
When Using the USB Smart Cable . xxvi
When Using the Opto-Isolated USB Smart Cable . xxvii
When Using the Ethernet Smart Cable . xxvii
When Using the Z8 Encore! MC Emulator . xxvii
Z8 Encore! Product Support . xxvii

Zilog Technical Support . xxx

Getting Started . 1
Installing ZDS II . 1
Developer’s Environment Tutorial . 1

Create a New Project . 2
Add a File to the Project . 6
Set Up the Project . 8
Save the Project . 14

Using the Integrated Development Environment . 15
Toolbars . 16

File Toolbar . 16
Build Toolbar . 18
Find Toolbar . 21
Command Processor Toolbar . 22
Bookmarks Toolbar . 23
Debug Toolbar . 24
Debug Windows Toolbar . 27

Windows . 29
Project Workspace Window . 29
Edit Window . 31
Output Windows . 35

Table of Contents UM013034-1210

vi

Zilog Developer Studio II – Z8 Encore!®

User Manual

Menu Bar . 37
File Menu . 38
Edit Menu . 47
View Menu . 55
Project Menu . 56
Build Menu . 105
Debug Menu . 109
Tools Menu . 113
Window Menu . 133
Help Menu . 133

Shortcut Keys . 134
File Menu Shortcuts . 134
Edit Menu Shortcuts . 134
Project Menu Shortcuts . 135
Build Menu Shortcuts . 136
Debug Menu Shortcuts . 136

Using the Editor . 137
Auto Completion . 139
Call Tips . 143
Auto Indentation . 145
Multiple Clipboards . 147
Line and Block Comments . 149
Abbreviations and Expansions . 149
Auto Insertion of Braces and Quotes . 155
Long Line Indicator . 156
UNICODE Support . 158
Auto Syntax Styler . 159
Code Folding Margin . 162
Line Number Margin . 164
Type Info Tips . 166
Highlighting and Finding Matched Braces . 167
Matching Preprocessor Conditional Macros . 168
Wrap Long Lines . 169
Indentation Guides . 170
Zoom In/Out . 172
Bookmarks . 172
Opening an Include File . 175
Highlighting a Program Counter Line . 176
Mismatched Brace Highlighting . 178
Auto Conversion of “.” to “→” . 179

UM013034-1210 Table of Contents

Zilog Developer Studio II – Z8 Encore!®

User Manual

vii

Using the ANSI C-Compiler . 181
Language Extensions . 182

Additional Keywords for Storage Specification . 183
Memory Models . 187
Call Frames . 188
Interrupt Support . 189
Monitor Function Support . 191
String Placement . 192
Inline Assembly . 193
Placement Directives . 193
Char and Short Enumerations . 195
Setting Flash Option Bytes in C . 195
Program RAM Support (Z8 Encore! XP 16K Series Only) . 196
Preprocessor #warning Directive Support . 197
Supported New Features from the 1999 Standard . 198

Type Sizes . 198
Predefined Macros . 199

Examples . 201
Macros Generated by the IDE . 202

Calling Conventions . 202
Function Call Mechanism: Dynamic Frame . 202
Function Call Mechanism: Static Frame . 204
Function Call Mechanism: Register Parameter Passing . 206
Return Value . 207
Special Cases . 208

Calling Assembly Functions from C . 208
Function Naming Convention . 209
Argument Locations . 209
Return Values . 210
Preserving Registers . 210

Calling C Functions from Assembly . 210
Assembly File . 211
Referenced C Function Prototype . 211

Command Line Options . 211
Run-Time Library . 212

Zilog Header Files . 213
Zilog Functions . 215

Start-Up Files . 228
Customizing Start-Up Files . 229

Segment Naming . 232

Table of Contents UM013034-1210

viii

Zilog Developer Studio II – Z8 Encore!®

User Manual

Linker Command Files for C Programs . 232
Linker Referenced Files . 234
Linker Symbols . 237
Sample Linker Command File . 238

ANSI Standard Compliance . 240
Freestanding Implementation . 240
Deviations from ANSI C . 241

Warning and Error Messages . 245
Preprocessor Warning and Error Messages . 245
Front-End Warning and Error Messages . 248
Optimizer Warning and Error Messages . 258
Code Generator Warning and Error Messages . 260

Using the Macro Assembler . 261
Address Spaces and Segments . 262

Allocating Processor Memory . 262
Address Spaces . 262
Segments . 263
Assigning Memory at Link Time . 265

Output Files . 265
Source Listing (.lst) Format . 266
Object Code (.obj) File . 267

Source Language Structure . 267
General Structure . 267
Assembler Rules . 269

Expressions . 271
Arithmetic Operators . 272
Relational Operators . 272
Boolean Operators . 273
HIGH and LOW Operators . 273
HIGH16 and LOW16 Operators . 274
.FTOL Operator . 274
.LTOF Operator . 274
Decimal Numbers . 274
Hexadecimal Numbers . 275
Binary Numbers . 275
Octal Numbers . 275
Character Constants . 276
Operator Precedence . 276
Automatic Working Register Definitions . 277

Directives . 278
ALIGN . 279

UM013034-1210 Table of Contents

Zilog Developer Studio II – Z8 Encore!®

User Manual

ix

.COMMENT . 279
CPU . 280
Data Directives . 280
DEFINE . 285
DS . 287
END . 287
EQU . 288
INCLUDE . 289
LIST . 289
NEWPAGE . 289
NOLIST . 290
ORG . 290
SEGMENT . 291
SUBTITLE . 291
TITLE . 291
VAR . 292
VECTOR . 293
XDEF . 294
XREF . 295
Structures and Unions in Assembly Code . 295

Structured Assembly . 300
Structured Assembly Inputs . 302
Structured Assembly Processing . 306

Conditional Assembly . 308
IF . 309
IFDEF . 310
IFSAME . 311
IFMA . 311

Macros . 311
Macro Definition . 312
Concatenation . 312
Macro Invocation . 313
Local Macro Labels . 313
Optional Macro Arguments . 313
Exiting a Macro . 314
Delimiting Macro Arguments . 314

Labels . 315
Anonymous Labels . 315
Local Labels . 316
Importing and Exporting Labels . 316
Label Spaces . 316

Table of Contents UM013034-1210

x

Zilog Developer Studio II – Z8 Encore!®

User Manual

Label Checks . 316
Source Language Syntax . 317
Compatibility Issues . 320
Warning and Error Messages . 321

Using the Linker/Locator . 327
Linker Functions . 327
Invoking the Linker . 328
Linker Commands . 329

<outputfile>=<module list> . 330
CHANGE . 330
COPY . 331
DEBUG . 333
DEFINE . 333
FORMAT . 333
GROUP . 334
HEADING . 334
LOCATE . 334
MAP . 335
MAXHEXLEN . 336
MAXLENGTH . 336
NODEBUG . 336
NOMAP . 336
NOWARN . 337
ORDER . 337
RANGE . 337
SEARCHPATH . 338
SEQUENCE . 338
SORT . 339
SPLITTABLE . 339
UNRESOLVED IS FATAL . 340
WARN . 340
WARNING IS FATAL . 340
WARNOVERLAP . 341

Linker Expressions . 341
+ (Add) . 342
& (And) . 342
BASE OF . 342
COPY BASE . 343
COPY TOP . 344
/ (Divide) . 344
FREEMEM . 344

UM013034-1210 Table of Contents

Zilog Developer Studio II – Z8 Encore!®

User Manual

xi

HIGHADDR . 344
LENGTH . 344
LOWADDR . 345
* (Multiply) . 345
Decimal Numeric Values . 345
Hexadecimal Numeric Values . 345
| (Or) . 346
<< (Shift Left) . 346
>> (Shift Right) . 346
- (Subtract) . 346
TOP OF . 346
^ (Bitwise Exclusive Or) . 347
~ (Not) . 347

Sample Linker Map File . 347
Warning and Error Messages . 358

Using the Debugger. 363
Status Bar . 364
Code Line Indicators . 365
Debug Windows . 366

Registers Window . 366
Special Function Registers Window . 368
Clock Window . 368
Memory Window . 369
Watch Window . 375
Locals Window . 377
Call Stack Window . 378
Symbols Window . 379
Disassembly Window . 380
Simulated UART Output Window . 381

Using Breakpoints . 382
Inserting Breakpoints . 382
Viewing Breakpoints . 383
Moving to a Breakpoint . 384
Enabling Breakpoints . 384
Disabling Breakpoints . 384
Removing Breakpoints . 385

Appendix A. Zilog Standard Library Notes and Tips . 387

Appendix B. C Standard Library . 393
Standard Header Files . 394

Diagnostics <assert.h> . 394

Table of Contents UM013034-1210

xii

Zilog Developer Studio II – Z8 Encore!®

User Manual

Character Handling <ctype.h> . 395
Errors <errno.h> . 396
Floating Point <float.h> . 396
Limits <limits.h> . 398
Mathematics <math.h> . 399
Nonlocal Jumps <setjmp.h> . 401
Variable Arguments <stdarg.h> . 401
Standard Definitions <stddef.h> . 402
Input/Output <stdio.h> . 402
General Utilities <stdlib.h> . 403
String Handling <string.h> . 405

Standard Functions . 407
abort . 408
abs . 408
acos . 409
asin . 409
atan . 410
atan2 . 410
atof . 410
atoi . 411
atol . 411
bsearch . 412
calloc . 413
ceil . 413
cos . 413
cosh . 414
div . 414
exp . 415
fabs . 415
floor . 416
fmod . 416
free . 417
frexp . 417
getchar . 417
gets . 418
isalnum . 418
isalpha . 419
iscntrl . 419
isdigit . 419
isgraph . 420
islower . 420

UM013034-1210 Table of Contents

Zilog Developer Studio II – Z8 Encore!®

User Manual

xiii

isprint . 420
ispunct . 421
isspace . 421
isupper . 421
isxdigit . 422
labs . 422
ldexp . 422
ldiv . 423
log . 423
log10 . 424
longjmp . 424
malloc . 425
memchr . 425
memcmp . 426
memcpy . 426
memmove . 427
memset . 427
modf . 427
pow . 428
printf . 428
putchar . 431
puts . 432
qsort . 432
rand . 433
realloc . 433
scanf . 434
setjmp . 438
sin . 438
sinh . 438
sprintf . 439
sqrt . 439
srand . 440
sscanf . 440
strcat . 440
strchr . 441
strcmp . 441
strcpy . 442
strcspn . 442
strlen . 443
strncat . 443
strncmp . 443

Table of Contents UM013034-1210

xiv

Zilog Developer Studio II – Z8 Encore!®

User Manual

strncpy . 444
strpbrk . 444
strrchr . 446
strspn . 446
strstr . 446
strtod . 447
strtok . 448
strtol . 449
tan . 450
tanh . 450
tolower . 450
toupper . 451
va_arg . 451
va_end . 452
va_start . 453
vprintf . 454
vsprintf . 454

Appendix C. Running ZDS II from the Command Line . 455
Building a Project from the Command Line . 455
Running the Assembler from the Command Line . 456
Running the Compiler from the Command Line . 456
Running the Linker from the Command Line . 457
Assembler Command Line Options . 458
Compiler Command Line Options . 460
Librarian Command Line Options . 464
Linker Command Line Options . 464

Appendix D. Using the Command Processor . 465
Sample Command Script File . 470
Supported Script File Commands . 472

add file . 472
batch . 472
bp . 473
build . 473
cancel all . 473
cancel bp . 473
cd . 474
checksum . 474
crc . 474
debugtool copy . 474
debugtool create . 475

UM013034-1210 Table of Contents

Zilog Developer Studio II – Z8 Encore!®

User Manual

xv

debugtool get . 475
debugtool help . 475
debugtool list . 475
debugtool save . 476
debugtool set . 476
debugtool setup . 476
defines . 476
delete config . 477
examine (?) for Expressions . 477
examine (?) for Variables . 478
exit . 479
fillmem . 479
go . 479
list bp . 480
loadmem . 480
log . 480
makfile or makefile . 481
new project . 481
open project . 482
option . 482
print . 488
pwd . 489
quit . 489
rebuild . 489
reset . 489
savemem . 489
set config . 490
step . 490
stepin . 490
stepout . 490
stop . 491
target copy . 491
target create . 491
target get . 491
target help . 491
target list . 492
target options . 492
target save . 492
target set . 493
target setup . 493
wait . 493

Table of Contents UM013034-1210

xvi

Zilog Developer Studio II – Z8 Encore!®

User Manual

wait bp . 493
Running the Flash Loader from the Command Processor . 494

Displaying Flash Help . 494
Setting Up Flash Options . 494
Executing Flash Commands . 495
Examples . 495

Appendix E. Compatibility Issues. 497
Assembler Compatibility Issues . 497
Compiler Compatibility Issues . 500

Index . 505

Customer Support . 531

UM013034-1210 List of Figures

Zilog Developer Studio II – Z8 Encore!®

User Manual

xvii

List of Figures

Figure 1. New Project Dialog Box . 2

Figure 2. Select Project Name Dialog Box . 3

Figure 3. New Project Dialog Box . 4

Figure 4. New Project Wizard Dialog Box—Build Options Step 4

Figure 5. New Project Wizard Dialog Box—Target and Debug Tool Selection Step . 5

Figure 6. New Project Wizard Dialog Box—Target Memory Configuration Step . . . 6

Figure 7. Add Files to Project Dialog Box . 7

Figure 8. Sample Project . 8

Figure 9. General Page of the Project Settings Dialog Box . 9

Figure 10. Assembler Page of the Project Settings Dialog Box 10

Figure 11. Code Generation Page of the Project Settings Dialog Box 11

Figure 12. Advanced Page of the Project Settings Dialog Box 12

Figure 13. Output Page of the Project Settings Dialog Box . 13

Figure 14. Build Output Window . 14

Figure 15. Z8 Encore! Integrated Development Environment Window 15

Figure 16. File Toolbar . 17

Figure 17. Build Toolbar . 18

Figure 18. Find Toolbar . 22

Figure 19. Command Processor Toolbar . 22

Figure 20. Bookmarks Toolbar . 23

Figure 21. Debug Toolbar . 24

Figure 22. Debug Windows Toolbar . 28

Figure 23. Project Workspace Window for Standard Projects 30

Figure 24. Project Workspace Window for Assembly Only Projects 30

Figure 25. Edit Window . 31

Figure 26. Bookmark Example . 33

Figure 27. Inserting a Bookmark . 34

Figure 28. Build Output Window . 36

Figure 29. Debug Output Window . 36

Figure 30. Find in Files Output Window . 36

Figure 31. Find in Files 2 Output Window . 37

Figure 32. Message Output Window . 37

Figure 33. Command Output Window . 37

List of Figures UM013034-1210

xviii

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 34. Open Dialog Box . 39

Figure 35. New Project Dialog Box . 39

Figure 36. Select Project Name Dialog Box . 40

Figure 37. New Project Dialog Box—Build Options . 41

Figure 38. New Project Wizard Dialog Box—Target and Debug Tool Selection 42

Figure 39. New Project Wizard Dialog Box—Target Memory Configuration 43

Figure 40. Open Project Dialog Box . 44

Figure 41. Save As Dialog Box . 45

Figure 42. Print Preview Window . 46

Figure 43. Find Dialog Box . 49

Figure 44. Find in Files Dialog Box . 50

Figure 45. Replace Dialog Box . 51

Figure 46. Go to Line Number Dialog Box . 51

Figure 47. Breakpoints Dialog Box . 52

Figure 48. Abbreviations Dialog Box . 53

Figure 49. Add Files to Project Dialog Box . 57

Figure 50. General Page of the Project Settings Dialog Box . 59

Figure 51. Assembler Page of the Project Settings Dialog Box 61

Figure 52. Code Generation Page of the Project Settings Dialog Box 64

Figure 53. Listing Files Page of the Project Settings Dialog Box 68

Figure 54. Preprocessor Page of the Project Settings Dialog Box 70

Figure 55. Advanced Page of the Project Settings Dialog Box 72

Figure 56. Deprecated Page of the Project Settings Dialog Box 76

Figure 57. Librarian Page of the Project Settings Dialog Box 81

Figure 58. ZSL Page (Z8 Encore! XP F1680 Series) of the Project Settings Dialog
Box . 82

Figure 59. Commands Page of the Project Settings Dialog Box 84

Figure 60. Additional Linker Directives Dialog Box . 85

Figure 61. Select Linker Command File Dialog Box . 86

Figure 62. Objects and Libraries Page of the Project Settings Dialog Box 88

Figure 63. Address Spaces Page of the Project Settings Dialog Box 92

Figure 64. Warnings Page of the Project Settings Dialog Box 95

Figure 65. Output Page of the Project Settings Dialog Box . 97

Figure 66. Debugger Page of the Project Settings Dialog Box 99

Figure 67. Configure Target Dialog Box . 100

Figure 68. Create New Target Wizard Dialog Box . 101

UM013034-1210 List of Figures

Zilog Developer Studio II – Z8 Encore!®

User Manual

xix

Figure 69. Target Copy or Move Dialog Box . 102

Figure 70. Setup Ethernet Smart Cable Communication Dialog Box 103

Figure 71. Setup Serial Communication Dialog Box . 104

Figure 72. Setup USB Communication Dialog Box . 104

Figure 73. Save As Dialog Box . 105

Figure 74. Select Configuration Dialog Box . 106

Figure 75. Manage Configurations Dialog Box . 108

Figure 76. Add Project Configuration Dialog Box . 108

Figure 77. Manage Configurations Dialog Box . 109

Figure 78. Copy Configuration Settings Dialog Box . 109

Figure 79. Flash Loader Processor Dialog Box . 114

Figure 80. Fill Memory Dialog Box . 118

Figure 81. Save to File Dialog Box . 119

Figure 82. Load from File Dialog Box . 120

Figure 83. Show CRC Dialog Box . 120

Figure 84. Calculate Checksum Dialog Box . 121

Figure 85. Calculate Checksum Dialog Box . 121

Figure 86. Show CRC Dialog Box . 122

Figure 87. Customize Dialog Box–Toolbars Tab . 123

Figure 88. Customize Dialog Box—Commands Tab . 124

Figure 89. Options Dialog Box—General Tab . 126

Figure 90. Options Dialog Box—Editor Tab . 127

Figure 91. Color Dialog Box . 128

Figure 92. Font Dialog Box . 129

Figure 93. Options Dialog Box—Editor Tab—Advanced Editor Options Dialog
Box . 130

Figure 94. Options Dialog Box—Debugger Tab . 132

Figure 95. Auto Completion . 140

Figure 96. Autocompletion of Members . 141

Figure 97. Autocompletion of Header File Inclusion . 141

Figure 98. Autocompletion of HTML Tags . 142

Figure 99. Advance Editor Options—Show Autocompletion List 143

Figure 100. Call Tips Window . 144

Figure 101. Advance Editor Options—Show Call Tips Window 145

Figure 102. Auto Indentation in C Program . 146

Figure 103. Auto Indentation With Assembly Program . 146

List of Figures UM013034-1210

xx

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 104. Options Dialog Box—Auto Indent . 147

Figure 105. Multiple Clipboards . 148

Figure 106. Abbreviation Example 1 . 150

Figure 107. Abbreviation Example 2 . 151

Figure 108. Abbreviations Dialog Box . 152

Figure 109. Auto Insertion of Closing Brace . 155

Figure 110. Auto Insertion of Closing Parenthesis . 155

Figure 111. Advance Editor Options—Auto Insertion of Brace and Quotes 156

Figure 112. Long Line Indicator . 157

Figure 113. Advance Editor Options—Long Line Indicator Settings 158

Figure 114. Advance Editor Options—Support UNICODE . 159

Figure 115. Auto Syntax Styler . 160

Figure 116. Options Dialog Box—Editor Tab . 161

Figure 117. Color Dialog Box . 162

Figure 118. Code Folding Margin . 163

Figure 119. Advance Editor Options—Display Code Folding Margin 164

Figure 120. Line Number Margin . 165

Figure 121. Advance Editor Options—Display Line Number Margin 166

Figure 122. Type Info Tips . 167

Figure 123. Highlighting Matching Braces . 167

Figure 124. Highlighting Matching Parentheses . 168

Figure 125. Wrapping Long Lines . 169

Figure 126. Advance Editor Options—Wrap Long Lines . 170

Figure 127. Indentation Guides . 171

Figure 128. Advance Editor Options—Display Indentation Guide 172

Figure 129. Bookmark Example . 173

Figure 130. Inserting a Bookmark . 174

Figure 131. Opening an Include File . 176

Figure 132. Highlighting PC Line in Debug mode . 177

Figure 133. Advance Editor Options—Highlight PC Line in Debug mode 178

Figure 134. Mismatched Brace Highlighting . 178

Figure 135. Mismatched Parenthesis Highlighting . 179

Figure 136. Convert . to → Automatically . 180

Figure 137. Z8 Encore! Memory Layout . 185

Figure 138. Dynamic Call Frame Layout . 204

Figure 139. Z8 Encore! Hierarchical Memory Model . 233

UM013034-1210 List of Figures

Zilog Developer Studio II – Z8 Encore!®

User Manual

xxi

Figure 140. Multiple File Linking . 234

Figure 141. Debug and Debug Window Toolbars . 364

Figure 142. Debug Windows Toolbar . 366

Figure 143. Registers Window . 367

Figure 144. Special Function Registers Window . 368

Figure 145. Clock Window . 369

Figure 146. Memory Window . 369

Figure 147. Memory Window—Starting Address . 371

Figure 148. Memory Window—Requested Address . 372

Figure 149. Fill Memory Dialog Box . 372

Figure 150. Save to File Dialog Box . 373

Figure 151. Load from File Dialog Box . 374

Figure 152. Show CRC Dialog Box . 375

Figure 153. Watch Window . 375

Figure 154. Locals Window . 378

Figure 155. Call Stack Window . 378

Figure 156. Symbols Window . 379

Figure 157. Disassembly Window . 380

Figure 158. Simulated UART Output Window . 381

Figure 159. Setting a Breakpoint . 383

Figure 160. Viewing Breakpoints . 383

List of Figures UM013034-1210

xxii

Zilog Developer Studio II – Z8 Encore!®

User Manual

UM013034-1210 List of Tables

Zilog Developer Studio II – Z8 Encore!®

User Manual

xxiii

List of Tables

Table 1. File Menu Shortcut Options . 134

Table 2. Edit Menu Shortcut Options . 135

Table 3. Project Menu Shortcut Option . 135

Table 4. Build Menu Shortcut Options . 136

Table 5. Debug Menu Shortcut Options . 136

Table 6. Working with Words . 138

Table 7. Working with Lines . 138

Table 8. Working with Paragraphs . 139

Table 9. Working with Files . 139

Table 10. Default Storage Specifiers . 186

Table 11. Nonstandard Header Files . 212

Table 12. Z8 Encore! Start-Up Files . 229

Table 13. Segments . 232

Table 14. Linker Referenced Files . 234

Table 15. Linker Symbols . 237

Table 16. Predefined Segments . 263

Table 17. Operator Precedence . 276

Table 18. Assembler Directives for Structured Assembly . 301

Table 19. Anonymous Labels . 315

Table 20. Standard Headers . 393

Table 21. Assembler Command Line Options . 458

Table 22. Compiler Command Line Options . 460

Table 23. Librarian Command Line Options . 464

Table 24. Script File Commands . 466

Table 25. Command Line Examples . 483

Table 26. Assembler Options . 483

Table 27. Compiler Options . 484

Table 28. General Options . 486

Table 29. Librarian Options . 486

Table 30. Linker Options . 486

Table 31. ZSL Options . 488

Table 32. Z8 Encore! Directive Compatibility . 497

List of Tables UM013034-1210

xxiv

Zilog Developer Studio II – Z8 Encore!®

User Manual

UM013034-1210 Introduction

Zilog Developer Studio II – Z8 Encore!®

User Manual

xxv

Introduction

The following sections provide an introduction to the Zilog Developer Studio II:

• ZDS II System Requirements on page xxv

• Zilog Technical Support on page xxx

ZDS II System Requirements

To effectively use Zilog Developer System II, you need a basic understanding of the C and
assembly languages, the device architecture, and Microsoft Windows.

The following sections describe the ZDS II system requirements:

• Supported Operating Systems on page xxv

• Recommended Host System Configuration on page xxvi

• Minimum Host System Configuration on page xxvi

• When Using the Serial Smart Cable on page xxvi

• When Using the USB Smart Cable on page xxvi

• When Using the Opto-Isolated USB Smart Cable on page xxvii

• When Using the Ethernet Smart Cable on page xxvii

• When Using the Z8 Encore! MC Emulator on page xxvii

• Z8 Encore! Product Support on page xxvii

Supported Operating Systems
• Windows 7 64-bit

• Windows 7 32-bit

• Windows Vista 64-bit

• Windows Vista 32-bit

• Windows XP Professional 32-bit

The USB Smart Cable is not supported on 64-bit Windows Vista and Windows XP for
ZDS II—Z8 Encore! versions 4.10.1 or earlier.

• Windows 2000 SP4

Note:

Introduction UM013034-1210

xxvi

Zilog Developer Studio II – Z8 Encore!®

User Manual

Recommended Host System Configuration
• Windows XP Professional SP3 or later

• Pentium IV 2.2 GHz processor or higher

• 1024 MB RAM or mor

• 135 MB hard disk space (includes application and documentation)

• Super VGA video adapter

• CD-ROM drive for installation

• USB high-speed port (when using the USB Smart Cable)

• RS-232 communication port with hardware flow control

• Internet browser (Internet Explorer or Netscape)

Minimum Host System Configuration
• Windows XP Professional SP2

• Pentium IV 2.2 GHz processor

• 512 MB RAM

• 50 MB hard disk space (application only)

• Super VGA video adapter

• CD-ROM drive for installation

• USB full-speed port (when using the USB Smart Cable)

• RS-232 communication port with hardware flow control

• Internet browser (Internet Explorer or Netscape)

When Using the Serial Smart Cable
• RS-232 communication port with hardware flow and modem control signals

Some USB to RS-232 devices are not compatible because they lack the necessary hard-
ware signals and/or they use proprietary auto-sensing mechanisms which prevent the
Smart Cable from connecting.

When Using the USB Smart Cable
• High-speed USB (fully compatible with original USB)

• Root (direct) or self-powered hub connection

Note:

UM013034-1210 ZDS II System Requirements

Zilog Developer Studio II – Z8 Encore!®

User Manual

xxvii

The USB Smart Cable is a high-power USB device. Windows NT is not supported.

When Using the Opto-Isolated USB Smart Cable
• High-speed USB (fully compatible with original USB)

• Root (direct) or self-powered hub connection

The USB Smart Cable is a high-power USB device. Windows NT is not supported.

When Using the Ethernet Smart Cable
• Ethernet 10Base-T compatible connection

When Using the Z8 Encore! MC Emulator
• Internet browser (Internet Explorer or Netscape)

• Ethernet 10Base-T compatible connection

• One or more RS-232 communication ports with hardware flow control

Z8 Encore! Product Support

CPU Family CPU Pin Count Evaluation Kit Name

Z8Encore_F0830_Series Z8F013x 20, 28 Not applicable

Z8F023x

Z8F043x

Z8F083x

Z8F123x

Z8Encore_F083A_Series Z8F043A 20, 28 Z8F083A0128ZCOG

Z8F083A

Note:

Note:

Introduction UM013034-1210

xxviii

Zilog Developer Studio II – Z8 Encore!®

User Manual

Z8Encore_XP_64XX_Series Z8F1621 40, 44 Z8F64200100KITG

Z8F1622 64, 68

Z8F2421 40, 44

Z8F2422 64, 68

Z8F3221 40, 44

Z8F3222 64, 68

Z8F4821 40, 44

Z8F4822 64, 68

Z8F4823 80

Z8F6421 40, 44

Z8F6422 64, 68

Z8F6423 80

Z8Encore_XP_F0822_Series Z8F0411 20 Z8F08200100KITG

Z8F0412 28

Z8F0421 20

Z8F0422 28

Z8F0811 20

Z8F0812 28

Z8F0821 20

Z8F0822 28

Z8Encore_XP_F0823_8Pin_Series Z8F0113XB 8 Z8F04A08100KITG

Z8F0123XB

Z8F0213XB

Z8F0223XB

Z8F0413XB

Z8F0423XB

Z8F0813XB

Z8F0823XB

CPU Family CPU Pin Count Evaluation Kit Name

UM013034-1210 ZDS II System Requirements

Zilog Developer Studio II – Z8 Encore!®

User Manual

xxix

Z8Encore_XP_F0823_Series Z8F0113 20, 28 Z8F04A28100KITG

Z8F0123

Z8F0213

Z8F0223

Z8F0413

Z8F0423

Z8F0813

Z8F0823

Z8Encore_XP_F082A_8Pin_Series Z8F011AXB 8 Z8F04A08100KITG

Z8F012AXB

Z8F021AXB

Z8F022AXB

Z8F041AXB

Z8F042AXB

Z8F081AXB

Z8F082AXB

Z8Encore_XP_F082A_Series Z8F011A 20, 28 Z8F04A28100KITG

Z8F012A

Z8F021A

Z8F022A

Z8F041A

Z8F042A

Z8F081A Z8F08A28100KITG

Z8F082A

Z8Encore_XP_F1680_Series_16K Z8F1680X
Z8F1681X

20, 28, 40,
44

Z8F16800128ZCOG
Z8F16800144ZCOG

Z8Encore_XP_F1680_Series_24K Z8F2480X
Z8F2481X

20, 28, 40,
44

Z8F16800128ZCOG
Z8F16800144ZCOG

Z8Encore_XP_F1680_Series_8K Z8F0880X
Z8F0881X

20, 28, 40,
44

Z8F16800128ZCOG
Z8F16800144ZCOG

Z8Encore_Z8FMC16100_Series Z8FMC04100 28, 32 Z8FMC160100KITG

Z8FMC08100

Z8FMC16100

CPU Family CPU Pin Count Evaluation Kit Name

Introduction UM013034-1210

xxx

Zilog Developer Studio II – Z8 Encore!®

User Manual

Zilog Technical Support

For technical questions about our products and tools, or for design assistance, please visit
http://www.zilog.com, navigate via the Support menu to Technical Support, and provide
the following information in your support ticket:

• Product release number (Located in the heading of the toolbar)

• Product serial number

• Type of hardware you are using

• Exact wording of any error or warning messages

• Attach any applicable files to your email

Before Using Technical Support

Before you use technical support, consult the following documentation:

• readme.txt file

Refer to the readme.txt file in the following directory for last minute tips and infor-
mation about problems that might occur while installing or running ZDS II:

ZILOGINSTALL\ZDSII_product_version\

where:

– ZILOGINSTALL is the ZDS II installation directory. For example, the default
installation directory is C:\Program Files\Zilog.

– product is the specific Zilog product. For example, product can be Z8Encore!,
ZNEO, eZ80Acclaim!, Crimzon, or Z8GP.

– version is the ZDS II version number. For example, version might be 4.11.0 or
5.0.0.

• FAQ.html file

The FAQ.html file contains answers to frequently asked questions and other informa-
tion about good practices for getting the best results from ZDS II. The information in
this file does not generally go out of date from release to release as quickly as the
information in the readme.txt file. You can find the FAQ.html file in the following
directory:

ZILOGINSTALL\ZDSII_product_version\

where

– ZILOGINSTALL is the ZDS II installation directory. For example, the default
installation directory is C:\Program Files\Zilog.

– product is the specific Zilog product. For example, product can be Z8Encore!,
ZNEO, eZ80Acclaim!, Crimzon, or Z8GP.

http://www.zilog.com

UM013034-1210 Zilog Technical Support

Zilog Developer Studio II – Z8 Encore!®

User Manual

xxxi

– version is the ZDS II version number. For example, version might be 4.11.0 or
5.0.0.

• Troubleshooting section

– Appendix A. Zilog Standard Library Notes and Tips on page 387

Introduction UM013034-1210

xxxii

Zilog Developer Studio II – Z8 Encore!®

User Manual

UM013034-1210 Getting Started

Zilog Developer Studio II – Z8 Encore!®

User Manual

1

Getting Started

This section provides a tutorial of the developer’s environment, so you can be working
with the ZDS II graphical user interface in a short time. The following topics are covered:

• Installing ZDS II on page 1

• Developer’s Environment Tutorial on page 1

Installing ZDS II

There are two ways to install ZDS II:

• From a CD

a. Insert the CD in your CD-ROM drive.

b. Follow the setup instructions on your screen. The installer displays a default loca-
tion for ZDS II. You can change the location if you want to.

• From www.zilog.com

a. Navigate to http://www.zilog.com/software/zds2.asp.

b. Click the link for the version that you want to download.

c. Click Download.

d. In the File Download dialog box, click Save.

e. Navigate to where you want to save ZDS II.

f. Click Save.

g. Double-click the executable file.

h. Follow the setup instructions on your screen. The installer displays a default loca-
tion for ZDS II. You can change the location if you want to.

Developer’s Environment Tutorial

This tutorial shows you how to use the Zilog Developer Studio II. To begin this tour, you
need a basic understanding of Microsoft Windows. Estimated time for completing this
exercise is 15 minutes.

In this tour, you’ll perform the following tasks:

• Create a New Project on page 2

• Add a File to the Project on page 6

• Set Up the Project on page 8

• Save the Project on page 14

Getting Started UM013034-1210

2

Zilog Developer Studio II – Z8 Encore!®

User Manual

When you complete this tour, you have a sample.lod file that is used in debugging.

Be sure to read Using the Integrated Development Environment on page 15 to learn more
about all of the dialog boxes and their options discussed in this tutorial.

For the purpose of this quick tour, your Z8 Encore! developer’s environment directory will
be referred to as <ZDS Installation Directory>, which equates to the following path:

<ZILOGINSTALL>\ZDSII_Z8Encore!_<version>\

where

• ZILOGINSTALL is the ZDS II installation directory. For example, the default installa-
tion directory is C:\Program Files\Zilog.

• version is the ZDS II version number. For example, version might be 4.11.0 or
5.0.0.

Create a New Project
1. To create a new project, select New Project from the File menu. The New Project

dialog box is displayed.

Figure 1. New Project Dialog Box

2. From the New Project dialog box, click the Browse button () to navigate to the
directory where you want to save your project. The Select Project Name dialog box
is displayed.

Note:

UM013034-1210 Developer’s Environment Tutorial

Zilog Developer Studio II – Z8 Encore!®

User Manual

3

Figure 2. Select Project Name Dialog Box

3. Use the Look In drop-down list box to navigate to the directory where you want to
save your project. For this tutorial, place your project in the following directory:

<ZDS Installation Directory>\samples\Tutorial

If Zilog Developer Studio was installed in the default directory, the following is the
actual path:

C:\Program Files\Zilog\ZDSII_Z8Encore!_4.11.0\samples\Tutorial

You can create a new folder where you want to save your project. For example: C:\<New
Folder>.

4. In the File Name field, enter sample for the name of your project. The Z8 Encore!
developer’s environment creates a project file. Project files have the .zdsproj exten-
sion (for example, <project name>.zdsproj). You do not have to type the extension
.zdsproj. It is added automatically.

5. Click Select to return to the New Project dialog box.

6. In the Project Type field, select Standard because the sample project uses .c files.

7. In the CPU Family drop-down list box, select Z8Encore_XP_F1680_Series_16K.

8. In the CPU drop-down list box, select Z8F1680XJ.

9. In the Build Type drop-down list box, select Executable to build an application.

Note:

Getting Started UM013034-1210

4

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 3. New Project Dialog Box

10. Click Continue. The New Project Wizard dialog box is displayed. It allows you to
modify the initial values for some of the project settings during the project creation
process.

Figure 4. New Project Wizard Dialog Box—Build Options Step

11. Accept the defaults by clicking Next. The Target and Debug Tool Selection step of
the New Project Wizard dialog box is displayed.

The options displayed in the Configure Target dialog box depend on the CPU you
selected in the New Project dialog box (see New Project on page 39) or the General

UM013034-1210 Developer’s Environment Tutorial

Zilog Developer Studio II – Z8 Encore!®

User Manual

5

page of the Project Settings dialog box (see General Page on page 58). For this tuto-
rial project, there are two targets displayed. Z8F16800128ZCOG is the Z8F1680 28-
Pin Development Kit’s evaluation board; Z8F16800144ZCOG is the Z8F1680 Dual
44-Pin Development Kit’s evaluation board. For more information about which prod-
ucts each target supports, see Z8 Encore! Product Support on page xxvii.

Clicking Setup in the Target area displays the Configure Target dialog box. The
Configure Target dialog box allows you to select the clock source and the appropriate
clock frequency. For the emulator, this frequency must match the clock oscillator on
Y4. For the development kit, this frequency must match the clock oscillator on Y1.
For more information about configuring the target, see Setup on page 100.

For details about the available debug tools and how to configure them, see Debug Tool
on page 103.

12. Select the Z8F16800128ZCOG checkbox.

Figure 5. New Project Wizard Dialog Box—Target and Debug Tool Selection Step

13. Click Next.

The Target Memory Configuration step of the New Project Wizard dialog box is dis-
played.

Getting Started UM013034-1210

6

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 6. New Project Wizard Dialog Box—Target Memory Configuration Step

14. Click Finish.

ZDS II creates a new project named sample. Two empty folders are displayed in the
Project Workspace window (Standard Project Files and External Dependencies) on
the left side of the integrated development environment (IDE).

Add a File to the Project
In this section, you add the provided C source file main.c file to the sample project.

1. From the Project menu, select Add Files. The Add Files to Project dialog box is dis-
played.

UM013034-1210 Developer’s Environment Tutorial

Zilog Developer Studio II – Z8 Encore!®

User Manual

7

Figure 7. Add Files to Project Dialog Box

2. In the Add Files to Project dialog box, use the Look In drop-down list box to navi-
gate to the tutorial directory:

<ZDS Installation Directory>\samples\Tutorial

3. Select the main.c file and click Add.

The main.c file is displayed under the Standard Project Files folder in the Project
Workspace window on the left side of the IDE.

Getting Started UM013034-1210

8

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 8. Sample Project

To view any of the files in the Edit window during the quick tour, double-click the file in
the Project Workspace window.

Set Up the Project
Before you save and build the sample project, check the settings in the Project Settings
dialog box.

1. From the Project menu, select Settings. The Project Settings dialog box is dis-
played. It provides various project configuration pages that can be accessed by select-
ing the page name in the pane on the left side of the dialog box. There are several
pages grouped together for the C (Compiler) and Linker that allow you to set up sub-
settings for those tools. For more information, see Settings on page 57.

Note:

UM013034-1210 Developer’s Environment Tutorial

Zilog Developer Studio II – Z8 Encore!®

User Manual

9

2. In the Configuration drop-down list box, make sure that the Debug build configura-
tion is selected. For your convenience, the Debug configuration is a predefined con-
figuration of defaults set for debugging. For more information about project
configurations such as adding your own configuration, see Set Active Configuration
on page 106.

Figure 9. General Page of the Project Settings Dialog Box

3. Select the Assembler page.

4. Make sure that the Generate Assembly Listing Files (.lst) checkbox is selected.

Getting Started UM013034-1210

10

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 10. Assembler Page of the Project Settings Dialog Box

5. Select the Code Generation page.

6. Make sure that the Limit Optimizations for Easier Debugging checkbox is selected.

UM013034-1210 Developer’s Environment Tutorial

Zilog Developer Studio II – Z8 Encore!®

User Manual

11

Figure 11. Code Generation Page of the Project Settings Dialog Box

7. Select the Advanced page.

8. Make certain that the Generate Printfs Inline checkbox is selected.

Getting Started UM013034-1210

12

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 12. Advanced Page of the Project Settings Dialog Box

9. Select the Output page.

10. Make certain that both the IEEE 695 and Intel Hex32 - Records checkboxes are
selected.

UM013034-1210 Developer’s Environment Tutorial

Zilog Developer Studio II – Z8 Encore!®

User Manual

13

Figure 13. Output Page of the Project Settings Dialog Box

The executable format defaults to IEEE 695 when you create an executable project
(.lod). To change the executable format, see Linker: Output Page on page 96.

11. Click OK to save all of the settings on the Project Settings dialog box.

The Development Environment prompts you to build the project when changes are
made to the project settings that would effect the resulting build program. The mes-
sage is as follows: “The project settings have changed since the last
build. Would you like to rebuild the affected files?”

12. Click Yes to build the project.

The developer’s environment builds the sample project.

13. Watch the compilation process in the Build Output window.

Getting Started UM013034-1210

14

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 14. Build Output Window

When the Build completed message is displayed in the Build Output window, you
have successfully built the sample project and created a sample.lod file to debug.

Save the Project
You must save your project. From the File menu, select Save Project.

UM013034-1210 Using the Integrated Development Environment

Zilog Developer Studio II – Z8 Encore!®

User Manual

15

Using the Integrated Development Environment

The following sections discuss how to use the integrated development environment (IDE):

• Toolbars on page 16

• Windows on page 29

• Menu Bar on page 37

• Shortcut Keys on page 134

To effectively understand how to use the developer’s environment, be sure to go through
the tutorial in Getting Started on page 1.

After the discussion of the toolbars and windows, this section discusses the menu bar from
left to right—File, Edit, View, Project, Build, Debug, Tools, Window, and Help—and the
dialog boxes accessed from the menus. For example, the Project Settings dialog box is
discussed as a part of the Project menu section.

Figure 15. Z8 Encore! Integrated Development Environment Window

Using the Integrated Development Environment UM013034-1210

16

Zilog Developer Studio II – Z8 Encore!®

User Manual

For a table of all of the shortcuts used in the Z8 Encore! developer’s environment, see
Shortcut Keys on page 134.

Toolbars

The toolbars give you quick access to most features of the Z8 Encore! developer’s envi-
ronment. You can use these buttons to perform any task.

There are cue cards for the toolbars. As you move the mouse pointer across the toolbars,
the main function of the button is displayed. Also, you can drag and move the toolbars to
different areas on the screen.

The following toolbars are available:

• File Toolbar on page 16

• Build Toolbar on page 18

• Find Toolbar on page 21

• Command Processor Toolbar on page 22

• Bookmarks Toolbar on page 23

• Debug Toolbar on page 24

• Debug Windows Toolbar on page 27

For more information about Debugging, see Using the Debugger on page 363.

File Toolbar
The File toolbar allows you to perform basic functions with your files using the following
buttons:

• New Button on page 17

• Open Button on page 17

• Save Button on page 17

• Save All Button on page 17

• Cut Button on page 17

• Copy Button on page 17

• Paste Button on page 17

Note:

Note:

UM013034-1210 Toolbars

Zilog Developer Studio II – Z8 Encore!®

User Manual

17

• Delete Button on page 17

• Print Button on page 17

• Workspace Window Button on page 18

• Output Window Button on page 18

Figure 16. File Toolbar

New Button

The New button creates a new file.

Open Button

The Open button opens an existing file.

Save Button

The Save button saves the active file.

Save All Button

The Save All button saves all open files and the currently loaded project.

Cut Button

The Cut button deletes selected text from the active file and puts it on the Windows clip-
board.

Copy Button

The Copy button copies selected text from the active file and puts it on the Windows clip-
board.

Paste Button

The Paste button pastes the current contents of the clipboard into the active file at the cur-
rent cursor position.

Delete Button

The Delete button deletes selected text from the active file.

Print Button

The Print button prints the active file.

Using the Integrated Development Environment UM013034-1210

18

Zilog Developer Studio II – Z8 Encore!®

User Manual

Workspace Window Button

The Workspace Window button shows or hides the Project Workspace window.

Output Window Button

The Output Window button shows or hides the Output window.

Build Toolbar
The Build toolbar allows you to build your project, set breakpoints, and select a project
configuration with the following controls and buttons:

• Select Build Configuration List Box on page 18

• Compile/Assemble File Button on page 18

• Build Button on page 19

• Rebuild All Button on page 19

• Stop Build Button on page 19

• Connect to Target Button on page 19

• Download Code Button on page 19

• Reset Button on page 25

• Go Button on page 21

• Insert/Remove Breakpoint Button on page 21

• Enable/Disable Breakpoint Button on page 21

• Remove All Breakpoints Button on page 21

Figure 17. Build Toolbar

Select Build Configuration List Box

The Select Build Configuration drop-down list box lets you activate the build configura-
tion for your project. See Set Active Configuration on page 106 for more information.

Compile/Assemble File Button

The Compile/Assemble File button compiles or assembles the active source file.

UM013034-1210 Toolbars

Zilog Developer Studio II – Z8 Encore!®

User Manual

19

Build Button

The Build button builds your project by compiling and/or assembling any files that have
changed since the last build and then links the project.

Rebuild All Button

The Rebuild All button rebuilds all files and links the project.

Stop Build Button

The Stop Build button stops a build in progress.

Connect to Target Button

The Connect to Target button starts a debug session using the following process:

1. Initializes the communication to the target hardware.

2. Resets the device.

3. Configures the device using the settings in the Configure Target dialog box.

4. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. The following options are ignored if selected:

– Reset to Symbol 'main' (Where Applicable) checkbox

– Verify File Downloads—Read After Write checkbox

– Verify File Downloads—Upon Completion checkbox

This button does not download the software. Use this button to access target registers,
memory, and so on without loading new code or to avoid overwriting the target’s code
with the same code. This button is not enabled when the target is the simulator. This button
is available only when not in Debug mode.

For the Serial Smart Cable, ZDS II performs an on-chip debugger reset and resets the CPU
at the vector reset location.

Download Code Button

The Download Code button downloads the executable file for the currently open project
to the target for debugging. The button also initializes the communication to the target
hardware if it has not been done yet. Starting in version 4.10.0, the Download Code but-
ton can also program Flash memory. A page erase is done instead of a mass erase for both
internal and external Flash memory. Use this button anytime during a debug session. This
button is not enabled when the target is the simulator.

The current code on the target is overwritten.Note:

Using the Integrated Development Environment UM013034-1210

20

Zilog Developer Studio II – Z8 Encore!®

User Manual

If ZDS II is not in Debug mode when the Download Code button is clicked, the following
process is executed:

1. Initializes the communication to the target hardware.

2. Resets the device with a hardware reset by driving pin #2 of the debug header low.

3. Configures the device using the settings in the Configure Target dialog box.

4. Downloads the program.

5. Issues a software reset through the debug header serial interface.

6. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is
found.

If ZDS II is already in Debug mode when the Download Code button is clicked, the fol-
lowing process is executed:

1. Resets the device using a software reset.

2. Downloads the program.

You might need to reset the device before execution because the program counter might
have been changed after the download.

Reset Button

Click the Reset button in the Build or Debug toolbar to reset the program counter to the
beginning of the program.

If ZDS II is not in Debug mode, the Reset button starts a debug session using the follow-
ing process:

1. Initializes the communication to the target hardware.

2. Resets the device.

3. Configures the device using the settings in the Configure Target dialog box.

4. Downloads the program.

5. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is
found.

If ZDS II is already in Debug mode, the Reset button uses the following process:

1. ZDS II performs a hardware reset.

2. Configures the device using the settings in the Configure Target dialog box.

UM013034-1210 Toolbars

Zilog Developer Studio II – Z8 Encore!®

User Manual

21

3. If files have been modified, ZDS II asks, “Would you like to rebuild the project?”
before downloading the modified program. If there has been no file modification, the
code is not reloaded.

For the Serial Smart Cable, ZDS II performs an on-chip debugger reset.

Go Button

Click the Go button to execute project code from the current program counter.

If not in Debug mode when the Go button is clicked, the following process is executed:

1. Initializes the communication to the target hardware.

2. Resets the device.

3. Configures the device using the settings in the Configure Target dialog box.

4. Downloads the program.

5. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is
found.

6. Executes the program from the reset location.

Insert/Remove Breakpoint Button

The Insert/Remove Breakpoint button sets a new breakpoint or removes an existing break-
point at the line containing the cursor in the active file or the Disassembly window. A
breakpoint must be placed on a valid code line (a C source line with a blue dot displayed
in the gutter or any instruction line in the Disassembly window). For more information
about breakpoints, see Using Breakpoints on page 382.

Enable/Disable Breakpoint Button

The Enable/Disable Breakpoint button activates or deactivates the existing breakpoint at
the line containing the cursor in the active file or the Disassembly window. A red octagon
indicates an enabled breakpoint; a white octagon indicates a disabled breakpoint. For more
information about breakpoints, see Using Breakpoints on page 382.

Remove All Breakpoints Button

The Remove All Breakpoints button deletes all breakpoints in the currently loaded project.
To deactivate breakpoints in your program, use the Disable All Breakpoints button.

Find Toolbar
The Find toolbar provides access to text search functions with the following controls:

• Find in Files Button on page 22

Using the Integrated Development Environment UM013034-1210

22

Zilog Developer Studio II – Z8 Encore!®

User Manual

• Find Field on page 22

Figure 18. Find Toolbar

Find in Files Button

This button opens the Find in Files dialog box, allowing you to search for text in multiple
files.

Find Field

To locate text in the active file, enter the text in the Find field and press the Enter key. The
search term is highlighted in the file. To search again, press the Enter key again.

Command Processor Toolbar
The Command Processor toolbar allows you to execute IDE and debugger commands
with the following controls:

• Run Command Button on page 22

• Stop Command Button on page 22

• Command Field on page 22

Figure 19. Command Processor Toolbar

See Supported Script File Commands on page 472 for a list of supported commands.

Run Command Button

The Run Command button executes the command in the Command field. Output from
the execution of the command is displayed in the Command tab of the Output window.

Stop Command Button

The Stop Command button stops any currently running commands.

Command Field

The Command field allows you to enter a new command. Click the Run Command but-
ton or press the Enter key to execute the command. Output from the execution of the com-
mand is displayed in the Command tab of the Output window.

UM013034-1210 Toolbars

Zilog Developer Studio II – Z8 Encore!®

User Manual

23

To modify the width of the Command field, perform the following tasks:

1. Select Customize from the Tools menu.

2. Click in the Command field. A hatched rectangle highlights the Command field.

3. Use your mouse to select and drag the side of the hatched rectangle. The new size of
the Command field is saved with the project settings.

Bookmarks Toolbar
The Bookmarks toolbar allows you to set, remove, and find bookmarks with the follow-
ing buttons:

• Set Bookmark Button on page 23

• Next Bookmark Button on page 23

• Previous Bookmark Button on page 23

• Delete Bookmarks Button on page 23

Figure 20. Bookmarks Toolbar

This toolbar is not displayed in the default IDE window.

Set Bookmark Button

Click the Set Bookmark button to insert a bookmark in the active file for the line where
your cursor is located.

Next Bookmark Button

Click the Next Bookmark button to position the cursor at the line where the next book-
mark in the active file is located.

Previous Bookmark Button

Click the Previous Bookmark button to position the cursor at the line where the next book-
mark in the active file is located.

Delete Bookmarks Button

Click the Delete Bookmarks button to remove all of the bookmarks in the currently loaded
project.

Note:

Using the Integrated Development Environment UM013034-1210

24

Zilog Developer Studio II – Z8 Encore!®

User Manual

Debug Toolbar
The Debug toolbar allows you to perform debugger functions with the following buttons:

• Download Code Button on page 24

• Verify Download Button on page 25

• Reset Button on page 25

• Stop Debugging Button on page 26

• Go Button on page 26

• Run to Cursor Button on page 26

• Break Button on page 26

• Step Into Button on page 26

• Step Over Button on page 27

• Step Out Button on page 27

• Set Next Instruction Button on page 27

• Insert/Remove Breakpoint Button on page 21

• Enable/Disable Breakpoint Button on page 21

• Disable All Breakpoints Button on page 27

• Remove All Breakpoints Button on page 27

Figure 21. Debug Toolbar

Download Code Button

The Download Code button downloads the executable file for the currently open project
to the target for debugging. The button also initializes the communication to the target
hardware if it has not been done yet. Starting in version 4.10.0, the Download Code but-
ton can also program Flash memory. A page erase is done instead of a mass erase for both
internal and external Flash memory. Use this button anytime during a debug session. This
button is not enabled when the target is the simulator.

The current code on the target is overwritten.Note:

UM013034-1210 Toolbars

Zilog Developer Studio II – Z8 Encore!®

User Manual

25

If ZDS II is not in Debug mode when the Download Code button is clicked, the following
process is executed:

1. Initializes the communication to the target hardware.

2. Resets the device with a hardware reset by driving pin #2 of the debug header low.

3. Configures the device using the settings in the Configure Target dialog box.

4. Downloads the program.

5. Issues a software reset through the debug header serial interface.

6. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is
found.

If ZDS II is already in Debug mode when the Download Code button is clicked, the fol-
lowing process is executed:

1. Resets the device using a software reset.

2. Downloads the program.

You might need to reset the device before execution because the program counter might
have been changed after the download.

Verify Download Button

The Verify Download button determines download correctness by comparing executable
file contents to target memory.

Reset Button

Click the Reset button in the Build or Debug toolbar to reset the program counter to the
beginning of the program.

If ZDS II is not in Debug mode, the Reset button starts a debug session using the follow-
ing process:

1. Initializes the communication to the target hardware.

2. Resets the device.

3. Configures the device using the settings in the Configure Target dialog box.

4. Downloads the program.

5. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is
found.

Note:

Using the Integrated Development Environment UM013034-1210

26

Zilog Developer Studio II – Z8 Encore!®

User Manual

If ZDS II is already in Debug mode, the Reset button uses the following process:

1. ZDS II performs a hardware reset.

2. Configures the device using the settings in the Configure Target dialog box.

3. If files have been modified, ZDS II asks, “Would you like to rebuild the project?”
before downloading the modified program. If there has been no file modification, the
code is not reloaded.

For the Serial Smart Cable, ZDS II performs an on-chip debugger reset.

Stop Debugging Button

The Stop Debugging button ends the current debug session.

To stop program execution, click the Break button.

Go Button

Click the Go button to execute project code from the current program counter.

If not in Debug mode when the Go button is clicked, the following process is executed:

1. Initializes the communication to the target hardware.

2. Resets the device.

3. Configures the device using the settings in the Configure Target dialog box.

4. Downloads the program.

5. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is
found.

6. Executes the program from the reset location.

Run to Cursor Button

The Run to Cursor button executes the program code from the current program counter to
the line containing the cursor in the active file or the Disassembly window. The cursor
must be placed on a valid code line (a C source line with a blue dot displayed in the gutter
or any instruction line in the Disassembly window).

Break Button

The Break button stops program execution at the current program counter.

Step Into Button

The Step Into button executes one statement or instruction from the current program
counter, following the execution into function calls. When complete, the program counter

UM013034-1210 Toolbars

Zilog Developer Studio II – Z8 Encore!®

User Manual

27

resides at the next program statement or instruction unless a function was entered, in
which case the program counter resides at the first statement or instruction in the function.

Step Over Button

The Step Over button executes one statement or instruction from the current program
counter without following the execution into function calls. When complete, the program
counter resides at the next program statement or instruction.

Step Out Button

The Step Out button executes the remaining statements or instructions in the current func-
tion and returns to the statement or instruction following the call to the current function.

Set Next Instruction Button

The Set Next Instruction button sets the program counter to the line containing the cursor
in the active file or the Disassembly window.

Insert/Remove Breakpoint Button

The Insert/Remove Breakpoint button sets a new breakpoint or removes an existing
breakpoint at the line containing the cursor in the active file or the Disassembly window.
A breakpoint must be placed on a valid code line (a C source line with a blue dot displayed
in the gutter or any instruction line in the Disassembly window). For more information
about breakpoints, see Using Breakpoints on page 382.

Enable/Disable Breakpoint Button

The Enable/Disable Breakpoint button activates or deactivates the existing breakpoint at
the line containing the cursor in the active file or the Disassembly window. A red octagon
indicates an enabled breakpoint; a white octagon indicates a disabled breakpoint. For more
information about breakpoints, see Using Breakpoints on page 382.

Disable All Breakpoints Button

The Disable All Breakpoints button deactivates all breakpoints in the currently loaded
project. To delete breakpoints from your program, use the Remove All Breakpoints but-
ton.

Remove All Breakpoints Button

The Remove All Breakpoints button deletes all breakpoints in the currently loaded proj-
ect. To deactivate breakpoints in your program, use the Disable All Breakpoints button.

Debug Windows Toolbar
The Debug Windows toolbar allows you to display the Debug windows with the follow-
ing buttons:

Using the Integrated Development Environment UM013034-1210

28

Zilog Developer Studio II – Z8 Encore!®

User Manual

• Registers Window Button on page 28

• Special Function Registers Window Button on page 28

• Clock Window Button on page 28

• Memory Window Button on page 28

• Watch Window Button on page 28

• Locals Window Button on page 29

• Call Stack Window Button on page 29

• Symbols Window Button on page 29

• Disassembly Window Button on page 29

• Simulated UART Output Window Button on page 29

Figure 22. Debug Windows Toolbar

Registers Window Button

The Registers Window button displays or hides the Registers window. This window is
described in Registers Window on page 366.

Special Function Registers Window Button

The Special Function Registers Window button displays or hides the Special Function
Registers window. This window is described in Special Function Registers Window on
page 368.

Clock Window Button

The Clock Window button displays or hides the Clock window. This window is described
in Clock Window on page 368.

Memory Window Button

The Memory Window button displays or hides the Memory window. This window is
described in Memory Window on page 369.

Watch Window Button

The Watch Window button displays or hides the Watch window. This window is
described in Watch Window on page 375.

UM013034-1210 Windows

Zilog Developer Studio II – Z8 Encore!®

User Manual

29

Locals Window Button

The Locals Window button displays or hides the Locals window. This window is
described in Locals Window on page 377.

Call Stack Window Button

The Call Stack Window button displays or hides the Call Stack window. This window is
described in Call Stack Window on page 378.

Symbols Window Button

The Symbols Window button displays or hides the Symbols window. This window is
described in Symbols Window on page 379.

Disassembly Window Button

The Disassembly Window button displays or hides the Disassembly window. This win-
dow is described in Disassembly Window on page 380.

Simulated UART Output Window Button

The Simulated UART Output Window button displays or hides the Simulated UART
Output window. This window is described in Simulated UART Output Window on
page 381.

Windows

The following ZDS II windows allow you to see various aspects of the tools while working
with your project:

• Project Workspace Window on page 29

• Edit Window on page 31

• Output Windows on page 35

Project Workspace Window
The Project Workspace window on the left side of the developer’s environment allows
you to view your project files.

Using the Integrated Development Environment UM013034-1210

30

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 23. Project Workspace Window for Standard Projects

Figure 24. Project Workspace Window for Assembly Only Projects

The Project Workspace window provides access to related functions using context
menus. To access context menus, right-click a file or folder in the window. Depending on

UM013034-1210 Windows

Zilog Developer Studio II – Z8 Encore!®

User Manual

31

which file or folder is highlighted, the context menu allows you to perform the following
tasks:

• Dock the Project Workspace window

• Hide the Project Workspace window

• Add files to the project

• Remove the highlighted file from the project

• Build project files or external dependencies

• Assemble or compile the highlighted file

• Undock the Project Workspace window, allowing it to float in the Edit window

Edit Window
The Edit window on the right side of the developer’s environment allows you to edit the
files in your project.

Figure 25. Edit Window

The Edit window supports the following shortcuts:

Function Shortcuts

Undo Ctrl + Z

Redo Ctrl + Y

Cut Ctrl + X

Copy Ctrl + C

Using the Integrated Development Environment UM013034-1210

32

Zilog Developer Studio II – Z8 Encore!®

User Manual

This section covers the following topics:

• Using the Context Menus on page 32

• Using Bookmarks on page 33

Using the Context Menus

There are two context menus in the Edit window, depending on where you click. When
you right-click in a file, the context menu allows you to perform the following actions
(depending on whether you are running in Debug mode):

• Cut, copy, and paste text

• Show white space

• Go to the Disassembly window

• Show the program counter

• Insert, edit, enable, disable, or remove breakpoints

• Reset the debugger

• Stop debugging

• Start or continue running the program (Go)

• Run to the cursor

• Pause the debugging (Break)

• Step into, over, or out of program instructions

• Set the next instruction at the current line

• Insert or remove bookmarks (see Using Bookmarks on page 33)

Paste Ctrl + V

Find Ctrl + F

Repeat the previous search F3

Go to Ctrl + G

Go to matching { or }.
Place your cursor at the right or left of
an opening or closing brace and press
Ctrl + E or Ctrl +] to move the cursor to
the matching opening or closing brace.

Ctrl + E
Ctrl +]

Function Shortcuts

UM013034-1210 Windows

Zilog Developer Studio II – Z8 Encore!®

User Manual

33

When you right-click outside of all files, the context menu allows you to perform the fol-
lowing tasks:

• Show or hide the output windows, Project Workspace window, status bar, File tool-
bar, Build toolbar, Find toolbar, Command Processor toolbar, Debug toolbar,
Debug Windows toolbar

• Toggle Workbook Mode

When in Workbook mode, each open file has an associated tab along the bottom of
the Edit windows area.

• Customize the buttons and toolbars

Using Bookmarks

A bookmark is a marker that identifies a position within a file. Bookmarks appear as cyan
boxes in the gutter portion (left) of the file window. The cursor can be quickly positioned
on a lines containing bookmarks.

Figure 26. Bookmark Example

To insert a bookmark, position the cursor on the appropriate line of the active file and per-
form one of the following actions:

• Right-click in the Edit window and select Insert Bookmark from the resulting context
menu.

• Select Toggle Bookmark from the Edit menu.

Using the Integrated Development Environment UM013034-1210

34

Zilog Developer Studio II – Z8 Encore!®

User Manual

• Type Ctrl+F2.

Figure 27. Inserting a Bookmark

To remove a bookmark, position the cursor on the line of the active file containing the
bookmark to be removed and perform one of the following actions:

• Right-click in the Edit window and select Remove Bookmark from the resulting con-
text menu.

• Select Toggle Bookmark from the Edit menu.

• Type Ctrl+F2.

To remove all bookmarks in the active file, right-click in the Edit window and select
Remove Bookmarks from the resulting context menu.

To remove all bookmarks in the current project, select Remove All Bookmarks from the
Edit menu.

UM013034-1210 Windows

Zilog Developer Studio II – Z8 Encore!®

User Manual

35

To position the cursor at the next bookmark in the active file, perform one of the following
actions:

• Right-click in the Edit window and select Next Bookmark from the resulting context
menu.

• Select Next Bookmark from the Edit menu.

• Press the F2 key.

The cursor moves forward through the file, starting at its current position and begin-
ning again when the end of file is reached, until a bookmark is encountered. If no
bookmarks are set in the active file, this function has no effect.

To position the cursor at the previous bookmark in the active file, perform one of the fol-
lowing actions:

• Right-click in the Edit window and select Previous Bookmark from the resulting
context menu.

• Select Previous Bookmark from the Edit menu.

• Press Shift+F2.

The cursor moves backwards through the file, starting at its current position and start-
ing again at the end of the file when the file beginning is reached, until a bookmark is
encountered. If no bookmarks are set in the active file, this function has no effect.

Output Windows
The Output windows display output, errors, and other feedback from various components
of the Integrated Development Environment.

Select one of the tabs at the bottom of the Output window to select one of following the
Output windows:

• Build Output Window on page 36

• Debug Output Window on page 36

• Find in Files Output Windows on page 36

• Message Output Window on page 37

• Command Output Window on page 37

To dock the Output window with another window, click and hold the window’s grip bar
and then move the window.

Double-click the window’s grip bar to cause it to become a floating window.

Double-click the floating window’s title bar to change it to a dockable window.

Use the context menu to copy text from or to delete all text in the Output window.

Using the Integrated Development Environment UM013034-1210

36

Zilog Developer Studio II – Z8 Encore!®

User Manual

Build Output Window

The Build Output window holds all text messages generated by the compiler, assembler,
librarian, and linker, including error and warning messages.

Figure 28. Build Output Window

Debug Output Window

The Debug Output window holds all text messages generated by the debugger while you
are in Debug mode. The Debug Output window also displays the chip revision identifier
and the Smart Cable firmware version.

Figure 29. Debug Output Window

Find in Files Output Windows

The two Find in Files Output windows display the results of the Find in Files command
(available from the Edit menu and the Find toolbar). The File in Files 2 window is used
when the Output to Pane 2 checkbox is selected in the Find in File dialog box (see Find
in Files on page 49).

Figure 30. Find in Files Output Window

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

37

Figure 31. Find in Files 2 Output Window

Message Output Window

The Message Output window holds informational messages intended for the user. The
Message Output window is activated (given focus) when error messages are added to the
window’s display. Warning and informational messages do not automatically activate the
Message Output window.

Figure 32. Message Output Window

Command Output Window

The Command Output window holds the output from the execution of commands.

Figure 33. Command Output Window

Menu Bar

The menu bar lists menu items that you use in the Z8 Encore! developer’s environment.
Each menu bar item, when selected, displays a list of selection items. If an option on a
menu item ends with an ellipsis (...), selecting the option displays a dialog box. The fol-
lowing items are listed on the menu bar:

• File Menu on page 38

• Edit Menu on page 47

Using the Integrated Development Environment UM013034-1210

38

Zilog Developer Studio II – Z8 Encore!®

User Manual

• View Menu on page 55

• Project Menu on page 56

• Build Menu on page 105

• Debug Menu on page 109

• Tools Menu on page 113

• Window Menu on page 133

• Help Menu on page 133

File Menu
The File menu enables you to perform basic commands in the developer’s environment:

• New File on page 38

• Open File on page 38

• Close File on page 39

• New Project on page 39

• Open Project on page 43

• Save Project on page 44

• Close Project on page 45

• Save on page 45

• Save As on page 45

• Save All on page 45

• Print on page 46

• Print Preview on page 46

• Print Setup on page 47

• Recent Files on page 47

• Recent Projects on page 47

• Exit on page 47

New File

Select New File from the File menu to create a new file in the Edit window.

Open File

Select Open File from the File menu to display the Open dialog box, which allows you to
open the files for your project.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

39

Figure 34. Open Dialog Box

To delete a file from your project, use the Open Project dialog box. Highlight the file and
press the Delete key. Answer the prompt accordingly.

Close File

Select Close File from the File menu to close the selected file.

New Project

To create a new project, perform the following tasks:

1. Select New Project from the File menu. The New Project dialog box is displayed.

Figure 35. New Project Dialog Box

Note:

Using the Integrated Development Environment UM013034-1210

40

Zilog Developer Studio II – Z8 Encore!®

User Manual

2. From the New Project dialog box, click the Browse button () to navigate to the
directory where you want to save your project. The Select Project Name dialog box
is displayed.

Figure 36. Select Project Name Dialog Box

3. Use the Look In drop-down list box to navigate to the directory where you want to
save your project.

4. In the File Name field, enter the name of your project. You do not have to type the
extension .zdsproj. The extension is added automatically.

The following characters cannot be used in a project name: () $, . - + [] ' &

5. Click Select to return to the New Project dialog box.

6. In the Project Type field, select Standard for a project that will include C language
source code. Select Assembly Only for a project that will include only assembly
source code.

7. In the CPU Family drop-down list box, select a product family.

8. In the CPU drop-down list box, select a CPU.

9. In the Build Type drop-down list box, select Executable to build an application or
select Static Library to build a static library.

The default is Executable, which creates an IEEE 695 executable format (.lod). For
more information, see Linker: Output Page on page 96.

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

41

10. Click Continue to change the default project settings using the New Project Wizard.

To accept all default settings, click Finish.

For static libraries, click Finish.

For a Standard project, the New Project Wizard dialog box is displayed. For Assem-
bly-Only executable projects, continue to step 12.

Figure 37. New Project Dialog Box—Build Options

11. Select whether your project is linked to the standard C start-up module, C run-time
library, and floating-point library; select a small or large memory model (see Memory
Models on page 187); select static or dynamic frames (see Call Frames on page 188);
and click Next.

For executable projects, the Target and Debug Tool Selection step of the New Project
Wizard dialog box is displayed.

Note:

Using the Integrated Development Environment UM013034-1210

42

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 38. New Project Wizard Dialog Box—Target and Debug Tool Selection

12. Select the Use Page Erase Before Flashing checkbox if you want the internal Flash
to be page-erased. Deselect this checkbox if you want the internal Flash to be mass-
erased.

13. Select the appropriate target from the Target list box.

14. Click Setup in the Target area. Refer to Setup on page 100 for details on configuring
a target.

Click Add to create a new target (see Add on page 101) or click Copy to copy an existing
target (see Copy on page 102).

15. Select the appropriate debug tool and (if you have not selected the Simulator) click
Setup in the Debug Tool area. Refer to Debug Tool on page 103 for details about the
available debug tools and how to configure them.

16. Click Next. The Target Memory Configuration step of the New Project Wizard dialog
box is displayed.

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

43

Figure 39. New Project Wizard Dialog Box—Target Memory Configuration

17. Enter the memory ranges appropriate for the target CPU.

18. Click Finish.

Open Project

To open an existing project, use the following procedure:

1. Select Open Project from the File menu. The Open Project dialog box is displayed.

Using the Integrated Development Environment UM013034-1210

44

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 40. Open Project Dialog Box

2. Use the Look In drop-down list box to navigate to the appropriate directory where
your project is located.

3. Select the project to be opened.

4. Click Open to open to open your project.

To quickly open a project you were working in recently, see Recent Projects on page 47.

To delete a project file, use the Open Project dialog box. Highlight the file and press the
Delete key. Answer the prompt accordingly.

Save Project

Select Save Project from the File menu to save the currently active project. By default,
project files and configuration information are saved in a file named <project
name>.zdsproj. An alternate file extension is used if provided when the project is cre-
ated.

The <project name>.zdsproj.file contains all project data. If deleted, the project is no
longer available.

If the Save/Restore Project Workspace checkbox is selected (see Options—General Tab
on page 125), a file named <project name>.wsp is also created or updated with work-

Notes:

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

45

space information such as window locations and bookmark details. The .wsp file supple-
ments the project information. If it is deleted, the last known workspace data is lost, but
this does not affect or harm the project.

Close Project

Select Close Project from the File menu to close the currently active project.

Save

Select Save from the File menu to save the active file.

Save As

To save a selected file with a new name, perform the following steps:

1. Select Save As from the File menu. The Save As dialog box is displayed.

Figure 41. Save As Dialog Box

2. Use the Save In drop-down list box to navigate to the appropriate folder.

3. Enter the new file name in the File Name field.

4. Use the Save as Type drop-down list box to select the file type.

5. Click Save. A copy of the file is saved with the name you entered.

Save All

Select Save All from the File menu to save all open files and the currently loaded project.

Using the Integrated Development Environment UM013034-1210

46

Zilog Developer Studio II – Z8 Encore!®

User Manual

Print

Select Print from the File menu to print the active file.

Print Preview

Select Print Preview from the File menu to display the file you want to print in Preview
mode in a new window.

1. In the Edit window, highlight the file you want to show a Print Preview.

2. From the File menu, select Print Preview. The file is shown in Print Preview in a new
window. As shown in Figure 42, main.c is in Print Preview mode.

Figure 42. Print Preview Window

3. To print the file, click Print.

To cancel the print preview, click Close. The file returns to its edit mode in the Edit
window.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

47

Print Setup

Select Print Setup from the File menu to display the Print Setup dialog box, which
allows you to determine the printer’s setup before you print the file.

Recent Files

Select Recent Files from the File menu and then select a file from the resulting submenu
to open a recently opened file.

Recent Projects

Select Recent Projects from the File menu and then select a project file from the result-
ing submenu to quickly open a recently opened project.

Exit

Select Exit from the File menu to exit the application.

Edit Menu
The Edit menu provides access to basic editing, text search, and breakpoint and bookmark
manipulation features. The following options are available:

• Undo on page 48

• Redo on page 48

• Cut on page 48

• Copy on page 48

• Paste on page 48

• Delete on page 48

• Select All on page 48

• Show Whitespaces on page 48

• Find on page 48

• Find Again on page 49

• Find in Files on page 49

• Replace on page 50

• Go to Line on page 51

• Manage Breakpoints on page 52

• Manage Abbreviations on page 53

• Toggle Bookmark on page 54

Using the Integrated Development Environment UM013034-1210

48

Zilog Developer Studio II – Z8 Encore!®

User Manual

• Next Bookmark on page 54

• Previous Bookmark on page 55

• Remove All Bookmarks on page 55

Undo

Select Undo from the Edit menu to undo the last edit made to the active file.

Redo

Select Redo from the Edit menu to redo the last edit made to the active file.

Cut

Select Cut from the Edit menu to delete selected text from the active file and put it on the
Windows clipboard.

Copy

Select Copy from the Edit menu to copy selected text from the active file and put it on the
Windows clipboard.

Paste

Select Paste from the Edit menu to paste the current contents of the clipboard into the
active file at the current cursor position.

Delete

Select Delete from the Edit menu to delete selected text from the active file.

Select All

Choose Select All from the Edit menu to highlight all text in the active file.

Show Whitespaces

Select Show Whitespaces from the Edit menu to display all white-space characters such
as spaces and tabs in the active file.

Find

To find text in the active file, use the following procedure:

1. Select Find from the Edit menu. The Find dialog box is displayed.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

49

Figure 43. Find Dialog Box

2. Enter the text to search for in the Find What field or select a recent entry from the
Find What drop-down list box. (By default, the currently selected text in a source file
or the text where your cursor is located in a source file is displayed in the Find What
field.)

3. Select the Match Whole Word Only checkbox if you want to ignore the search text
when it occurs as part of longer words.

4. Select the Match Case checkbox if you want the search to be case sensitive

5. Select the Regular Expression checkbox if you want to use regular expressions.

6. Select the direction of the search with the Up or Down button.

7. Click Find Next to jump to the next occurrence of the search text or click Mark All to
display a cyan box next to each line containing the search text.

After clicking Find Next, the dialog box closes. You can press the F3 key or use the Find
Again command to find the next occurrence of the search term without displaying the
Find dialog box again.

Find Again

Select Find Again from the Edit menu to continue searching in the active file for text pre-
viously entered in the Find dialog box.

Find in Files

This function searches the contents of the files on disk; therefore, unsaved data in open
files are not searched.

Note:

Note:

Using the Integrated Development Environment UM013034-1210

50

Zilog Developer Studio II – Z8 Encore!®

User Manual

To find text in multiple files, use the following procedure:

1. Select Find in Files from the Edit menu. The Find in Files dialog box is displayed.

Figure 44. Find in Files Dialog Box

2. Enter the text to search for in the Find field or select a recent entry from the Find
drop-down list box. (If you select text in a source file before displaying the Find dia-
log box, the text is displayed in the Find field.)

3. Select or enter the file type(s) to search for in the In File Types drop-down list box.
Separate multiple file types with semicolons.

4. Use the Browse button () or the In Folder drop-down list box to select where the
files are located that you want to search.

5. Select the Match Whole Word Only checkbox if you want to ignore the search text
when it occurs as part of longer words.

6. Select the Match Case checkbox if you want the search to be case sensitive.

7. Select the Look in Subfolders checkbox if you want to search within subfolders.

8. Select the Output to Pane 2 checkbox if you want the search results displayed in the
Find in Files 2 Output window. If this button is not selected, the search results are
displayed in the Find in Files Output window.

9. Click Find to start the search.

Replace

To find and replace text in an active file, use the following procedure:

1. Select Replace from the Edit menu. The Replace dialog box is displayed.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

51

Figure 45. Replace Dialog Box

2. Enter the text to search for in the Find What field or select a recent entry from the
Find What drop-down list box. (By default, the currently selected text in a source file
or the text where your cursor is located in a source file is displayed in the Find What
field.)

3. Enter the replacement text in the Replace With field or select a recent entry from the
Replace With drop-down list box.

4. Select the Match Whole Word Only checkbox if you want to ignore the search text
when it occurs as part of longer words.

5. Select the Match Case checkbox if you want the search to be case sensitive.

6. Select the Regular Expression checkbox if you want to use regular expressions.

7. Select whether you want the text to be replaced in text currently selected or in the
whole file.

8. Click Find Next to jump to the next occurrence of the search text and then click
Replace to replace the highlighted text or click Replace All to automatically replace
all instances of the search text.

Go to Line

To position the cursor at a specific line in the active file, select Go to Line from the Edit
menu to display the Go to Line Number dialog box.

Figure 46. Go to Line Number Dialog Box

Enter the appropriate line number in the edit field and click Go To.

Using the Integrated Development Environment UM013034-1210

52

Zilog Developer Studio II – Z8 Encore!®

User Manual

Manage Breakpoints

To view, go to, or remove breakpoints, select Manage Breakpoints from the Edit menu.
You can access the dialog box during Debug mode and Edit mode.

Figure 47. Breakpoints Dialog Box

The Breakpoints dialog box, shown in Figure 47, lists all existing breakpoints for the cur-
rently loaded project. A check mark in the box to the left of the breakpoint description
indicates that the breakpoint is enabled. The remainder of this section describes the action-
able features of the Breakpoints dialog.

Go to Code

To move the cursor to a particular breakpoint you have set in a file, highlight the break-
point in the Breakpoints dialog box and click Go to Code.

Enable All

To make all listed breakpoints active, click Enable All. Individual breakpoints can be
enabled by clicking in the box to the left of the breakpoint description. Enabled break-
points are indicated by a check mark in the box to the left of the breakpoint description.

Disable All

To make all listed breakpoints inactive, click Disable All. Individual breakpoints can be
disabled by clicking in the box to the left of the breakpoint description. Disabled break-
points are indicated by an empty box to the left of the breakpoint description.

Remove

To delete a particular breakpoint, highlight the breakpoint in the Breakpoints dialog box
and click Remove.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

53

Remove All

To delete all of the listed breakpoints, click Remove All.

For more information about breakpoints, see Using Breakpoints on page 382.

Manage Abbreviations

An abbreviation is a shortened word that can be assigned to an expansion. An expansion
can be a single line of code, a code block or a comment section, such as a function/file
header, and can even be a combination of code and comments. (For a more detailed
description, see Abbreviations and Expansions on page 149.)

To manage abbreviations, select Manage Abbreviations from the Edit menu. The Abbre-
viations dialog box is displayed as shown in Figure 48. The remainder of this section
briefly describes the actionable features of the Manage Abbreviations dialog.

Abbreviation

Select an abbreviation from the Abbreviation: drop-down menu to display a current
abbreviation and expansion pair in the Expansion: panel.

Figure 48. Abbreviations Dialog Box

Note:

Using the Integrated Development Environment UM013034-1210

54

Zilog Developer Studio II – Z8 Encore!®

User Manual

Add

Enter a new abbreviation in the Abbreviation: drop-down menu, then enter the entire code
segment that you wish to associate with this abbreviation into the Expansion: panel. Click
the Add button to add the new abbreviation and expansion pair to the list of current abbre-
viations.

Insert In File

Click the Insert In File button to add an abbreviation and expansion pair to your codeset.
The expansion text will be inserted into the active open file at the current cursor position.

Remove

Click the Remove button to delete an abbreviation and expansion pair from the list of cur-
rent abbreviations.

You cannot restore an abbreviation after it is deleted.

Save

Click the Save button to save the new abbreviation and expansion pair to the list of cur-
rent abbreviations.

Close

Click the Close button to close the dialog.

Toggle Bookmark

Select Toggle Bookmark from the Edit menu to insert a bookmark in the active file for
the line where your cursor is located or to remove the bookmark for the line where your
cursor is located.

Next Bookmark

Select Next Bookmark from the Edit menu to position the cursor at the line where the
next bookmark in the active file is located.

The search for the next bookmark does not stop at the end of the file; the next bookmark
might be the first bookmark in the file.

Note:

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

55

Previous Bookmark

Select Previous Bookmark from the Edit menu to position the cursor at the line where
the previous bookmark in the active file is located.

The search for the previous bookmark does not stop at the beginning of the file; the previ-
ous bookmark might be the last bookmark in the file.

Remove All Bookmarks

Select Remove All Bookmarks from the Edit menu to delete all of the bookmarks in the
currently loaded project.

View Menu
The View menu allows you to select the windows you want on the Z8 Encore! developer’s
environment.

The View menu contains these options:

• Debug Windows on page 55

• Workspace on page 56

• Output on page 56

• Status Bar on page 56

Debug Windows

When you are in Debug mode (running the debugger), you can select any of the ten debug
windows. From the View menu, select Debug Windows and then the appropriate debug
window.

The Debug Windows submenu contains the following elements:

• Registers Window on page 366

• Special Function Registers Window on page 368

• Clock Window on page 368

• Memory Window on page 369

• Watch Window on page 375

• Locals Window on page 377

• Call Stack Window on page 378

• Symbols Window on page 379

Note:

Using the Integrated Development Environment UM013034-1210

56

Zilog Developer Studio II – Z8 Encore!®

User Manual

• Disassembly Window on page 380

• Simulated UART Output Window on page 381

Workspace

Select Workspace from the View menu to display or hide the Project Workspace win-
dow.

Output

Select Output from the View menu to display or hide the Output windows.

Status Bar

Select Status Bar from the View menu to display or hide the status bar, which resides
beneath the Output windows.

Project Menu
The Project menu allows you to add to your project, remove files from your project, set
configurations for your project, and export a make file.

The Project menu contains the following options:

• Add Files on page 56

• Remove Selected File(s) on page 57

• Settings on page 57

• Export Makefile on page 105

Add Files

To add files to your project, use the following procedure:

1. From the Project menu, select Add Files. The Add Files to Project dialog box is dis-
played.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

57

Figure 49. Add Files to Project Dialog Box

2. Use the Look In drop-down list box to navigate to the appropriate directory where the
files you want to add are saved.

3. Click the file you want to add or highlight multiple files by clicking on each file while
holding down the Shift or Ctrl key.

4. Click Add to add these files to your project.

Remove Selected File(s)

Select Remove Selected File(s) from the Project menu to delete highlighted files in the
Project Workspace window.

Settings

Select Settings from the Project menu to display the Project Settings dialog box, which
allows you to change your active configuration as well as set up your project.

Select the active configuration for the project in the Configuration drop-down list box in
the upper left corner of the Project Settings dialog box. For your convenience, the Debug
and Release configurations are predefined. For more information about project configura-
tions such as adding your own configuration, see Set Active Configuration on page 106.

The Project Settings dialog box features a number of different pages you must use to set
up the project:

• General Page on page 58

• Assembler Page on page 61

• C: Code Generation Page on page 63 (not available for Assembly Only projects)

Using the Integrated Development Environment UM013034-1210

58

Zilog Developer Studio II – Z8 Encore!®

User Manual

• C: Listing Files Page on page 67 (not available for Assembly Only projects)

• C: Preprocessor Page on page 69 (not available for Assembly Only projects)

• C: Advanced Page on page 71 (not available for Assembly Only projects)

• C: Deprecated Page on page 75 (not available for Assembly Only projects)

• Librarian Page on page 80 (available for Static Library projects only)

• ZSL Page on page 81 (not available for Assembly Only projects)

• Linker: Commands Page on page 83 (available for Executable projects only)

• Linker: Objects and Libraries Page on page 87 (available for Executable projects
only)

• Linker: Address Spaces Page on page 92 (available for Executable projects only)

• Linker: Warnings Page on page 95 (available for Executable projects only)

• Linker: Output Page on page 96 (available for Executable projects only)

• Debugger Page on page 99 (available for Executable projects only)

The Project Settings dialog box provides various project configuration pages that can be
accessed by selecting the page name in the pane on the left side of the dialog box. There
are several pages grouped together for the C (Compiler) and Linker that allow you to set
up subsettings for those tools.

If you change project settings that affect the build, the following message is displayed
when you click OK to exit the Project Settings dialog box: “The project set-
tings have changed since the last build. Would you like to
rebuild the affected files?” Click Yes to save and then rebuild the project.

General Page

From the Project Settings dialog box, select the General page. The options on the Gen-
eral page are described in this section.

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

59

Figure 50. General Page of the Project Settings Dialog Box

CPU Family

The CPU Family drop-down list box allows you to select the appropriate Z8 Encore! fam-
ily. For a list of CPU families, see Z8 Encore! Product Support on page xxvii.

CPU

The CPU drop-down list box defines which CPU you want to define for the target. For a
list of CPUs, see Z8 Encore! Product Support on page xxvii.

To change the CPU for your project, select the appropriate CPU in the CPU drop-down list
box.

Selecting a CPU does not automatically select include files for your C or assembly source
code. Include files must be manually included in your code. Selecting a new CPU auto-
matically updates the compiler preprocessor defines, assembler defines, and, where neces-

Note:

Using the Integrated Development Environment UM013034-1210

60

Zilog Developer Studio II – Z8 Encore!®

User Manual

sary, the linker address space ranges and selected debugger target based on the selected
CPU.

Show Warnings

The Show Warnings checkbox controls the display of warning messages during all
phases of the build. If the checkbox is enabled, warning messages from the assembler,
compiler, librarian, and linker are displayed during the build. If the checkbox is disabled,
all of these warnings are suppressed.

Generate Debug Information

The Generate Debug Information checkbox makes the build generate debug information
that can be used by the debugger to allow symbolic debugging. Enable this option if you
are planning to debug your code using the debugger. The checkbox enables debug infor-
mation in the assembler, compiler, and linker.

Enabling this option usually increases your overall code size by a moderate amount for
two reasons. First, if your code makes any calls to the C run-time libraries, the library ver-
sion used is the one that was built using the Limit Optimizations for Easier Debugging set-
ting (see the Limit Optimizations for Easier Debugging on page 65). Second, the
generated code sets up the stack frame for every function in your own program. Many
functions (those whose parameters and local variables are not too numerous and do not
have their addresses taken in your code) would not otherwise require a stack frame in the
Z8 Encore! architecture, so the code for these functions is slightly smaller if this checkbox
is disabled.

This checkbox interacts with the Limit Optimizations for Easier Debugging checkbox
on the Code Generation page (see Limit Optimizations for Easier Debugging on
page 65). When the Limit Optimizations for Easier Debugging checkbox is selected,
debug information is always generated so that debugging can be performed. The Gener-
ate Debug Information checkbox is grayed out (disabled) when the Limit Optimizations
for Easier Debugging checkbox is selected. If the Limit Optimizations for Easier
Debugging checkbox is later deselected (even in a later ZDS II session), the Generate
Debug Information checkbox returns to the setting it had before the Limit Optimizations
for Easier Debugging checkbox was selected.

Ignore Case of Symbols

When the Ignore Case of Symbols checkbox is enabled, the assembler and linker ignore
the case of symbols when generating and linking code. This checkbox is occasionally
needed when a project contains source files with case-insensitive labels. This checkbox is
only available for Assembly Only projects with no C code.

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

61

Intermediate Files Directory

This directory specifies the location where all intermediate files produced during the build
will be located. These files include make files, object files, and generated assembly source
files and listings that are generated from C source code. This field is provided primarily
for the convenience of users who might want to delete these files after building a project,
while retaining the built executable and other, more permanent files. Those files are placed
into a separate directory specified in the Output page (see Linker: Output Page on
page 96).

Assembler Page

In the Project Settings dialog box, select the Assembler page. The assembler uses the
contents of the Assembler page to determine which options are to be applied to the files
assembled.

The options on the Assembler page are described in this section.

Figure 51. Assembler Page of the Project Settings Dialog Box

Using the Integrated Development Environment UM013034-1210

62

Zilog Developer Studio II – Z8 Encore!®

User Manual

Includes

The Includes field allows you to specify the series of paths for the assembler to use when
searching for include files. The assembler first checks the current directory, then the paths
in the Includes field, and finally on the default ZDS II include directories.

The following is the ZDS II default include directory:

<ZDS Installation Directory>\include\std

where <ZDS Installation Directory> is the directory in which Zilog Developer Studio was
installed. By default, this is

C:\Program Files\Zilog\ZDSII_Z8Encore!_<version>

where <version> might be 4.11.0 or 5.0.0.

Defines

The Defines field is equivalent to placing <symbol> EQU <value> in your assembly
source code. It is useful for conditionally built code. Each defined symbol must have a
corresponding value (<name>=<value>). Multiple symbols can be defined and must be
separated by commas.

Generate Assembly Listing Files (.lst)

When selected, the Generate Assembly Listing Files (.lst) checkbox tells the assembler
to create an assembly listing file for each assembly source code module. This file displays
the assembly code and directives, as well as the hexadecimal addresses and op codes of
the generated machine code. The assembly listing files are saved in the directory specified
by the Intermediate Files Directory field in the General page (see Intermediate Files
Directory on page 61). By default, this checkbox is selected.

Expand Macros

When selected, the Expand Macros checkbox tells the assembler to expand macros in the
assembly listing file.

Page Width

When the assembler generates the listing file, the Page Width field sets the maximum
number of characters on a line. The default is 80; the maximum width is 132.

Page Length

When the assembler generates the listing file, the Page Length field sets the maximum
number of lines between page breaks. The default is 56.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

63

Jump Optimization

When selected, the Jump Optimization checkbox allows the assembler to replace relative
jump instructions (JR and DJNZ) with absolute jump instructions when the target label is
either

• outside of the +127 to –128 range

For example, when the target is out of range, the assembler changes

DJNZ r0, lab

to

DJNZ r0, lab1
JR lab2
lab1:JP lab
lab2:

• external to the assembly file

When the target label is external to the assembly file, the assembler always assumes
that the target address is out of range.

It is usually preferable to allow the assembler to make these replacements because if the
target of the jump is out of range, the assembler would otherwise not be able to generate
correct code for the jump. However, if you are very concerned about monitoring the code
size of your assembled application, you can deselect the Jump Optimization checkbox.
You will then get an error message (from the assembler if the target label is in the same
assembly file or from the linker if it is not) every time the assembler is unable to reach the
target label with a relative jump. This might give you an opportunity to try to tune your
code for greater efficiency.

The default is checked.

C: Code Generation Page

For Assembly Only projects, the Code Generation page is not available.

The options in the Code Generation page are described in this section.

Note:

Using the Integrated Development Environment UM013034-1210

64

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 52. Code Generation Page of the Project Settings Dialog Box

When this page is selected, the fundamental options related to code generation are shown
at the bottom of the dialog box: Limit Optimizations for Easier Debugging, Memory
Model, and Frames. For convenience, three of the most commonly used combinations of
these options can be obtained by clicking one of the radio buttons: Safest, Small and
Debuggable, or Smallest Possible. When one of these radio button settings is selected, the
fundamental options in the bottom of the dialog box are updated to show their new values,
but they are not available for individual editing. To edit the fundamental options individu-
ally, select the User Defined button. You can then update the fundamental settings to any
combination you prefer.

Safest

The Safest configuration sets the following values for the individual options: the Limit
Optimizations for Easier Debugging checkbox is selected; the large memory model is
used, if available (see Memory Model on page 66); the frames are dynamic. This is the
safest possible configuration in that using the large model avoids possible problems with

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

65

running out of data space in the small model, and using dynamic frames avoids potential
problems with static frames due to the use of recursion or function pointers. Also, because
the optimizations are limited, you can proceed to debug your application with ease. How-
ever, this configuration definitely produces larger code than other combinations. Many
users select this configuration initially when porting applications to Z8 Encore! so that
they do not have to worry immediately about whether their projects can meet the require-
ments for using the small model or static frames. Particularly large and complex applica-
tions also often must use this configuration (perhaps deselecting the Limit Optimizations
for Easier Debugging checkbox for production builds).

Small and Debuggable

The Small and Debuggable configuration sets the following values for the individual
options: Limit Optimizations for Easier Debugging checkbox is selected; the memory
model is small; the frames are static. This is the same as the Smallest Possible configura-
tion, except that optimizations are reduced to allow easier debugging. The other caveats to
using the Smallest Possible configuration also apply to this configuration. If you can meet
the other restrictions required by the Smallest Possible configuration, you might find it
useful to work with this configuration when you are debugging the code and then switch to
the Smallest Possible configuration for a production build.

Smallest Possible

This configuration sets the following values for the individual options: Limit Optimiza-
tions for Easier Debugging checkbox is deselected; the memory model is small; the
frames are static. This configuration generates the smallest possible code size, but this
configuration does not work for every project. It is your responsibility to make sure these
settings will work for you.

There are three issues to be aware of. First, all optimizations are applied, which can make
debugging somewhat confusing; if this becomes troublesome, try changing to the Small
But Debuggable configuration. Second, the use of the small model restricts the amount of
data space that is available, which could cause problems; see Memory Models on
page 187 for details. Third, static frames can only be used if your entire application obeys
certain restrictions, which are described in Call Frames on page 188.

User Defined

When the User Defined configuration is selected, the individual settings for the Limit
Optimizations for Easier Debugging, Memory Model, and Frames options can be changed
individually. This gives you the maximum freedom to set up your project as you choose
and to experiment with all possible settings.

Limit Optimizations for Easier Debugging

Selecting this checkbox causes the compiler to generate code in which certain optimiza-
tions are turned off. These optimizations can cause confusion when debugging. For exam-

Using the Integrated Development Environment UM013034-1210

66

Zilog Developer Studio II – Z8 Encore!®

User Manual

ple, they might rearrange the order of instructions so that they are no longer exactly
correlated with the order of source code statements or remove code or variables that are
not used. You can still use the debugger to debug your code without selecting this check-
box, but it might difficult because of the changes that these optimizations make in the
assembly code generated by the compiler.

Selecting the Limit Optimizations for Easier Debugging checkbox makes it more
straightforward to debug your code and interpret what you see in the various Debug win-
dows. However, selecting this checkbox also causes a moderate increase in code size.
Many users select this checkbox until they are ready to go to production code and then
deselect it.

Selecting this checkbox can also increase the data size required by your application. This
happens because this option turns off the use of register variables (see Use Register Vari-
ables on page 72). The variables that are no longer stored in registers must instead be
stored in memory (and on the stack if dynamic frames are in use), thereby increasing the
overall data storage requirements of your application. Usually this increase is fairly small.

You can debug your application when this checkbox is deselected. The debugger contin-
ues to function normally, but debugging might be more confusing due to the factors
described earlier.

This checkbox interacts with the Generate Debug Information checkbox (see Generate
Debug Information on page 60).

Memory Model

The Memory Model drop-down list box allows you to choose between the two memory
models, Small or Large. Select Small for a small memory model or select Large for a
large memory model. Using the small model results in more compact code and might
reduce the RAM requirements as well. However, the small model places constraints on the
data space size (not on the code space size) of your application. Some applications might
not be able to fit into the small model’s data space size; the large model is provided to sup-
port such applications. See Memory Models on page 187 for full details of the memory
models.

Frames

Select Static for static frames or select Dynamic for dynamic frames. The use of static
frames generally helps reduce code size, but this option can only be used if your code
obeys certain restrictions. Specifically, recursive function calls (either direct or indirect)
and calls made with function pointers cannot be used with static frames, except by the
selective application of the reentrant keyword. More detailed information about the
trade-offs between static and dynamic frames can be found in Call Frames on page 188.

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

67

Parameter Passing

When you select Memory, the parameters are placed on the stack for dynamic frame func-
tions. For static frame functions, the parameters are placed in static memory (register file).
See Function Call Mechanism: Dynamic Frame on page 202 and Function Call Mecha-
nism: Static Frame on page 204 for further details.

When you select Register, the working registers R8-R13 are used to place the scalar
parameters of function. The rest of the parameters are placed in memory. See Function
Call Mechanism: Register Parameter Passing on page 206 for further details.

In most cases, selecting Register results in a smaller overall code size for your applica-
tion, but this is not guaranteed; check your results using the map file to make certain. Also,
if your application uses both C and assembly code, and the assembly code accesses any
parameters to a C function, you must make sure that the location of those C parameters
that is assumed in the assembly code continues to match the option you have selected for
Parameter Passing. See Calling Conventions on page 202 for more details.

C: Listing Files Page

For Assembly Only projects, the Listing Files page is not available.

The options in the Listing Files page are described in this section.

Note:

Using the Integrated Development Environment UM013034-1210

68

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 53. Listing Files Page of the Project Settings Dialog Box

Generate C Listing Files (.lis)

When selected, the Generate C Listing Files (.lis) checkbox tells the compiler to create a
listing file for each C source code file in your project. All source lines are duplicated in
this file, as are any errors encountered by the compiler.

With Include Files

When this checkbox is selected, the compiler duplicates the contents of all files included
using the #include preprocessor directive in the compiler listing file. This can be help-
ful if there are errors in included files.

Generate Assembly Source Code

When this checkbox is selected, the compiler generates, for each C source code file, a cor-
responding file of assembler source code. In this file (which is a legal assembly file that
the assembler will accept), the C source code (commented out) is interleaved with the gen-

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

69

erated assembly code and the compiler-generated assembly directives. This file is placed
in the directory specified by the Intermediate Files Directory checkbox in the General
page. See Intermediate Files Directory on page 61.

Generate Assembly Listing Files (.lst)

When this checkbox is selected, the compiler generates, for each C source code file, a cor-
responding assembly listing file. In this file, the C source code is displayed, interleaved
with the generated assembly code and the compiler-generated assembly directives. This
file also displays the hexadecimal addresses and op codes of the generated machine code.
This file is placed in the directory specified by the Intermediate Files Directory field in
the General page. See Intermediate Files Directory on page 61.

C: Preprocessor Page

For Assembly Only projects, the Preprocessor page is not available.

The options in the Preprocessor page are described in this section.

Note:

Using the Integrated Development Environment UM013034-1210

70

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 54. Preprocessor Page of the Project Settings Dialog Box

Preprocessor Definitions

The Preprocessor Definitions field is equivalent to placing #define preprocessor
directives before any lines of code in your program. It is useful for conditionally compil-
ing code. Do not put a space between the symbol\name and equal sign; however, multiple
symbols can be defined and must be separated by commas.

Standard Include Path

The Standard Include Path field allows you to specify the series of paths for the compiler
to use when searching for standard include files. Standard include files are those included
with the #include <file.h> preprocessor directive. If more than one path is used, the
paths are separated by semicolons (;).

For example:

c:\rtl;c:\myinc

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

71

In this example, the compiler looks for the include file in

1. the project directory

2. the c:\rtl directory

3. the c:\myinc directory

4. the default directory

The default standard includes are located in the following directories:

<ZDS Installation Directory>\include\std
<ZDS Installation Directory>\include\zilog

where <ZDS Installation Directory> is the directory in which Zilog Developer Studio was
installed. By default, this is C:\Program
Files\Zilog\ZDSII_Z8Encore!_<version>, where <version> might be
4.11.0 or 5.0.0.

User Include Path

The User Include Path field allows you to specify the series of paths for the compiler to
use when searching for user include files. User include files are those included with the
#include "file.h" in the compiler. If more than one path is used, the paths are sep-
arated by semicolons (;).

For example:

c:\rtl;c:\myinc"

In this example, the compiler looks for the include file in

1. the project directory

2. the c:\rtl directory

3. the c:\myinc directory

4. the directory of the file from where the file is included

5. the directories listed under the -stdinc command

6. the default directory

C: Advanced Page

For Assembly Only projects, the Advanced page is not available.

The Advanced page is used for options that most users will rarely need to change from
their default settings.

Note:

Using the Integrated Development Environment UM013034-1210

72

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 55. Advanced Page of the Project Settings Dialog Box

Use Register Variables

Setting this drop-down list box to Normal or Aggressive allows the compiler to allocate
local variables in registers, rather than on the stack, when possible. This usually makes the
resulting code smaller and faster and, therefore, the default is that this drop-down list box
is enabled. However, in some applications, this drop-down list box might produce larger
and slower code when a function contains a large number of local variables.

The effect of this drop-down list box on overall program size and speed can only be
assessed globally across the entire application, which the compiler cannot do automati-
cally. Usually the overall application size is smaller but there can be exceptions to that
rule. For example, in an application that contains 50 functions, this drop-down list box
might make 2 functions larger and the other 48 functions smaller. Also, if those two func-
tions run slower with the drop-down list box enabled but the others run faster, then
whether the overall program speed is improved or worsened depends on how much time
the application spends in each function.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

73

Because the effect of applying this drop-down list box must be evaluated across an appli-
cation as a whole, user experimentation is required to test this for an individual applica-
tion. Only a small fraction of applications benefit from setting the Use Register
Variables drop-down list box to Off.

This drop-down list box interacts with the Limit Optimizations for Easier Debugging
checkbox on the C page (see Limit Optimizations for Easier Debugging on page 65).
When the Limit Optimizations for Easier Debugging checkbox is selected, register vari-
ables are not used because they can cause confusion when debugging. The Use Register
Variables drop-down list box is disabled (grayed out) when the Limit Optimizations for
Easier Debugging checkbox is selected. If the Limit Optimizations for Easier Debug-
ging checkbox is later deselected (even in a later ZDS II session), the Use Register Vari-
ables drop-down list box returns to the setting it had before the Limit Optimizations for
Easier Debugging checkbox was selected.

Using register variables can complicate debugging in at least two ways. One way is that
register variables are more likely to be optimized away by the compiler. If variables you
want to observe while debugging are being optimized away, you can usually prevent this
by any of the following actions:

• Select the Limit Optimizations for Easier Debugging checkbox (see Limit Optimi-
zations for Easier Debugging on page 65).

• Set the Use Register Variables drop-down list box to Off.

• Rewrite your code so that the variables in question become global rather than local.

The other way that register variables can lead to confusing behavior when debugging is
that the same register can be used for different variables or temporary results at different
times in the execution of your code. Because the debugger is not always aware of these
multiple uses, sometimes a value for a register variable might be shown in the Watch win-
dow that is not actually related to that variable at all.

Generate Printfs Inline

Normally, a call to printf() or sprintf() parses the format string at run time to
generate the required output. When the Generate Printfs Inline checkbox is selected, the
format string is parsed at compile time, and direct inline calls to the lower level helper
functions are generated. This results in significantly smaller overall code size because the
top-level routines to parse a format string are not linked into the project, and only those
lower level routines that are actually used are linked in, rather than every routine that
could be used by a call to printf. The code size of each routine that calls printf() or
sprintf() is slightly larger than if the Generate Printfs Inline checkbox is deselected,

Note:

Using the Integrated Development Environment UM013034-1210

74

Zilog Developer Studio II – Z8 Encore!®

User Manual

but this is more than offset by the significant reduction in the size of library functions that
are linked to your application.

To reduce overall code size by selecting this checkbox, the following conditions are neces-
sary:

• All calls to printf() and sprintf() must use string literals, rather than char*
variables, as parameters. For example, the following code allows the compiler to
reduce the code size:

sprintf ("Timer will be reset in %d seconds", reset_time);

But code such as the following results in larger code:

char * timerWarningMessage;
...
sprintf (timerWarningMessage, reset_time);

• The vprintf() and vsprintf() functions cannot be used, even if the format
string is a string literal.

If the Generate Printfs Inline checkbox is selected and these conditions are not met, the
compiler warns you that the code size cannot be reduced. In this case, the compiler gener-
ates correct code, and the execution is significantly faster than with normal printf calls.
However, there is a net increase in code size because the generated inline calls to lower
level functions require more space with no compensating savings from removing the top-
level functions.

In addition, an application that makes over 100 separate calls of printf or sprintf
might result in larger code size with the Generate Printfs Inline checkbox selected
because of the cumulative effect of all of the inline calls. The compiler cannot warn about
this situation. If in doubt, simply compile the application both ways and compare the
resulting code sizes.

The Generate Printfs Inline checkbox is selected by default.

Bit Field Packing

This drop-down list box can be set to Backward Compatible, Most Compact, or Normal.
The Most Compact setting, which is the default for new projects, packs the bit-fields as
tightly as possible. This packing saves data space in your application. The Normal setting
preserves the declared type of all of the individual bit-fields. That is, in an example such
as:

typedef struct {
 char bf1:6;
 short bf2:9;
 long bf3:17;
} bf_struct;

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

75

the Normal setting sets aside 1 byte (the size of a char) for bf1, 2 bytes (the size of a
short) for bf2, and 4 bytes (the size of a long) for bf3. This packing is sometimes easier
to use when writing both C and assembly code to access the same bit-field structures
because the sizes and offsets are more readily predictable. Finally, the Backward Com-
patible setting preserves a somewhat more complicated packing scheme that was used by
the Z8 Encore! compiler before release 4.11.0. That previous scheme remains unchanged
when Backward Compatible is selected, except to correct a problem in the handling of
mixed bit-fields (that is, those in which bit-fields of different nominal types are included
in the same structure, as in the example above). If you have a legacy application in which
you access the same bit-fields using both C and assembly code, you must either use the
Backward Compatible setting or rewrite your assembly code to access the bit-fields
using one of the new bit-field packing options.

C: Deprecated Page

For Assembly Only projects, the Deprecated page is not available.

The Deprecated page contains options from older releases of ZDS II that, because of issues
found in extended experience with those particular options across many applications, are
no longer recommended for use. Zilog strongly recommends that you not use these fea-
tures in new projects. If you have older projects that use these options, they will continue
to be supported as in previous applications. However, Zilog recommends removing them
from your projects over time to avoid the issues that have caused these features to be dep-
recated.

Note:

Using the Integrated Development Environment UM013034-1210

76

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 56. Deprecated Page of the Project Settings Dialog Box

Place Const Variables in ROM

In ZDS II releases before 4.10.0, an option was provided to place all variables that were
declared const in ROM memory (in other words, in the ROM address space; see Linker:
Address Spaces Page on page 92). This option has now been deprecated. The heart of the
problem with this feature lies in the nature of Z8 Encore! as a Harvard architecture, that is,
one in which different address spaces are used for read-only memory (used for items such
as code and ROM data storage) and memory that is writable (used for most data in the
program). The ANSI Standard, and more fundamentally the design of the C language, was
written with the implicit assumption that only von Neumann architectures (in which a sin-
gle address space is used for all memory) will be considered. Harvard architectures are, of
course, quite common in embedded system processors to give better performance within
the constraints of the limited resources available to these processors.

In the Harvard architecture, pointers to the normal data space and pointers into ROM
space are generally required to be distinct types. In Z8 Encore!, this difference can also be
seen at the machine instruction level where a separate instruction, LDC, must be generated

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

77

by the compiler to load data from the ROM space. That means that if constants are placed
in ROM, a different function must be called if a const pointer is used as a function
parameter than the function that is called for a non-const pointer type.

For example, consider the following code:

char const *quote = “Ask not ...”;
char buffer[80];
rom_src_strcpy(buffer,quote); // OK if CONST = ROM;

// parameter type mismatch
// if not

strcpy(buffer,quote); // Parameter type mismatch
// if const = ROM, OK otherwise.

The top form shown here calls a function whose signature is

char * rom_src_strcpy (void * dest, rom void * source)

whereas the standard function strcpy has the more usual signature

char * strcpy (void * dest, const void * source)

The top form succeeds in this code snippet when the const=ROM option has been
selected, and fails otherwise (when const data is stored in RAM). The bottom form fails
when const=ROM but succeeds otherwise. There can never be a case when both calls
succeed, because the second pointer argument of rom_src_strcpy() is a fundamen-
tally different type, pointing into a different space, than the second pointer argument of
strcpy().

In short, the result of these architectural constraints is that if the Place Const Variables in
ROM checkbox is selected, it is impossible for the compiler to treat the const keyword in
a way that complies with the ANSI C Standard.

It is better to not select this deprecated option and let the compiler use const variables in
RAM when needed and to use the rom keyword explicitly to declare any data such as
tables that you really do want to locate in ROM.

Disable ANSI Promotions

The option of enabling or disabling ANSI promotions refers to promoting char and
short values to ints when doing computations, as described in more detail in this sec-
tion. Disabling the promotions was made a user option in earlier releases of ZDS II with
the goal of reducing code size because the promotions called for by the ANSI C standard
are often unnecessary and can lead to considerable code bloat. However, over time, sev-
eral problems were found in the compiler’s ability to apply this option consistently and
correctly in all cases. Therefore, Zilog no longer recommends the use of this feature and,
to address the original code size issue, has expended more effort to reduce code size and
remove truly unnecessary promotions while observing the ANSI standard. For this reason,
the Disable ANSI Promotions checkbox is now available only as a deprecated feature. It
remains available because some users have carefully created working code that might

Using the Integrated Development Environment UM013034-1210

78

Zilog Developer Studio II – Z8 Encore!®

User Manual

depend on the old behavior and might have to expend additional effort now to keep their
code working without the deprecated feature.

When the Disable ANSI Promotions checkbox is deselected, the compiler performs inte-
ger-type promotions when necessary so that the program’s observed behavior is as defined
by the ANSI C Standard. Integer-type promotions are conversions that occur automati-
cally when a smaller (for example, 8 bits) variable is used in an expression involving
larger (for example, 16 bits) variables. For example, when mixing chars and ints in an
expression, the compiler casts the chars into ints. Conversions of this kind are always
done, regardless of the setting of the Disable ANSI Promotions checkbox.

The ANSI Standard has special rules for the handling of chars (and shorts), and it is the
application of these special rules that is disabled when the checkbox is selected. The spe-
cial rules dictate that chars (both signed and unsigned) must always be promoted to ints
before being used in arithmetic or relational (such as < and ==) operations. By selecting
the ANSI Promotions checkbox, these rules are disregarded, and the compiler can operate
on char entities without promoting them. This can make for smaller code because the com-
piler does not have to create extra code to do the promotions and then to operate on larger
values. In making this a deprecated feature, Zilog has worked to make the compiler more
efficient at avoiding truly needless promotions so that the code size penalty for observing
the standard is negligible.

Disabling the promotions can often be a safe optimization to invoke, but this is subject to
several exceptions. One exception is when an arithmetic overflow of the smaller variable
is possible. For example, the result of adding (char)10 to (char) 126 does not fit
within an 8-bit char variable, so the result is (char) -120.) In such cases, you get dif-
ferent results depending on whether ANSI promotions are enabled or disabled.

If you write:

char a = 126;
char b = 10;
int i = a + b:

with ANSI promotions enabled, you get the right answer: 136. With ANSI promotions dis-
abled, you get the wrong answer: -120. The reason for the different result is that while in
both cases there is a conversion from char to int, the conversion is applied earlier or
later depending on this setting. With ANSI promotions enabled, the conversion is done as
soon as possible, so it occurs before the addition, and the result is correct even though it is
too large to fit into a char. With ANSI promotions disabled, the conversion is not done
until a larger type is explicitly called for in the code. Therefore, the addition is done with
chars, the overflow occurs, and only after that is the result converted to int.

By the ANSI Standard, these special promotions are only applied to chars and shorts.
If you have the analogous code with the sum of two ints being assigned into a long, the
compiler does not automatically promote the ints to longs before adding them, and if the
sum overflows the int size, then the result is always wrong whether ANSI promotions

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

79

are in effect or not. In this sense, the ANSI promotions make the handling of char types
inconsistent compared to the treatment of other integer types.

It is better coding practice to show such promotions explicitly, as in the following exam-
ple:

int i = (int) a + (int) b;

Then, you get the same answer whether promotions are enabled or disabled. If instead,
you write:

char c = a + b;

then even with ANSI promotions enabled, you do not get the right answer. You did not
anticipate that the arithmetic operation can overflow an 8-bit value. With ANSI promo-
tions disabled, the value of the expression (136) is truncated to fit into the 8-bit result,
again yielding the value (char) -120. With ANSI promotions enabled, the expression eval-
uates directly to (char) -120.

There are two more types of code constructs that behave differently from the ANSI Stan-
dard when the ANSI promotions are disabled. These occur when an expression involving
unsigned chars is then assigned to a signed int result and when relational operators are
used to compare an unsigned char to a signed char. Both of these are generally poor pro-
gramming practice due to the likelihood of operand signs not being handled consistently.

The following code illustrates the cases where the code behaves differently depending on
the setting of the Disable ANSI Promotions checkbox. When ANSI promotions are on,
the code prints:

START
EQUAL
SIGNED
DONE

When ANSI promotions are off, the code prints:

START
NOT EQUAL
UNSIGNED
DONE

In every case, the difference occurs because when promotions are on, the unsigned chars
are first promoted to signed ints, then the operation occurs; with promotions off, the oper-
ations occur first, then the promotion happens afterward. In every case except the second
test, the code with promotions off has to invoke the ANSI Standard’s rules for how to con-
vert a negative result into an unsigned type—another indication that it is generally poorly
written code for which this setting makes a difference in program behavior.

#include <stdio.h>

unsigned char uch1 = 1;

Using the Integrated Development Environment UM013034-1210

80

Zilog Developer Studio II – Z8 Encore!®

User Manual

unsigned char uch2 = 2;
unsigned char uch3 = 128;
int int1;
char ch1 = -2;

int main(void)
{

puts("START");

int1 = uch1 - uch2;
if (int1 != -1)

puts("NOT EQUAL"); //nopromote:00FFh != FFFFh
else

puts("EQUAL"); //promote: FFFFh == FFFFh

if (uch3 < ch1)
puts("UNSIGNED"); //nopromote:(uchar)80h <

(uchar)FEh
else

puts("SIGNED"); //promote: (int) 128 > (int) -2

puts("DONE.");
}

The following recommended programming practices are good practice in any case for pro-
ducing code that is both correct and efficient. These practices are especially important to
avoid trouble if you are using the deprecated Disable ANSI Promotions option:

• Use variables of type char or unsigned char wherever the expected range of values for
the variable is [-128..127] or [0..255], respectively.

• Use explicit casts (to int, unsigned int, long or unsigned long) where the result of an
expression is expected to overflow the larger of the two operand types. (Even with
ANSI promotions disabled, the compiler automatically promotes a smaller operand so
that the types of the operands match.)

• It is good programming practice to use explicit casts, even where automatic promo-
tions are expected.

• Explicitly cast constant expressions that you want to be evaluated as char (for exam-
ple, (char)0xFF).

Librarian Page

This page is available for Static Library projects only.Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

81

The options in the Librarian page are described in this section.

To configure the librarian, use the following procedure:

1. Select Settings from the Project menu. The Project Settings dialog box is dis-
played.

2. Select the Librarian page.

Figure 57. Librarian Page of the Project Settings Dialog Box

3. Use the Output File Name field to specify where your static library file is saved.

ZSL Page

In the Project Settings dialog box, select the ZSL page. The ZSL page allows you to use
the Zilog Standard Library (ZSL) in addition to the run-time library (described in Using
the ANSI C-Compiler on page 181). The ZSL page contains functions for controlling the
UART device driver and GPIO ports.

The options on the ZSL page are described in this section.

Using the Integrated Development Environment UM013034-1210

82

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 58. ZSL Page (Z8 Encore! XP F1680 Series) of the Project Settings Dialog Box

Include Zilog Standard Library (Peripheral Support)

Select the Include Zilog Standard Library (Peripheral Support) checkbox to use the
functions contained in the Zilog Standard Library. Some of the functions in the C Standard
Library, especially I/O functions such as printf(), rely on lower-level functions that
they call to eventually interact with hardware devices such as UARTs. The Zilog Standard
Library provides these lower-level support functions, specialized to Z8 Encore!. There-
fore, if you choose to deselect this checkbox and avoid using the functions of the ZSL, you
must provide your own replacements for them or else rewrite the calling functions in the C
run-time library so that the ZSL functions are not called.

Ports

In the Ports area, select the checkboxes for the ports that you are going to use.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

83

UARTS

In the UARTs area, select the checkboxes for the UARTs that you are going to use.

The Z8 Encore! XP F1680 Series has a user-controlled Program RAM (PRAM) area to
store interrupt service routines (ISRs) of high-frequency interrupts. Program RAM
ensures low average current and a quick response for high-frequency interrupts. To use
this feature, the ISRs in the ZSL UART must be provided with the option of being placed
in the PRAM segment. When you select the Place ISR into PRAM checkbox, ZDS II
addresses the zslF1680U0XXX.lib library, zslF1680U1XXX.lib library, or both
libraries to place ISRs for UART0 and UART1 in PRAM.

You can place ISRs in PRAM only when the UART is set in interrupt mode. To set the
UART in interrupt mode, edit the include\zilog\uartcontrol.h header file by
defining the UART0_MODE/UART1_MODE symbol as MODE_INTERRUPT and
rebuilding the libraries. For more information about rebuilding the ZSL, see the Zilog
Standard Library API Reference Manual (RM0038).

For the Z8 Encore! XP F1680 Series, the default ZSL libraries are in the
zslF1680XXX.lib files.

The following functions are placed in PRAM segment within each library:

zslF1680U0XXX.lib

• VOID isr_UART0_RX(VOID)

• VOID isr_UART0_TX(VOID)

zslF1680U1XXX.lib

• VOID isr_UART1_RX(VOID)

• VOID isr_UART1_TX(VOID)

Linker: Commands Page

The options in the Commands page are described in this section.

http://www.zilog.com/docs/z8encore/devtools/rm0038.pdf
http://www.zilog.com/docs/z8encore/devtools/rm0038.pdf

Using the Integrated Development Environment UM013034-1210

84

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 59. Commands Page of the Project Settings Dialog Box

Always Generate from Settings

When this button is selected, the linker command file is generated afresh each time you
build your project; the linker command file uses the project settings that are in effect at the
time. This button is selected by default, which is the preferred setting for most users.
Selecting this button means that all changes you make in your project, such as adding
more files to the project or changing project settings, are automatically reflected in the
linker command file that controls the final linking stage of the build. If you do not want
the linker command file generated each time your project builds, select the Use Existing
button (see Use Existing on page 86).

Even though selecting the Always Generate from Settings checkbox causes a new linker
command file to be generated when you build your project, any directives that you have
specified in the Additional Linker Directives dialog box are not erased or overridden.

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

85

Additional Directives

To specify additional linker directives that are to be added to those that the linker gener-
ates from your settings when the Always Generate from Settings button is selected, per-
form the following tasks:

1. Select the Additional Directives checkbox.

2. Click Edit. The Additional Linker Directives dialog box is displayed.

Figure 60. Additional Linker Directives Dialog Box

3. Add new directives or edit existing directives.

4. Click OK.

You can use the Additional Directives checkbox if you must make some modifications or
additions to the settings that are automatically generated from your project settings, but
you still want all of your project settings and newly added project files to take effect auto-
matically on each new build.

You can add or edit your additional directives in the Additional Linker Directives dialog
box. The manually inserted directives are always placed in the same place in your linker
command file: after most of the automatically generated directives and just before the final
directive that gives the name of the executable to be built and the modules to be included
in the build. This position makes your manually inserted directives override any conflict-
ing directives that occur earlier in the file, so it allows you to override particular directives
that are autogenerated from the project settings. (The RANGE and ORDER linker
directives are exceptions to this rule; they do not override earlier RANGE and ORDER
directives but combine with them.) Use caution with this override capability because some

Using the Integrated Development Environment UM013034-1210

86

Zilog Developer Studio II – Z8 Encore!®

User Manual

of the autogenerated directives might interact with other directives and because there is no
visual indication to remind you that some of your project settings might not be fully taking
effect on later builds. If you must create a complex linker command file, contact Zilog
Technical Support for assistance. See Zilog Technical Support on page xxx.

If you have selected the Additional Directives checkbox, your manually inserted direc-
tives are not erased when you build your project. They are retained and re-inserted into the
same location in each newly created linker command file every time you build your proj-
ect.

In earlier releases of ZDS II, it was necessary to manually insert a number of directives if
you had a C project and did not select the Standard C Start-up Module. This task is no lon-
ger necessary. The directives required to support a C start-up module are now always
added to the linker command file. The only time these directives are not added is if the
project is an Assembly Only project.

Use Existing

Use the following procedure if you do not want a new linker command file to be generated
when you build your project:

1. Select the Use Existing button.

2. Click the Browse button (). The Select Linker Command File dialog box is dis-
played.

Figure 61. Select Linker Command File Dialog Box

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

87

3. Use the Look In drop-down list box to navigate to the linker command file that you
want to use.

4. Click Select.

The Use Existing button is the alternative to the Always Generate from Settings button
(see Always Generate from Settings on page 84). When this button is selected, a new
linker command file is not generated when you build your project. Instead, the linker com-
mand file that you specify in this field is applied every time.

When the Use Existing button is selected, many project settings are grayed out, including
all of the settings on the Linker pages. These settings are disabled because when you have
specified that an existing linker command file is to be used, those settings have no effect.

When the Use Existing button is selected, some other changes that you make in your proj-
ect such as adding new files to the project also do not automatically take effect. To add
new files to the project, you must not only add them to the Project Workspace window
(see Project Workspace Window on page 29), but you must also edit your linker command
file to add the corresponding object modules to the list of linked modules at the end of the
linker command file.

Linker: Objects and Libraries Page

The options in the Objects and Libraries page are described in this section.

Note:

Using the Integrated Development Environment UM013034-1210

88

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 62. Objects and Libraries Page of the Project Settings Dialog Box

Additional Object/Library Modules

Click the Browse button () next to the Additional Object/Library Modules field to
navigate to the directory where additional object files and modules that you want linked
with your application are located. It is not necessary to add modules that are otherwise
specified in your project, such as the object modules of your source code files that appear
in the Project Workspace window, the C start-up module, and the Zilog default libraries
listed in the Objects and Libraries page. Separate multiple module names with commas.

Modules listed in the Additional Object/Library Modules field are linked before the
Zilog default libraries. Therefore, if there is a name conflict between symbols in one of
these user-specified additional modules and in a Zilog default library, the user-specified
module takes precedence and its version of the symbol is the one used in linking. You can
take advantage of this to provide your own replacement for one or more functions (for
example, C run-time library functions) by compiling the function and then including the

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

89

object module name in this field. This is an alternative to including the source code for the
revised function explicitly in your project, which would also override the function in the
default run-time library.

C Start-Up Module

The buttons and checkbox in this area (which are not available for Assembly Only proj-
ects) control which start-up module is linked to your application. All C programs require
some initialization before the main function is called, which is typically done in a start-up
module.

Standard

If the Standard button is selected, the precompiled start-up module shipped with ZDS II is
used. This standard start-up module performs a minimum amount of initialization to pre-
pare the run-time environment as required by the ANSI C Standard and also does some
Z8 Encore!-specific configuration such as interrupt vector table initialization. See Lan-
guage Extensions on page 182 for full details of the operations performed in the standard
start-up module.

Some of these steps carried out in the standard start-up module might not be required for
every application, so if code space is extremely tight, you might want to make some judi-
cious modifications to the start-up code. The source code for the start-up module is located
in the following file:

<ZDS Installation Directory>\src\boot\common\startupX.asm

Here, <ZDS Installation Directory> is the directory in which Zilog Developer Studio was
installed. By default, this is C:\Program
Files\Zilog\ZDSII_Z8Encore!_<version>, where <version> might be
4.11.0 or 5.0.0. The X in startupX.asm is s for the small model or l for the
large model.

Included in Project

If the Included in Project button is selected, then the standard start-up module is not
linked to your application. In this case, you are responsible for including suitable start-up
code, either by including the source code in the Project Workspace window or by includ-
ing a precompiled object module in the Additional Object/Library Modules field. If you
modify the standard start-up module to tailor it to your project, you must select the
Included in Project button for your changes to take effect.

While you are responsible for writing your own start-up code when selecting this option,
ZDS II automatically inserts some needed linker commands into your linker command file.
These commands are helpful in getting your project properly configured and initialized
because all C start-up modules have to do many of the same tasks.

Using the Integrated Development Environment UM013034-1210

90

Zilog Developer Studio II – Z8 Encore!®

User Manual

The standard start-up commands define a number of linker symbols that are used in the
standard start-up module for initializing the C run-time environment. You do not have to
refer to those symbols in your own start-up module, but many users will find it useful to
do so, especially since user-customized start-up modules are often derived from modifying
the standard start-up module. There are also a few linker commands (such as CHANGE,
COPY, ORDER, and GROUP) that are used to configure your memory map. See Linker
Commands on page 329 for a description of these commands.

Use Standard Start-Up Linker Commands

If you select this checkbox, the same linker commands that support the standard start-up
module are inserted into your linker command file, even though you have chosen to
include your own, nonstandard start-up module in the project. This option is usually help-
ful in getting your project properly configured and initialized because all C start-up mod-
ules have to do most of the same tasks. Formerly, these linker commands had to be
inserted manually when you were not using the standard start-up.

The standard start-up commands define a number of linker symbols that are used in the
standard start-up module for initializing the C run-time environment. You do not have to
refer to those symbols in your own start-up module, but many users will find it useful to
do so, especially since user-customized start-up modules are often derived from modifying
the standard start-up module. There are also a few linker commands (such as CHANGE,
COPY, ORDER, and GROUP) that are used to configure your memory map. See Linker
Commands on page 329 for a description of these commands.

This option is only available when the Included in Project button has been selected. The
default for newly created projects is that this checkbox, if available, is selected.

Use Default Libraries

These controls determine whether the available default libraries that are shipped with
Zilog Developer Studio II are to be linked with your application. For Z8 Encore!, there are
two available libraries, the C run-time library and the Zilog Standard Library (ZSL). The
subset of the run-time library dedicated to floating-point operations also has a separate
control to allow for special handling, as explained in Floating Point Library on page 91.

None of the libraries mentioned here are available for Assembly Only projects.

C Runtime Library

The C run-time library included with ZDS II provides selected functions and macros from
the Standard C Library. Zilog’s version of the C run-time library supports a subset of the
Standard Library adapted for embedded applications, as described more fully in Using the
ANSI C-Compiler on page 181. If your project makes any calls to standard library func-
tions, you must select the C Runtime Library checkbox unless you prefer to provide your

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

91

own code for all library functions that you call. As noted in Additional Object/Library
Modules on page 88, you can also set up your application to call a mixture of Zilog-pro-
vided functions and your own customized library functions. To do so, select the C Run-
time Library checkbox. Calls to standard library functions will then call the functions in
the Zilog default library except when your own customized versions exist.

Zilog’s version of the C run-time library is organized with a separate module for each
function or, in a few cases, for a few closely related functions. Therefore, the linker links
only those functions that you actually call in your code. This means that there is no unnec-
essary code size penalty when you select the C Runtime Library checkbox; only functions
you call in your application are linked into your application.

Floating Point Library

The Floating Point Library drop-down list box allows you to choose which version of the
subset of the C run-time library that deals with the floating-point operations will be linked
to your application:

• Real

If you select Real, the true floating-point functions are linked in, and you can perform
any floating-point operations you want in your code.

• Dummy

If you select Dummy, your application is linked with alternate versions that are
stubbed out and do not actually carry out any floating-point operations. This dummy
floating-point library has been developed to reduce code bloat caused by including
calls to printf() and related functions such as sprintf(). Those functions in
turn make calls to floating-point functions for help with formatting floating-point
expressions, but those calls are unnecessary unless you actually must format floating-
point values. For most users, this problem has now been resolved by the Generate
Printfs Inline checkbox (see Generate Printfs Inline on page 73 for a full discussion).
You only need to select the dummy floating-point library if you have to disable the
Generate Printfs Inline checkbox and your application uses no floating-point opera-
tions. In that case, selecting Dummy keeps your code size from bloating unnecessar-
ily.

• None

If you select None, no floating-point functions are linked to your application at all.
This can be a way of ensuring that your code does not inadvertently make any float-
ing-point calls, because, if it does and this option is selected, you receive an error or
warning message about an undefined symbol.

Using the Integrated Development Environment UM013034-1210

92

Zilog Developer Studio II – Z8 Encore!®

User Manual

Zilog Standard Library (Peripheral Support)

Select this checkbox to use the Zilog Standard Library (ZSL) in addition to the run-time
library (described in the Using the ANSI C-Compiler chapter on page 181). The ZSL con-
tains functions for controlling the UART device driver and GPIO ports.

In the ZDS II 4.10.0 release, the ZSL page is unavailable if you have selected one of the
CPUs in the F1680 CPU family. For these parts, only basic UART support is available at
this time. This basic support consists of support for only those functions that are required
to support I/O functions in the C standard library such as printf(). If you require this
type of UART support for the F1680 family of CPUs, select the C Runtime Library
checkbox (see C Runtime Library on page 90).

Linker: Address Spaces Page

The options on the Address Spaces page are described in this section.

Figure 63. Address Spaces Page of the Project Settings Dialog Box

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

93

Memory ranges are used to determine the amount of memory available on your target sys-
tem. Using this information, Z8 Encore! developer’s environment lets you know when
your code or data has grown beyond your system’s capability. The system also uses mem-
ory ranges to automatically locate your code or data.

The Address Spaces fields define the memory layout of your target system. The Address
Spaces page of the Project Settings dialog box allows you to configure the ranges of
memory available on your target Z8 Encore! microcontroller. These ranges vary from pro-
cessor to processor, as well as from target system to target system.

ZDS II divides Z8 Encore! memory into several spaces, some of which are available only
on selected processor types:

• ROM

The ROM space is used for code storage and can also be used for the storage of con-
stant data. The ROM memory is located at program addresses 0000H–xxxxH, where
xxxxH is the highest location in program memory.

• RData (register data)

The RData memory is located in 00H–FFH and is used for a small memory model.The
low boundary is set to 10H by default. The low boundary must be set by 10H higher
for one level of interrupts. For example, for a non-nesting interrupt, set the low bound-
ary to 20H; for two levels of interrupts, set the low boundary to 30H; and so on. For
more information about interrupts, see SET_VECTOR on page 223.

• EData (extended data)

EData is used for default data storage in the large memory model. The EData memory
begins at data address 100H and extends to a maximum of EFFH. Some CPUs pro-
vide less data memory, so the upper bound of this range will be less than EFFH. This
reduced upper bound is displayed by default in the GUI when one of those parts is
selected as the CPU in your project. See the product specification for your particular
CPU to find out how much on-chip RAM is provided.

If your CPU is one of the Z8 Encore! XP F1680 Series devices that has PRAM and you
choose not to use the PRAM memory (by deselecting the Use PRAM checkbox), then the
512 or 1024 bytes that could have been used for PRAM will instead be available as addi-
tional EData memory and will be mapped onto the end of EData. If you want to use this
additional data storage, you must modify the upper bound of your EData range to add the
extra memory.

For example, if your upper EData bound previously was 3FF and you choose not to use
the available 512 bytes (200H) of PRAM, you can increase the upper bound of your
EData range to 5FF.

Note:

Using the Integrated Development Environment UM013034-1210

94

Zilog Developer Studio II – Z8 Encore!®

User Manual

• NVDS

The Z8 Encore! XP 4K and 16K devices contain a Non-Volatile Data Storage (NVDS)
element with a size of up to 128 bytes. This memory features an endurance of 100,000
write cycles. For more information about NVDS, see the Non-Volatile Data Storage
chapter of the Z8 Encore! XP F082A Series Product Specification (PS0228).

• PRAM (Program RAM)

The Z8 Encore! XP F1680 Series devices feature an area of Program RAM that can be
used for storing some code in RAM. This area can be used to help keep device operat-
ing power low by, for example, storing interrupt service routines here that would acti-
vate the code in Flash memory when some external event has occurred. PRAM, when
available, is an optional feature. If you want to use this memory as Program RAM,
select the Use PRAM checkbox and then adjust the address range in the PRAM field.
PRAM begins at data address E000 and can have a maximum size of 512 or 1024
bytes, depending on your device. If you deselect the Use PRAM checkbox, this mem-
ory is not available as PRAM but instead can be mapped as additional EData memory
(see the EData memory discussion).

It is your responsibility to set the Flash option bytes to reflect whether you are using this
memory as PRAM or as EData. This task must be performed inside your program so that
the part will still get configured correctly even when the hex file is downloaded outside of
ZDS II. The PRAM_M bit is bit 1 of Flash option byte 1 (see the product specification).
Writing to the Flash option bytes must be done only once and takes effect when your hex
file is downloaded to Flash. Therefore, if you wanted to set all of the other bits of Flash
option byte 1 to their default value of 1, but set the PRAM_M bit to 0 to indicate that you
will not be using this memory as Program RAM, use the following code in your program:

#include <eZ8.h>
FLASH_OPTION1 = 0xFD;

This example is only for illustration, of course; it is your responsibility to make sure that
all bits of the Flash option bytes are set as you need them for your application.

Data addresses F00 through FFF are reserved for special function registers (SFRs).

Address ranges are set in the Address Spaces fields. The syntax of a memory range:

<low address> – <high address> [,<low address> – <high address>] ...

where <low address> is the hexadecimal lower boundary of a range and <high address> is
the hexadecimal higher boundary of the range. The following are legal memory ranges:

Note:

Note:

http://www.zilog.com/docs/z8encorexp/ps0228.pdf

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

95

00-df

0000-ffff

0000-1fff,4000-5fff

Holes in your memory can be defined for the linker using this mechanism. The linker does
not place any code or data outside of the ranges specified here. If your code or data cannot
be placed within the ranges, a range error is generated.

Linker: Warnings Page

The options in the Warnings page are described in this section.

Figure 64. Warnings Page of the Project Settings Dialog Box

Treat All Warnings as Fatal

When selected, this checkbox causes the linker to treat all warning messages as fatal
errors. When the checkbox is selected, the linker does not generate output file(s) if there

Using the Integrated Development Environment UM013034-1210

96

Zilog Developer Studio II – Z8 Encore!®

User Manual

are any warnings while linking. By default, this checkbox is deselected, and the linker pro-
ceeds with generating output files even if there are warnings.

Selecting this checkbox displays any warning (as errors), regardless of the state of the
Show Warnings checkbox in the General page (see Show Warnings on page 60).

Treat Undefined Symbols as Fatal

When selected, this checkbox causes the linker to treat undefined external symbol warn-
ings as fatal errors. If this checkbox is selected, the linker quits generating output files and
terminates with an error message immediately if the linker cannot resolve any undefined
symbol. By default, this checkbox is selected because a completely valid executable can-
not be built when the program contains references to undefined external symbols. If this
checkbox is deselected, the linker proceeds with generating output files even if there are
undefined symbols.

Selecting this checkbox displays any warning (as errors), regardless of the state of the
Show Warnings checkbox in the General page (see Show Warnings on page 60).

Warn on Segment Overlap

This checkbox enables or disables warnings when overlap occurs while binding segments.
By default, the checkbox is selected, which is the recommended setting for Z8 Encore!.
An overlap condition usually indicates an error in project configuration that must be cor-
rected; however, the linker creates deliberate overlays for some functions when using
static frames, and these overlays are not reported as warnings. These errors in Z8 Encore!
can be caused either by user assembly code that erroneously assigns two or more segments
to overlapping address ranges or by user code defining the same interrupt vector segment
in two or more places.

Linker: Output Page

The options in the Output page are described in this section.

Note:

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

97

Figure 65. Output Page of the Project Settings Dialog Box

Output File Name

You can change the name of your executable (including the full path name) in the Output
File Name field. After your program is linked, the appropriate extension is added.

Generate Map File

This checkbox determines whether the linker generates a link map file each time it is run.
The link map file is named with your project’s name with the .map extension and is
placed in the same directory as the executable output file. See MAP on page 335. Inside
the map file, symbols are listed in the order specified by the Sort Symbols By area (see
Sort Symbols By on page 98).

The link map is an important place to look for memory restriction or layout problems. Note:

Using the Integrated Development Environment UM013034-1210

98

Zilog Developer Studio II – Z8 Encore!®

User Manual

Sort Symbols By

You can choose whether to have symbols in the link map file sorted by name or address.

Show Absolute Addresses in Assembly Listings

When this checkbox is selected, all assembly listing files that are generated in your build
are adjusted to show the absolute addresses of the assembly code statements. If this check-
box is deselected, assembly listing files use relative addresses beginning at zero.

For this option to be applied to listing files generated from assembly source files, the Gen-
erate Assembly Listing Files (.lst) checkbox in the Assembler page of the Project Set-
tings dialog box must be selected.

For this option to be applied to listing files generated from C source files, both the Gener-
ate Assembly Source Code and Generate Assembly Listing Files (.lst) checkboxes in
the Listing Files page of the Project Settings dialog box must be selected.

Executable Formats

These checkboxes determine which object format is used when the linker generates an
executable file. The linker supports the following formats: IEEE 695 (.lod) and Intel
Hex32 (.hex), which is a backward-compatible superset of the Intel Hex16 format. IEEE
695 is the default format for debugging in ZDS II, and the Intel hex format is useful for
compatibility with some third-party tools. You can also select both checkboxes, which
produces executable files in both formats.

Fill Unused Hex File Bytes with 0xFF

This checkbox is available only when the Intel Hex32 Records executable format is
selected. When the Fill Unused Hex File Bytes with 0xFF checkbox is selected, all unused
bytes of the hex file are filled with the value 0xFF. This option is sometimes required for
compatibility with other tools that set otherwise uninitialized bytes to 0xFF so that the hex
file checksum calculated in ZDS II matches the checksum calculated in the other tools.

Use caution when selecting this option. The resulting hex file begins at the first hex
address (0x0000) and ends at the last page address that the program requires. This signif-
icantly increases the programming time when using the resulting output hex file. The hex
file might try to fill nonexistent external memory locations with 0xFF.

Maximum Bytes per Hex File Line

This option is available only when the Intel Hex32 Records executable format is selected.
This drop-down list box sets the maximum length of a hex file record. This option is pro-
vided for compatibility with third-party or other tools that might have restrictions on the

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

99

length of hex file records. This option is available only when the Intel Hex32 Records exe-
cutable format is selected.

Debugger Page

In the Project Settings dialog box, select the Debugger page.

Figure 66. Debugger Page of the Project Settings Dialog Box

The source-level debugger is a program that allows you to find problems in your code at
the C or assembly level. The Windows interface is quick and easy to use. You can also
write batch files to automate debugger tasks.

Your understanding of the debugger design can improve your productivity because it
affects your view of how things work. The debugger requires target and debug tool set-
tings that correspond to the physical hardware being used during the debug session. A tar-
get is a logical representation of a target board. A debug tool represents debug
communication hardware such as the USB Smart Cable or an emulator. A simulator is a
software debug tool that does not require the existence of physical hardware. Currently,

Using the Integrated Development Environment UM013034-1210

100

Zilog Developer Studio II – Z8 Encore!®

User Manual

the debugger supports debug tools for the Z8 Encore! simulator, the USB Smart Cable, the
serial Smart Cable, and the Ethernet Smart Cable.

Use Page Erase Before Flashing

Select the Use Page Erase Before Flashing checkbox if you want the internal Flash to
be page-erased. Deselect this checkbox if you want the internal Flash to be mass-erased.

Target

Select the appropriate target from the Target list box. The selected target name is displayed
in the Debug output window after you click the Reset button (available from the Build
toolbar or Debug toolbar).

Setup

Click Setup in the Target area to display the Configure Target dialog box.

Figure 67. Configure Target Dialog Box

The options displayed in the Configure Target dialog box depend on the CPU you
selected in the New Project dialog box (see New Project on page 39) or the General page
of the Project Settings dialog box (see General Page on page 58).

1. Select the internal or external clock source.

2. Select the appropriate clock frequency in the Clock Frequency (MHz) area or enter
the clock frequency in the Other field. For the emulator, this frequency must match
the clock oscillator on Y4. For the development kit, this frequency must match the

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

101

clock oscillator on Y1. The emulator clock cannot be supplied from the target applica-
tion board.

The clock frequency value is used even when the Simulator is selected as the debug tool.
The frequency is used when converting clock cycles to elapsed times in seconds, which
can be viewed in the Debug Clock window when running the simulator.

3. Click OK.

Add

Click Add to display the Create New Target Wizard dialog box.

Figure 68. Create New Target Wizard Dialog Box

Enter a unique target name in the Target Name field, select the Place Target File in Proj-
ect Directory checkbox if you want your new target file to be saved in the same directory
as the currently active project, and click Finish.

Note:

Using the Integrated Development Environment UM013034-1210

102

Zilog Developer Studio II – Z8 Encore!®

User Manual

Copy

Figure 69. Target Copy or Move Dialog Box

1. Select a target in the Target area of the Debugger page.

2. Click Copy.

3. Select the Use Selected Target button if you want to use the target listed to the right
of this button description or select the Target File button to use the Browse button
() to navigate to an existing target file. If you select the Use Selected Target
button, enter the name for the name for the new target in the Name for New Target
field.

4. Select the Delete Source Target After Copy checkbox if you do not want to keep the
original target.

5. In the Place Target File In area, select the location where you want the new target file
saved: in the project directory, ZDS default directory, or another location.

6. Click OK.

Delete

Click Delete to remove the currently highlighted target. The following message is dis-
played:

Delete target_name Target?”. Click Yes to delete the target or No to cancel the
command.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

103

Debug Tool

Select the appropriate debug tool from the Current drop-down list box.

• If you select EthernetSmartCable and click Setup in the Debug Tool area, the
Setup Ethernet Smart Cable Communication dialog box is displayed.

If a Windows Security Alert displays the message: “Do you want to keep block-
ing this program?”, click Unblock.

Figure 70. Setup Ethernet Smart Cable Communication Dialog Box

– Click Refresh to search the network and update the list of available Ethernet
Smart Cables. The number in the Broadcast Address field is the destination
address to which ZDS sends the scan message to determine which Ethernet Smart
Cables are accessible. The default value of 255.255.255.255 can be used if
the Ethernet Smart Cable is connected to your local network. Other values such as
192.168.1.255 or 192.168.1.50 can be used to direct or focus the search.
ZDS uses the default broadcast address if the Broadcast Address field is empty.

Select an Ethernet Smart Cable from the list of available Ethernet Smart Cables by
checking the box next to the Smart Cable you want to use. Alternately, select the
Ethernet Smart Cable by entering a known Ethernet Smart Cable IP address in the
IP Address field.

– Enter the port number in the TCP Port field.

Note:

Using the Integrated Development Environment UM013034-1210

104

Zilog Developer Studio II – Z8 Encore!®

User Manual

– Click OK.

• If you select SerialSmartCable and click Setup in the Debug Tool area, the Setup
Serial Communication dialog box is displayed.

Figure 71. Setup Serial Communication Dialog Box

– Use the Baud Rate drop-down list box to select the appropriate baud rate: 19200,
38400, 57600, or 115200. The default is 57600.

– Select the host COM port connected to your target.

ZDS II sets the COM port settings for data, parity, stop, and flow control. It is not neces-
sary to set these.

– Click OK.

• If you select USBSmartCable and click Setup in the Debug Tool area, the Setup
USB Communication dialog box is displayed.

Figure 72. Setup USB Communication Dialog Box

– Use the Serial Number drop-down list box to select the appropriate serial number.

– Click OK.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

105

Export Makefile

Export Makefile exports a buildable project in external make file format. To do this, com-
plete the following procedure:

1. From the Project menu, select Export Makefile. The Save As dialog box is dis-
played.

Figure 73. Save As Dialog Box

2. Use the Save In drop-down list box to navigate to the directory in which you want to
save your project. The default location is in your project directory.

3. Enter the make file name in the File Name field. You do not have to type the extension
.mak. The extension is added automatically.

4. Click Save. The project is now available as an external make file.

Build Menu
With the Build menu, you can build individual files as well as your project. You can also
use this menu to select or add configurations for your project.

The Build menu has the following commands:

• Compile on page 106

• Build on page 106

• Rebuild All on page 106

• Stop Build on page 106

• Clean on page 106

Using the Integrated Development Environment UM013034-1210

106

Zilog Developer Studio II – Z8 Encore!®

User Manual

• Update All Dependencies on page 106

• Set Active Configuration on page 106

• Manage Configurations on page 107

Compile

Select Compile from the Build menu to compile or assemble the active file in the Edit
window.

Build

Select Build from the Build menu to build your project. The build compiles and/or assem-
bles any files that have changed since the last build and then links the project.

Rebuild All

Select Rebuild All from the Build menu to rebuild all of the files in your project. This
option also links the project.

Stop Build

Select Stop Build from the Build menu to stop a build in progress.

Clean

Select Clean from the Build menu to remove intermediate build files.

Update All Dependencies

Select Update All Dependencies from the Build menu to update your source file depen-
dencies.

Set Active Configuration

You can use the Select Configuration dialog box to select the active build configuration
you want.

1. From the Build menu, select Set Active Configuration to display the Select Config-
uration dialog box.

Figure 74. Select Configuration Dialog Box

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

107

2. Highlight the configuration that you want to use and click OK.

There are two standard configuration settings:

• Debug

This configuration contains all of the project settings for running the project in Debug
mode.

• Release

This configuration contains all of the project settings for creating a Release version of
the project.

For each project, you can modify the settings, or you can create your own configurations.
These configurations allow you to easily switch between project setting types without hav-
ing to remember all of the setting changes that must be made for each type of build that
might be necessary during the creation of a project. All changes to project settings are
stored in the current configuration setting.

To add your own configuration(s), see Manage Configurations on page 107.

Use one of the following methods to activate a build configuration:

• Using the Select Configuration dialog box. See Set Active Configuration on
page 106.

• Using the Build toolbar. See Select Build Configuration List Box on page 18.

Use the Project Settings dialog box to modify build configuration settings. See Settings
on page 57.

Manage Configurations

For your specific needs, you can add or copy different configurations for your projects. To
add a customized configuration, perform the following tasks:

1. From the Build menu, select Manage Configurations. The Manage Configurations
dialog box is displayed.

Note:

Using the Integrated Development Environment UM013034-1210

108

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 75. Manage Configurations Dialog Box

2. From the Manage Configurations dialog box, click Add. The Add Project Configu-
ration dialog box is displayed.

Figure 76. Add Project Configuration Dialog Box

3. Enter the name of the new configuration in the Configuration Name field.

4. Select a similar configuration from the Copy Settings From drop-down list box.

5. Click OK. Your new configuration is displayed in the configurations list in the Man-
age Configurations dialog box.

6. Click Close. The new configuration is the current configuration as shown in the
Select Build Configuration drop-down list box on the Build toolbar. Now that you
have created a blank template, you are ready to select the settings for this new config-
uration.

7. From the Project menu, select Settings. The Project Settings dialog box is dis-
played.

8. Select the settings for the new configuration and click OK.

9. From the File menu, select Save All.

To copy the settings from an existing configuration to an existing configuration, perform
the following tasks:

1. From the Build menu, select Manage Configurations. The Manage Configurations
dialog box is displayed.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

109

Figure 77. Manage Configurations Dialog Box

2. From the Manage Configurations dialog box, click Copy. The Copy Configuration
Settings dialog box is displayed.

Figure 78. Copy Configuration Settings Dialog Box

3. Select the configuration with the appropriate settings from the Copy Settings From
drop-down list box.

4. Highlight the configuration(s) in the Copy Settings To field that you want to change.

5. Click Copy.

Debug Menu
Use the Debug menu to access the following functions for the debugger:

• Connect to Target on page 110

• Download Code on page 110

• Verify Download on page 111

• Stop Debugging on page 111

• Reset on page 111

• Go on page 112

Using the Integrated Development Environment UM013034-1210

110

Zilog Developer Studio II – Z8 Encore!®

User Manual

• Run to Cursor on page 112

• Break on page 112

• Step Into on page 113

• Step Over on page 113

• Step Out on page 113

• Set Next Instruction on page 113

For more information about the debugger, see Using the Debugger on page 363.

Connect to Target

The Connect to Target command starts a debug session using the following process:

1. Initializes the communication to the target hardware.

2. Resets the device.

3. Configures the device using the settings in the Configure Target dialog box.

4. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. The following options are ignored if selected:

– Reset to Symbol 'main' (Where Applicable) checkbox

– Verify File Downloads—Read After Write checkbox

– Verify File Downloads—Upon Completion checkbox

This command does not download the software. Use this command to access target regis-
ters, memory, and so on without loading new code or to avoid overwriting the target’s
code with the same code. This command is not enabled when the target is the simulator.
This command is available only when not in Debug mode.

For the Serial Smart Cable, ZDS II performs an on-chip debugger reset and resets the CPU
at the vector reset location.

Download Code

The Download Code command downloads the executable file for the currently open proj-
ect to the target for debugging. The command also initializes the communication to the tar-
get hardware if it has not been done yet. Starting in version 4.10.0, the Download Code
command can also program Flash memory. A page erase is done instead of a mass erase
for both internal and external Flash memory. Use this command anytime during a debug
session. This command is not enabled when the debug tool is the simulator.

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

111

The current code on the target is overwritten.

If ZDS II is not in Debug mode when the Download Code command is selected, the fol-
lowing process is executed:

1. Initializes the communication to the target hardware.

2. Resets the device with a hardware reset by driving pin #2 of the debug header low.

3. Configures the device using the settings in the Configure Target dialog box.

4. Downloads the program.

5. Issues a software reset through the debug header serial interface.

6. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is
found.

If ZDS II is already in Debug mode when the Download Code command is selected, the
following process is executed:

1. Resets the device using a software reset.

2. Downloads the program.

You might need to reset the device before execution because the program counter might
have been changed after the download.

Verify Download

Select Verify Download from the Debug menu to determine download correctness by
comparing executable file contents to target memory.

Stop Debugging

Select Stop Debugging from the Debug menu to exit Debug mode.

To stop program execution, select the Break command.

Reset

Select Reset from the Debug menu to reset the program counter to the beginning of the
program.

If ZDS II is not in Debug mode, the Reset command starts a debug session using the fol-
lowing process:

1. Initializes the communication to the target hardware.

2. Resets the device.

Note:

Using the Integrated Development Environment UM013034-1210

112

Zilog Developer Studio II – Z8 Encore!®

User Manual

3. Configures the device using the settings in the Configure Target dialog box.

4. Downloads the program.

5. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is
found.

If ZDS II is already in Debug mode, the Reset command uses the following process:

1. ZDS II performs a hardware reset.

2. Configures the device using the settings in the Configure Target dialog box.

3. If files have been modified, ZDS II asks, “Would you like to rebuild the project?”
before downloading the modified program. If there has been no file modification, the
code is not reloaded.

The Serial Smart Cable performs an on-chip debugger reset.

Go

Select Go from the Debug menu to execute project code from the current program coun-
ter.

If not in Debug mode when the Go command is selected, the following process is exe-
cuted:

1. Initializes the communication to the target hardware.

2. Resets the device.

3. Configures the device using the settings in the Configure Target dialog box.

4. Downloads the program.

5. Configures and executes the debugger options selected in the Debugger tab of the
Options dialog box. If it is a C project, ZDS II resets to the main function if it is
found.

6. Executes the program from the reset location.

Run to Cursor

Select Run to Cursor from the Debug menu to execute the program code from the current
program counter to the line containing the cursor in the active file or the Disassembly
window. The cursor must be placed on a valid code line (a C source line with a blue dot
displayed in the gutter or any instruction line in the Disassembly window).

Break

Select Break from the Debug menu to stop program execution at the current program
counter.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

113

Step Into

Select Step Into from the Debug menu to execute one statement or instruction from the
current program counter, following execution into function calls. When complete, the pro-
gram counter resides at the next program statement or instruction unless a function was
entered, in which case the program counter resides at the first statement or instruction in
the function.

Step Over

Select Step Over from the Debug menu to execute one statement or instruction from the
current program counter without following execution into function calls. When complete,
the program counter resides at the next program statement or instruction.

Step Out

Select Step Out from the Debug menu to execute the remaining statements or instructions
in the current function and returns to the statement or instruction following the call to the
current function.

Set Next Instruction

Select Set Next Instruction from the Debug menu to set the program counter to the line
containing the cursor in the active file or the Disassembly window.

Tools Menu
The Tools menu lets you set up the Flash Loader, calculate a file checksum, update the
firmware, and customize of the Z8 Encore! developer’s environment.

The Tools menu features the following options:

• Flash Loader on page 113

• Calculate File Checksum on page 120

• Firmware Upgrade (Selected Debug Tool) on page 121

• Show CRC on page 122

• Customize on page 122

• Options on page 125

Flash Loader

Use the following procedure to program internal Flash for the Z8 Encore!:

Using the Integrated Development Environment UM013034-1210

114

Zilog Developer Studio II – Z8 Encore!®

User Manual

The Flash Loader dialog box must be closed and then opened again whenever a new chip
is inserted or the power is cycled on the target board.

1. Ensure that the target board is powered up and the Z8 Encore! target hardware is con-
nected and operating properly.

2. Select Flash Loader from the Tools menu. The Flash Loader connects to the target
and sets up communication. The Flash Loader Processor dialog box is displayed
with the appropriate Flash target options for the selected CPU.

Figure 79. Flash Loader Processor Dialog Box

3. Click the Browse button () to navigate to the hex file to be flashed.

The Flash Loader is unable to identify, erase, or write to a page of Flash that is protected
through hardware.

Note:

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

115

For example, a target might have a write enable jumper to protect the boot block. In this
case, the write enable jumper must be set before flashing the area of Flash. The Flash
Loader displays this page as disabled.

4. Select the Internal Flash checkbox in the Flash Options area.

The internal Flash memory configuration is defined in the CpuFlashDevice.xml
file. The device is the currently selected microcontroller or microprocessor. When the
internal Flash is selected, the address range is displayed in the Flash Configuration
area with an INT extension.

5. To perform a cyclic redundancy check on the whole internal Flash memory, click
CRC.

The 16-bit CRC-CCITT polynomial (x16 + x12 + x5 + 1) is used for the CRC. The
CRC is preset to all 1s. The least-significant bit of the data is shifted through the poly-
nomial first. The CRC is inverted when it is transmitted. If the device is not in Debug
mode, this command returns FFFFH for the CRC value. The on-chip debugger reads
the program memory, calculates the CRC value, and displays the result in the Status
area.

6. Select the pages to erase before flashing in the Flash Configuration area.

Pages that are grayed out are not available.

7. Enter the appropriate offset values in the File Offset field to offset the base address of
the hex file.

The hex file address is shifted by the offset defined in the Start Address area. You need to
allow for the shift in any defined jump table index. This offset value also shifts the erase
range for the Flash.

8. To check the memory, click Memory. The View/Edit Memory dialog box is displayed.
In the View/Edit Memory window, you can perform the following tasks:

– Select the appropriate memory space from the Space drop-down list box.

– Move to a different address by typing the address in the address field and pressing
the Enter key.

– Fill Memory on page 118

– Save Memory to a File on page 118

– Load a File into Memory on page 119

– Perform a Cyclic Redundancy Check on page 120

Note:

Using the Integrated Development Environment UM013034-1210

116

Zilog Developer Studio II – Z8 Encore!®

User Manual

9. Select the Erase Before Flashing checkbox to erase all Flash memory before writing
the hex file to Flash memory.

You can also delete the Flash memory by clicking ERASE. Clicking ERASE deletes only
the pages that are selected.

10. Select the Use Page Erase checkbox if you want the internal Flash to be page-erased.
Deselect this checkbox if you want the internal Flash to be mass-erased.

11. Select the Close Dialog When Flash Complete checkbox to close the dialog box
after writing the hex file to Flash memory.

12. If you want to use the serialization feature or want to check a serial number that has
already been programmed at an address, see Serialization on page 116.

13. Program the Flash memory by clicking one of the following buttons:

– Click Program to write the hex file to Flash memory and perform no checking
while writing.

– Click Program and Verify to write the hex file to Flash memory by writing a seg-
ment of data and then reading back the segment and verifying that it has been
written correctly.

14. Verify the Flash memory by clicking Verify.

When you click Verify, the Flash Loader reads and compares the hex file contents
with the current contents of Flash memory. This function does not change target Flash
memory.

If you want to run the program that you just flashed, use the following procedure:

15. After you see Flashing complete in the Status area of the Flash Loader Pro-
cessor dialog box, click Close to close the dialog box.

16. Remove the power supply, followed by the USB Smart Cable.

17. Reconnect the power supply.

Serialization

The general procedure to write a serial number to a Flash device involves the following
steps:

1. Choose a location for the serial number inside or outside of the address range defined
in the hex file.

Caution:

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

117

The serial number must be written to a location that is not being written to by the hex file.

2. Erase the Flash device.

3. Write the hex file to the Flash device and then write the serial number

or

write the serial number to the Flash device and then write the hex file.

Use the following procedure if you want to use the serialization feature:

1. Select the Enable checkbox.

2. Select the Include Serial in Programming checkbox.

This option programs the serial number after the selected hex file has been written to
Flash.

3. Enter the start value for the serial number in the Serial Value field and select the Dec
button for a decimal serial number or the Hex button for a hexadecimal serial number.

4. Enter the location you want the serial number located in the Address Hex field.

5. Select the number of bytes that you want the serial number to occupy in the # Bytes
drop-down list box.

6. Enter the decimal interval that you want the serial number incremented by in the
Increment Dec (+/–) field. If you want the serial number to be decremented, enter a
negative number. After the current serial number is programmed, the serial number is
then incremented or decremented by the amount in the Increment Dec (+/–) field.

7. Select the Erase Before Flashing checkbox.

This option erases the Flash before writing the serial number.

8. Click Burn Serial to write the serial number to the current device or click Program or
Program and Verify to program the Flash memory with the specified hex file and
then write the serial number.

If you want to check a serial number that has already been programmed at an address, per-
form the following tasks:

1. Select the Enable checkbox.

2. Enter the address that you want to read in the Address Hex field.

3. Select the number of bytes to read from # Bytes drop-down list box.

4. Click Read Serial to check the serial number for the current device.

Note:

Using the Integrated Development Environment UM013034-1210

118

Zilog Developer Studio II – Z8 Encore!®

User Manual

Fill Memory

Use this procedure to write a common value in all of the memory spaces in the specified
address range, for example, to clear memory for the specified address range. This opera-
tion actually flashes the device.

To fill a specified address range of memory, observe the following procedure.

1. Select the memory space in the Space drop-down list box.

2. Right-click in the list box to display the context menu.

3. Select Fill Memory. The Fill Memory dialog box is displayed.

Figure 80. Fill Memory Dialog Box

4. In the Fill Value area, select the characters to fill memory with or select the Other but-
ton. If you select the Other button, enter the fill characters in the Other field.

5. Enter the start address in hexadecimal format in the Start Address (Hex) field and
enter the end address in hexadecimal format in the End Address (Hex) field. This
address range is used to fill memory with the specified value.

6. Click OK to fill the selected memory.

Save Memory to a File

Use this procedure to save memory specified by an address range to a binary, hexadeci-
mal, or text file.

Perform the following steps to save memory to a file:

1. Select the memory space in the Space drop-down list box.

2. Right-click in the list box to display the context menu.

3. Select Save to File. The Save to File dialog box is displayed.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

119

Figure 81. Save to File Dialog Box

4. In the File Name field, enter the path and name of the file you want to save the mem-
ory to or click the Browse button () to search for a file or directory.

5. Enter the start address in hexadecimal format in the Start Address (Hex) field and
enter the end address in hexadecimal format in the End Address (Hex) field.

This specifies the address range of memory to save to the specified file.

6. Select whether to save the file as text, hex (hexadecimal), or binary.

7. Select how many bytes per line or enter the number of bytes in the Other field.

8. Click OK to save the memory to the specified file.

Load a File into Memory

Use this procedure to load or to initialize memory from an existing binary, hexadecimal, or
text file.

Perform the following steps to load a file into memory:

1. Select the memory space in the Space drop-down list box.

2. Right-click in the list box to display the context menu.

3. Select Load from File. The Load from File dialog box is displayed.

Using the Integrated Development Environment UM013034-1210

120

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 82. Load from File Dialog Box

4. In the File Name field, enter the path and name of the file to load or click the Browse
button () to search for the file.

5. In the Start Address (Hex) field, enter the start address.

6. Select whether to load the file as text, hex (hexadecimal), or binary.

Click OK to load the file’s contents into the selected memory.

Perform a Cyclic Redundancy Check

To perform a cyclic redundancy check (CRC), select Show CRC from the context menu.
The checksum is displayed in the Show CRC dialog box.

Figure 83. Show CRC Dialog Box

Calculate File Checksum

Use the following procedure to calculate the file checksum:

1. Select Calculate File Checksum from the Tools menu. The Calculate Checksum
dialog box is displayed.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

121

Figure 84. Calculate Checksum Dialog Box

2. Click the Browse button () to select the .hex file for which you want to calcu-
late the checksum. The IDE adds the bytes in the files and displays the result in the
Checksum field.

Figure 85. Calculate Checksum Dialog Box

3. Click Close.

Firmware Upgrade (Selected Debug Tool)

This command is available only when a supporting debug tool is selected (see Debug Tool
on page 103).

Use one of the following files for instructions on how to upgrade your firmware:

• USB Smart Cable

<ZDS Installation Directory>\bin\firmware\USBSmartCable\USBSmart-
Cable upgrade information.txt

• Ethernet Smart Cable

<ZDS Installation Directory>\bin\firmware\EthernetSmartCable\Eth-
ernetSmartCable upgrade information.txt

Note:

Using the Integrated Development Environment UM013034-1210

122

Zilog Developer Studio II – Z8 Encore!®

User Manual

Show CRC

This command is only available when the target is not a simulator.

Use the following procedure to perform a cyclic redundancy check (CRC) for the whole
internal Flash memory:

1. Select Show CRC from the Tools menu. The Show CRC dialog box is displayed with
the result.

Figure 86. Show CRC Dialog Box

Customize

The Customize dialog box contains the following tabs:

• Customize—Toolbars Tab on page 122

• Customize—Commands Tab on page 124

Customize—Toolbars Tab

The Toolbars tab lets you select the toolbars you want to display on the Z8 Encore! devel-
oper’s environment, change the way the toolbars are displayed, or create a new toolbar.

You cannot delete, customize, or change the name of the default toolbars.

Note:

Note:

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

123

Figure 87. Customize Dialog Box–Toolbars Tab

To display, hide, or change the appearance of toolbars, use the following procedure:

1. Select Customize from the Tools menu. The Customize dialog box is displayed.

2. Click the Toolbars tab.

3. In the Toolbars list box, select the toolbars that you want displayed and deselect tool-
bars that you want hidden.

4. Select the Show Tooltips checkbox if you want to display cue cards (short descrip-
tions of the main function of buttons) when your mouse cursor is over a button.

5. Select the Cool Look checkbox to change how the buttons are displayed.

6. Select the Large Buttons checkbox to increase the size of the buttons.

7. Click Reset to restore the defaults.

8. Click OK to apply your changes or Cancel to close the dialog box without making any
changes.

Using the Integrated Development Environment UM013034-1210

124

Zilog Developer Studio II – Z8 Encore!®

User Manual

Customize—Commands Tab

The Commands tab lets you modify the following by selecting the category:

• File Toolbar on page 16

• Find Toolbar on page 21

• Build Toolbar on page 18

• Debug Toolbar on page 24

• Debug Windows Toolbar on page 27

• Bookmarks Toolbar on page 23

• Command Processor Toolbar on page 22

• Menu Bar on page 37

To see a description of each button on the toolbars, highlight the icon as shown in
Figure 88.

Figure 88. Customize Dialog Box—Commands Tab

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

125

Options

The Options dialog box contains the following tabs:

• Options—General Tab on page 125

• Options—Editor Tab on page 126

• Options—Editor—Advance Editor Options on page 129

• Options—Debugger Tab on page 131

Options—General Tab

The General tab has the following checkboxes:

• Select the Save Files Before Build checkbox to save files before you build. This
option is selected by default.

• Select the Always Rebuild After Configuration Activated checkbox to ensure that
the first build after a project configuration (such as Debug or Release) is activated
results in the reprocessing of all of the active project’s source files. A project configu-
ration is activated by being selected (using the Select Configuration dialog box or the
Select Build Configuration drop-down list box) or created (using the Manage Con-
figurations dialog box). This option is not selected by default.

• Select the Automatically Reload Externally Modified Files checkbox to automati-
cally reload externally modified files. This option is not selected by default.

• Select the Load Last Project on Startup checkbox to load the most recently active
project when you start ZDS II. This option is not selected by default.

• Select the Show the Full Path in the Document Window’s Title Bar checkbox to
add the complete path to the name of each file open in the Edit window.

• Select the Save/Restore Project Workspace checkbox to save the project workspace
settings each time you exit from ZDS II. This option is selected by default.

Select a number of commands to save in the Commands to Keep field or click Clear to
delete the saved commands.

Using the Integrated Development Environment UM013034-1210

126

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 89. Options Dialog Box—General Tab

Options—Editor Tab

Use the Editor tab to change the default settings of the editor for your assembly, C, and
default files. The syntax style of each file can be configured individually.

1. From the Tools menu, select Options. The Options dialog box is displayed; see
Figure 90.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

127

Figure 90. Options Dialog Box—Editor Tab

2. Click the Editor tab.

3. Select a file type from the File Type drop-down list box, in which you can select C
files, assembly files, or other files and windows.

4. In the Tabs area, perform the following tasks:

– Use the Tab Size field to change the number of spaces that a tab indents code.

– Select the Insert Spaces button or the Keep Tabs button to indicate how to for-
mat indented lines.

– Select the Auto Indent checkbox if you want the IDE to automatically add inden-
tation to your files.

5. The syntax style of each file type can have its own configuration for background, fore-
ground and font. Select an item in the Syntax Style: drop-down list box.

6. To configure the background or foreground color of the selected item, make sure that
the Use Default checkboxes are not selected, then select the color of your choice in

Using the Integrated Development Environment UM013034-1210

128

Zilog Developer Studio II – Z8 Encore!®

User Manual

the Foreground or Background fields to display its respective Color dialog box (see
Figure 91).

Figure 91. Color Dialog Box

7. If you want to use the default foreground or background color for the selected syntax
style, enable the Use Default checkbox next to the Foreground or Background
checkbox (see Figure 90). The default color configuration can be changed by selecting
Default from the Syntax Style drop-down list box.

8. Click OK to close the Color dialog box.

9. To change the font of the selected syntax style, make sure that the Default Font check-
boxes are not selected in the Options dialog box, then click the Select Font button to
display the Font dialog box, in which you can change the font, font style and font size;
see Figure 92.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

129

Figure 92. Font Dialog Box

10. Click OK to close the Font dialog box.

11. Click OK to close the Options dialog box.

Options—Editor—Advance Editor Options

You can enable or disable some of the intelligent editor behavior using the Advanced Edi-
tor options. To open the Advanced Editor Options dialog from the Options dialog box,
click the Editor tab, then click the button labeled Advanced Editor Options (all file
types).

A description of each of the Advanced Editor Options follows Figure 93.

Using the Integrated Development Environment UM013034-1210

130

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 93. Options Dialog Box—Editor Tab—Advanced Editor Options Dialog Box

Display Line Number Margin

The Display Line Number Margin option allows you to show or hide the line number
margin in the Editor window. To learn more, see Line Number Margin on page 164.

Show Auto Completion List

The Show Auto Completion List option allows you to enable or disable automatic com-
pletion of keyboarded elements. It launches a pop-up window that lists all of the relevant
choices as you enter characters from your keyboard and allows you to choose the appro-
priate one. To learn more, see Auto Completion on page 139.

Show Call Tips Window

The Show Call Tips Window option allows you to enable or disable the Call Tips win-
dow. Call Tips is a hovering and short-lived small window that displays the prototype of a
function whenever you use your keyboard to type the function followed by a left parenthe-
sis, or "(". To learn more, see Call Tips on page 143.

Support UNICODE

The Support Unicode option allows you to enable or disable UNICODE support.
Enabling UNICODE support allows you to use non-English language scripts as part of a
comment section and string in your source code. To learn more, see UNICODE Support
on page 158.

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

131

Display Indentation Guide

The Display Indentation Guide option allows you to enable or disable the indentation
guides in the Editor window. Indentation guides allow you easily identify the boundaries
of a block of code. To learn more, see Indentation Guides on page 170.

Auto Insert })] and Quotation Marks

The Auto Insert })] and Quotes option allows you to enable or disable the automatic
insertion of the },),], ', and " closing characters. To learn more, see Auto Insertion of
Braces and Quotes on page 155.

Highlight PC Line in Debug Mode

The Highlight PC line in Debug Mode option allows you to enable or disable Program
Counter line highlighting in the Editor window. To learn more, see Highlighting a Pro-
gram Counter Line on page 176.

Display Code Folding Margin

The Display Code Folding Margin option allows you to show or hide the code folding
margin in the Editor window. To learn more, see Code Folding Margin on page 162.

Wrap Long Lines

The Wrap Long Lines option allows you to enable or disable the wrapping of long lines
of characters in the Editor window. To learn more, see Wrap Long Lines on page 169.

Display Long Line Indicator

The Display Long Line Indicator option allows you to show or hide the long line indica-
tor in the Editor window. To learn more, see Long Line Indicator on page 156.

Options—Debugger Tab

The Debugger tab contains the following checkboxes:

• Select the Save Project Before Start of Debug Session checkbox to save the current
project before entering Debug mode. This option is selected by default.

• Select the Reset to Symbol 'main' (Where Applicable) checkbox to skip the start-up
(boot) code and start debugging at the main function for a project that includes a C
language main function. When this checkbox is selected, a user reset (clicking the
Reset button on the Build and Debug toolbars, selecting Reset from the Debug
menu, or using the reset script command) results in the program counter (PC) point-
ing to the beginning of the main function. When this checkbox is not selected, a user
reset results in the PC pointing to the first line of the program (the first line of the
start-up code).

Using the Integrated Development Environment UM013034-1210

132

Zilog Developer Studio II – Z8 Encore!®

User Manual

• When the Show DataTips Pop-Up Information checkbox is selected, holding the
cursor over a variable in a C file in the Edit window in Debug mode displays the
value.

• Select the Hexadecimal Display checkbox to change the values in the Watch and
Locals windows to hexadecimal format. Deselect the checkbox to change the values
in the Watch and Locals windows to decimal format.

• Select the Verify File Downloads—Read After Write checkbox to perform a read
after write verify of the Code Download function. Selecting this checkbox increases
the time taken for the code download to complete.

• Select the Verify File Downloads—Upon Completion checkbox to verify the code
that you downloaded after it has downloaded.

• Select the Load Debug Information (Current Project) checkbox to load the debug
information for the currently open project when the Connect to Target command is
executed (from the Debug menu or from the Connect to Target button). This option
is selected by default.

• Select the Activate Breakpoints checkbox for the breakpoints in the current project
to be active when the Connect to Target command is executed (from the Debug
menu or from the Connect to Target button). This option is selected by default.

• Select the Disable Warning on Flash Optionbits Programming checkbox to prevent
messages from being displayed before programming Flash option bits.

Figure 94. Options Dialog Box—Debugger Tab

UM013034-1210 Menu Bar

Zilog Developer Studio II – Z8 Encore!®

User Manual

133

Window Menu
The Window menu allows you to select the ways you want to arrange your files in the Edit
window and allows you to activate the Project Workspace window or the Output win-
dow.

The Window menu contains the following options:

• New Window on page 133

• Close on page 133

• Close All on page 133

• Cascade on page 133

• Tile on page 133

• Arrange Icons on page 133

New Window

Select New Window to create a copy of the file you have active in the Edit window.

Close

Select Close to close the active file in the Edit window.

Close All

Select Close All to close all of the files in the Edit window.

Cascade

Select Cascade to cascade the files in the Edit window. Use this option to display all open
windows whenever you cannot locate a window.

Tile

Select Tile to tile the files in the Edit window so that you can see all of them at the same
time.

Arrange Icons

Select Arrange Icons to arrange the files alphabetically in the Edit window.

Help Menu
The Help menu contains the following options:

• Help Topics on page 134

• Technical Support on page 134

Using the Integrated Development Environment UM013034-1210

134

Zilog Developer Studio II – Z8 Encore!®

User Manual

• About on page 134

Help Topics

Select Help Topics to display the ZDS II online help.

Technical Support

Select Technical Support to access Zilog’s Technical Support website.

About

Select About to display installed product and component version information.

Shortcut Keys

The following sections list the shortcut keys for the Zilog Developer Studio II.

• File Menu Shortcuts on page 134

• Edit Menu Shortcuts on page 134

• Project Menu Shortcuts on page 135

• Build Menu Shortcuts on page 136

• Debug Menu Shortcuts on page 136

File Menu Shortcuts
Shortcut options for accessing the File menu are listed in Table 33.

Edit Menu Shortcuts
Shortcut options for accessing the Edit menu are listed in Table 34.

Table 33. File Menu Shortcut Options

Option Shortcut Description

New File Ctrl+N To create a new file in the Edit window.

Open File Ctrl+O To display the Open dialog box for you to find the appropriate file.

Save Ctrl+S To save the file.

Save All Ctrl+Alt+L To save all files in the project.

Print Ctrl+P To print a file.

UM013034-1210 Shortcut Keys

Zilog Developer Studio II – Z8 Encore!®

User Manual

135

Project Menu Shortcuts
The one shortcut option for accessing the Project menu is listed in Table 35.

Table 34. Edit Menu Shortcut Options

Option Shortcut Description

Undo Ctrl+Z To undo the last command, action you performed.

Redo Ctrl+Y To redo the last command, action you performed.

Cut Ctrl+X To delete selected text from a file and put it on the clipboard.

Copy Ctrl+C To copy selected text from a file and put it on the clipboard.

Paste Ctrl+V To paste the current contents of the clipboard into a file.

Select All Ctrl+A To highlight all text in the active file.

Show Whitespaces Ctrl+Shift+8 To display all whitespace characters such as spaces and tabs.

Find Ctrl+F To find a specific value in the designated file.

Find Again F3 To repeat the previous search.

Find in Files Ctrl+Shift+F3 To find text in multiple files.

Replace Ctrl+H To replace a specific value to the designated file.

Go to Line Ctrl+G To jump to a specified line in the current file.

Toggle Bookmark Ctrl+F2 To insert a bookmark in the active file for the line where your cursor
is located or to remove the bookmark for the line where your cursor
is located.

Next Bookmark F2 To position the cursor at the line where the next bookmark in the
active file is located. The search for the next bookmark does not
stop at the end of the file; the next bookmark might be the first
bookmark in the file.

Previous Bookmark Shift+F2 To position the cursor at the line where the previous bookmark in
the active file is located. The search for the previous bookmark
does not stop at the beginning of the file; the previous bookmark
might be the last bookmark in the file.

Remove All
Bookmarks

Ctrl+Shift+F2 To delete all of the bookmarks in the currently loaded project.

Table 35. Project Menu Shortcut Option

Option Shortcut Description

Settings Alt+F7 To display the Project Settings dialog box.

Using the Integrated Development Environment UM013034-1210

136

Zilog Developer Studio II – Z8 Encore!®

User Manual

Build Menu Shortcuts
Shortcut options for accessing the Build menu are listed in Table 36.

Debug Menu Shortcuts
Shortcut options for accessing the Debug menu are listed in Table 37.

Table 36. Build Menu Shortcut Options

Option Shortcut Description

Build F7 To build your file and/or project.

Stop Build Ctrl+Break To stop the build of your file and/or project.

Table 37. Debug Menu Shortcut Options

Option Shortcut Description

Stop Debugging Shift+F5 To stop debugging of your program.

Reset Ctrl+Shift+F5 To reset the debugger.

Go F5 To invoke the debugger (go into Debug mode).

Run to Cursor Ctrl+F10 To make the debugger run to the line containing the cursor.

Break Ctrl+F5 To break the program execution.

Step Into F11 To execute the code one statement at a time.

Step Over F10 To step to the next statement regardless of whether the current state-
ment is a call to another function.

Step Out Shift+F11 To execute the remaining lines in the current function and return to
execute the next statement in the caller function.

Set Next
Instruction

Shift+F10 To set the next instruction at the current line.

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

137

Using the Editor

ZDS II provides an intelligent editor that comprises a number of features to shorten your
application development time. The editor allows you to read and write code faster, navi-
gate intelligently and identify and correct mistakes.

The editor offers the following key features.

Write Code Faster

• Auto Completion on page 139

• Call Tips on page 143

• Auto Indentation on page 145

• Multiple Clipboards on page 147

• Line and Block Comments on page 149

• Abbreviations and Expansions on page 149

• Auto Insertion of Braces and Quotes on page 155

• Long Line Indicator on page 156

• UNICODE Support on page 158

Read Code Faster

• Auto Syntax Styler on page 159

• Code Folding Margin on page 162

• Line Number Margin on page 164

• Type Info Tips on page 166

• Highlighting and Finding Matched Braces on page 167

• Matching Preprocessor Conditional Macros on page 168

• Wrap Long Lines on page 169

• Indentation Guides on page 170

• Zoom In/Out on page 172

Navigate Intelligently

• Bookmarks on page 172

• Opening an Include File on page 175

• Highlighting a Program Counter Line on page 176

Using the Editor UM013034-1210

138

Zilog Developer Studio II – Z8 Encore!®

User Manual

Identify and Correct Mistakes

• Mismatched Brace Highlighting on page 178

• Auto Conversion of “.” to “→” on page 179

In addition to the above feature set, the editor supports many useful hotkeys to help
improve your productivity. The hotkeys can save you valuable time by allowing you to
keep your hands near the keyboard rather than having to repeatedly reach for the mouse.

A complete reference of the hotkeys supported by ZDS II, as well as other supported tools
(including the editor), can be found in the ZDS II help files. Simply navigate via the ZDS II
Help menu to Hotkeys.

Tables 38 through 41 list many hotkeys that you may find useful.

Table 38. Working with Words

Command name Hotkey Description

Word Left Ctrl+Left Arrow Moves back one word.

Word Right Ctrl+Right Arrow Moves forward one word.

Word Left Select Ctrl+Shift+Left Arrow Extends the selection back one word.

Word Right Select Ctrl+Shift+Right Arrow Extends the selection forward one word.

Word Backward Delete Ctrl+BackSpace Deletes a word to the left.

Word Forward Delete Ctrl+Delete Deletes a word to the right.

Table 39. Working with Lines

Command name Hotkey Description

Line Join Ctrl+J Joins the selected lines.

Line Split Ctrl+Shift+J Splits the selected line that is not fit within the visible window area.

Line Cut Ctrl+L Deletes the cursor line or the selected lines and puts them on the
Clipboard.

Line Delete Ctrl+Shift+L Deletes the cursor line or selected lines.

Line Copy Ctrl+T Copies the current line or selected lines and put them in the Clip-
board.

Line Transpose Ctrl+Shift+T Swaps the current and previous line.

Line or Block Dupli-
cate

Ctrl+D Duplicates the cursor line or the selected lines.

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

139

Auto Completion
You can accelerate your keyboarding with an autocompletion list that appears as you type.
Essentially, when you begin typing the first few characters of a word, a window will pop
up to display a list of all relevant choices and allow you to choose the appropriate one; see
Figure 95 for an example.

Line Start Delete Ctrl+Shift+Back-
Space

Deletes the line contents to its start.

Line End Delete Ctrl+Shift+Delete Deletes the line contents to its end.

Indent Tab Indents the cursor line or selected lines.

Un-indent Shift+Tab Un-indents the cursor line or selected lines.

Table 40. Working with Paragraphs

Command name Hotkey Description

Paragraph Previous Ctrl+[Moves to the start of the previous paragraph.

Paragraph Next Ctrl+] Moves to the start of the next paragraph.

Paragraph Previous
Select

Ctrl+Shift+[Extends the selection to the start of the previous paragraph.

Paragraph Next Select Ctrl+Shift+] Extends the selection to the start of the next paragraph.

Table 41. Working with Files

Command name Hotkey Description

File Forward Navigate Ctrl+Tab Navigates to the next opened file.

File Backward Navigate Ctrl+Shift+Tab Navigates to the previous opened file.

File Close Ctrl+F4 Closes the active file.

Table 39. Working with Lines (Continued)

Using the Editor UM013034-1210

140

Zilog Developer Studio II – Z8 Encore!®

User Manual

Typing one or two characters is typically enough for the editor to show the autocompletion
list; simply enter more characters to refine your choices. Typing within commented lines
or in a string does not launch the autocompletion list box.

Use your arrow keys to scroll through the list; press the Tab or Enter key to insert a cur-
rently-selected item into your document, or press the Esc key to cancel a pop-up list.

Press Ctrl+Enter to open the autocompletion list anytime, provided that the text caret is
positioned anywhere on a word or at the end of a word.

Data Structure Member List box

The C data structure construct members, struct and union, are listed upon entering “.”
or “→” after a variable or pointer of either type. With your keyboard, enter a few charac-
ters of the member to refine the choices and select the relevant one.

Upon typing the period character “.” following the structure variable name, the editor
shows the autocompletion list of all of the members of that structure. See the code snap-
shot in Figure 96.

Figure 95. Auto Completion

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

141

Include file list box

The editor opens a list box of all possible header file entries after you type #include
and a double quote or a angle bracket, as shown in Figure 97. Enter more characters to
refine the choices and include the appropriate header file.

Figure 96. Autocompletion of Members

Figure 97. Autocompletion of Header File Inclusion

Using the Editor UM013034-1210

142

Zilog Developer Studio II – Z8 Encore!®

User Manual

When you type an angle bracket following an #include directive, the editor shows a list
of all system include header files.

When you type a double quote following an #include directive, the editor shows a list
of all system and user include header files.

Autocompletion of Tags in an HTML file

When you enter a starting tag in an HTML file, the editor automatically adds its end tag
and places the text caret in between them to allow you to enter the content. See the exam-
ple in Figure 98.

To enable or disable autocompletion, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed, as shown in Figure 99.

4. Select the Show Autocompletion List checkbox to enable the autocompletion. This
option is selected by default.

Figure 98. Autocompletion of HTML Tags

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

143

When autocompletion is disabled, you can still bring up the autocompletion list box by
pressing Ctrl+Enter. Autocompletion is not supported for assembly files.

Call Tips
Call Tips is a hovering and short-lived small window that displays the prototype of a func-
tion whenever you type a function followed by a left parenthesis. As each parameter is
entered via the keyboard, the Call Tips function guides you by highlighting the corre-
sponding argument of the function prototype within the hovering window.

An example of the Call Tips window is shown in Figure 100.

Figure 99. Advance Editor Options—Show Autocompletion List

Note:

Using the Editor UM013034-1210

144

Zilog Developer Studio II – Z8 Encore!®

User Manual

Call Tips becomes available for virtually all of the functions declared or defined in your
project code and all standard include files. You are not required to build the project for the
call tips to become available. Typing within commented lines or in a string does not bring
up the Call Tips window.

If you return to the middle of a parameter list in a function call, press Ctrl+Shift+Enter to
cause the call tips to reappear. To hide the call tips window, press ESC.

To enable or disable the call tips, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed., as shown in Figure 101.

4. Select the Show Call Tips checkbox to enable the call tips. This option is selected by
default.

Figure 100. Call Tips Window

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

145

When call tips are disabled, you can still bring up the Call Tips window by pressing
Ctrl+Shift+Enter. Call tips are not supported for assembly files.

Auto Indentation
Indentation of statements is often used to clarify the program structure both in C and in
assembly code; it is one of the indispensable coding standards. While the Tab key is often
used to indent the statements belonging to a particular code block, manual indentation is
cumbersome and time-consuming.

The ZDS II editor provides automatic indentation that indent lines in a smart way based on
the syntax and formats while you are typing.

Figure 102 shows an example of autoindentation in a C file; note that the closing brace is
added automatically upon entering the opening brace because Auto Insertion of Braces
and Quotes is enabled.

Figure 101. Advance Editor Options—Show Call Tips Window

Note:

Using_the_Editor_-_Auto_Insertion_of_Braces_and_Quotes.htm#Using_the_Editor_7098_81182
Using_the_Editor_-_Auto_Insertion_of_Braces_and_Quotes.htm#Using_the_Editor_7098_81182

Using the Editor UM013034-1210

146

Zilog Developer Studio II – Z8 Encore!®

User Manual

In C program code, auto indentation is supported with brace characters { } and keywords
if, else, while, for, do, case, default.

In assembly program code, the auto indentation is supported with macros and conditional
directives such as ifdef, ifndef, if, else, elif, elseif, ifsame, ifma,
macro, $while, $repeat, with, endif, endmac, endm, endmacro, macend,
$wend, $until and endwith.

Figure 103 shows an example of autoindentation with an assembly program. Note that all
of the lines between ifdef and endif are automatically indented.

Figure 102. Auto Indentation in C Program

Figure 103. Auto Indentation With Assembly Program

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

147

To enable or disable auto indentation, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Select Auto Indent checkbox to enable the automatic indentation of code. This option
is selected by default.

Multiple Clipboards
The limitation of built-in clipboard in windows is that at any time you can hold only one
copied item, and as soon as you cut or copy something else, the previous item is removed,
in fact overwritten, by the newer item.

The ZDS II editor provides multiple clipboards that can improve your productivity by
allowing you to keep a history of up to 10 previous cuts and copies you have added to the

Figure 104. Options Dialog Box—Auto Indent

Using the Editor UM013034-1210

148

Zilog Developer Studio II – Z8 Encore!®

User Manual

system clipboard. It works alongside the regular Windows Clipboard and records every
piece of data that you cut or copy.

Simply use the keyboard hotkey Ctrl+Shift+V to retrieve earlier copies. You can scan
through the list of clipboarded items and select any item you prefer.

Press the Up or Down arrow in the keyboard to select your appropriate entry from the list.
Press Enter to paste the selected entry at the text caret position.

Clipboards are listed in the order in which they are copied. Pasting from the pop-up list
moves a clipboard to the top of the list.

Use the regular paste command, Ctrl+V, to efficiently paste the most recent clipboard con-
tent.

Clipboards are saved between instances of the IDE sessions and will not become lost, even
if you restart Windows.

Figure 105. Multiple Clipboards

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

149

Line and Block Comments
In a C file, line comments are framed using two diagonal characters (//), a format which is
derived from C++. Block comments are framed by the character sets "/*" and "*/" , which
are inherent in C. In an assembly file, line comments are framed using semicolons (;) and
there are no character sets for block comments.

The ZDS II editor provides two hotkeys to comment or un-comment a line or a block of
code; each is described below.

Line Comment in C file

To comment or un-comment a single line of text, place the text caret anywhere on the
appropriate line, then press Ctrl+Q.

To comment or un-comment multiple lines of text, select all of the appropriate lines and
press Ctrl+Q.

Ctrl+Q does not un-comment lines that don't start with line comment characters at the first
column.

Block Comments in a C File

To comment a block of code, select the block and press Ctrl+M.

You cannot un-comment a commented block of text using this hotkey. Instead, undo the
change by pressing Ctrl+Z.

Line Comments in an Assembly File

To comment or un-comment a single line of text, place the text caret anywhere on the
appropriate line, then press either Ctrl+Q or Ctrl+M.

To comment or un-comment multiple lines of text, select all of the appropriate lines and
then press either Ctrl+Q or Ctrl+M.

Abbreviations and Expansions
An abbreviation is a shortened word assigned to an expansion. An expansion is a text
string that can be a single line of code, a code block or a comment section such as a func-
tion/file header; an expansion can even be a combination of code and comments.

ZDS II allows you to define an Abbreviation and Expansion pair (See Adding an Abbrevi-
ation on page 152) and to expand an abbreviation to its expansion by simply pressing a

Note:

Note:

Using the Editor UM013034-1210

150

Zilog Developer Studio II – Z8 Encore!®

User Manual

hotkey. This feature improves your productivity by saving the time involved in typing
repeating code blocks and comment sections.

To expand an abbreviation, type an abbreviation at the appropriate location of your code in
the editor, then press Ctrl+B. The abbreviation is not case-sensitive.

Figures 106 and 107 show two examples of abbreviation and expansion.

Figure 106. Abbreviation Example 1

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

151

Abbreviation and Expansion pairs are saved between instances of the IDE sessions and
will not become lost, even if you restart Windows.

ZDS II provides some common Abbreviation and Expansion pairs by default that help you
to learn various generic syntactical notations applicable to Expansion text. You are free to
modify or remove them.

To manage abbreviation and expansion pairs, select Manage Abbreviations from the Edit
menu. The Abbreviations dialog box is displayed as shown in Figure 108.

Figure 107. Abbreviation Example 2

Note:

Using the Editor UM013034-1210

152

Zilog Developer Studio II – Z8 Encore!®

User Manual

In the Abbreviations dialog box, you can perform the following operations; each is linked
to below and further described in this section.

• Adding an Abbreviation

• Modifying an Abbreviation

• Removing an Abbreviation

• Expanding an Abbreviation

Adding an Abbreviation

To add a new abbreviation and expansion pair, perform the following steps:

1. Select Manage Abbreviations from the Edit menu to display the Abbreviations dia-
log box.

2. Enter an appropriate abbreviation in the text entry combo box labeled Abbreviation
(see Figure 108). You cannot enter a space nor special symbols except for an under-
score (_) as part of the name.

3. Press the Tab key. The multi-line text edit box, labeled Expansion, displays your key-
board entries.

4. Type the expansion, or use another editor (such as Notepad) from which to copy and
paste into the Expansion edit box.

Figure 108. Abbreviations Dialog Box

Using_the_Editor_-_Modifying_an_Abbreviation.htm#Using_the_Editor_7098_36662
Using_the_Editor_-_Modifying_an_Abbreviation.htm#Using_the_Editor_7098_36662
Using_the_Editor_-_Abbreviation_and_Expansion.htm#Using_the_Editor_7098_96968

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

153

– To indent a block of code, precede the code block with the two-character string
\t.

– To add a blank line, enter the two-character string \n.

– To place the text caret, use the pipe (|) character, which helps you to continue typ-
ing within the expanded text. To include a literal pipe character, enter two pipe
characters (||). If no pipe character is added, the text caret is moved to the end of
the expanded text.

5. Click the Add button to add the new abbreviation and expansion pair.

6. Click the Close button to close the dialog.

Modifying an Abbreviation

To modify the expansion of an abbreviation, perform the following steps:

1. Select Manage Abbreviations from the Edit menu to display the Abbreviations dia-
log box.

2. Perform either of the following two actions:

– Enter the abbreviation name in the Abbreviation combo box

– Click the Abbreviation combo box down arrow and select the appropriate abbre-
viation from the pop-up list. The Expansion box displays the expansion of the
selected abbreviation.

3. Modify the expansion by performing either of the following actions:

– To indent a block of code, precede the code block with the two-character string
\t.

– To add a blank line, enter the two-character string \n.

To place the text caret, use the pipe (|) character, which helps you to continue typing
within the expanded text string. To include a literal pipe character, character, enter two
pipe characters. If no pipe character is added, the text caret is moved to the end of the
expanded text.

4. Click the Save button.

5. Click the Close button to close the dialog.

The abbreviation name cannot be modified.

Removing an Abbreviation

To remove an abbreviation and expansion pair, perform the following steps:

1. Select Manage Abbreviations from the Edit menu to display the Abbreviations dia-
log box.

Note:

Using_the_Editor_-_Removing_an_Abbreviation.htm#Using_the_Editor_7098_32077
Using_the_Editor_-_Adding_an_Abbreviation.htm#Using_the_Editor_7098_50252
Using_the_Editor_-_Adding_an_Abbreviation.htm#Using_the_Editor_7098_50252

Using the Editor UM013034-1210

154

Zilog Developer Studio II – Z8 Encore!®

User Manual

2. Perform either of the following two actions:

– Enter the abbreviation in the Abbreviation combo box.

– Click the Abbreviation combo box down arrow and select the appropriate abbrevi-
ation name from the pop-up list. The Expansion box displays the expansion of
the selected abbreviation.

3. Click the Remove button to delete the abbreviation.

4. Click the Close button to close the dialog.

You cannot restore an abbreviation after it is deleted.

Expanding an Abbreviation

There are two ways to expand an abbreviation; one way is with a hotkey, the other is via
the Manage Abbreviations dialog box, as this section describes.

Using the hotkey

1. Move the text caret to the appropriate location in your code.

2. Using your keyboard, enter the appropriate abbreviation.

3. Press Ctrl+B to expand the abbreviation to its expansion at the caret position.

Using the Manage Abbreviations Dialog Box

1. Select Manage Abbreviations from the Edit menu to display the Abbreviations dia-
log box.

2. Perform either of the following two actions:

– Enter the abbreviation in the Abbreviation combo box.

– Click the Abbreviation combo boxdown arrow and select the appropriate abbrevi-
ation name from the pop-up list. The Expansion box displays the expansion of
the selected abbreviation.

3. Click the Insert in File button. The expansion of the selected abbreviation is inserted
at the text caret position.

Because the Abbreviations dialog is non-modal, you can use Insert in File to insert the
expansions of abbreviations across many files that belong to a project. Essentially, while
the Abbreviations dialog remains open, you are allowed to open any file, move the text
caret anywhere in that file, and insert the selected abbreviation.

Note:

Note:

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

155

Auto Insertion of Braces and Quotes
When typing an opening symbol such as a left parenthesis “(”, left brace “{”, left bracket
“[”, single left quote “'” or double left quote “"”, its matching closing symbol is automati-
cally inserted and the text caret remains between the characters, as shown in Figures 109
and 110.

Press Delete or Backspace to delete an autoinserted character.

Figure 109. Auto Insertion of Closing Brace

Figure 110. Auto Insertion of Closing Parenthesis

Using the Editor UM013034-1210

156

Zilog Developer Studio II – Z8 Encore!®

User Manual

Closing characters are not inserted inside comments and strings.

To enable or disable the auto insertion of the closing symbols })] ' and ", perform the fol-
lowing steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed.

4. Select the Auto Insert })] and Quotes checkbox to enable autoinsertion of closing
braces and quotes (see Figure 111). Disable this option if you prefer to manually enter
all of the closing characters. This option is deselected by default.

Long Line Indicator
A Long Line indicator is a vertical line that appears in the editor to mark a fixed number of
character columns. Use this indicator to wrap all of your long lines manually for better
readability. See Figure 112.

Figure 111. Advance Editor Options—Auto Insertion of Brace and Quotes

Note:

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

157

The Long Line indicator works well only for monospaced fonts (for example: the Courier
New font).

To show or hide the Long Line Indicator, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed.

4. Select the Display Long Line Indicator checkbox to display the long line indicator.
This option is deselected by default; see Figure 113.

Figure 112. Long Line Indicator

Note:

Using the Editor UM013034-1210

158

Zilog Developer Studio II – Z8 Encore!®

User Manual

5. To move the indicator to a particular column, enter the number of character columns
in the Number of Characters text entry box. The allowed range of values is between
1 and 999. It is set to 80 by default.

UNICODE Support
You can use a non-English language that is supported by UNICODE in the comments and
strings to better document your code in your native language. You can type the sentences
in your native language script in a UNICODE-supported editor, such as Microsoft Word,
and copy/paste them into the ZDS II editor.

You cannot use a bilingual keyboard to enter your native language scripts directly into the
ZDS II editor.

To enable or disable the UNICODE support, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed.

4. Select Support UNICODE checkbox to enable UNICODE support. This option is
deselected by default.

Figure 113. Advance Editor Options—Long Line Indicator Settings

Note:

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

159

Auto Syntax Styler
The Auto Syntax Styler displays the language constructs of your code in different colors.
It enables you to read your code more easily by providing visual color cues as to the struc-
ture and purpose of the code. It also helps you to avoid any typing mistakes by employing
the basic building blocks of the language constructs such as keywords, preprocessor
reserved words, comments, etc.

Figure 115 shows an incomplete string and char highlighted by the Auto Syntax Styler,
which allows you to easily correct mistakes in the code.

Figure 114. Advance Editor Options—Support UNICODE

Using the Editor UM013034-1210

160

Zilog Developer Studio II – Z8 Encore!®

User Manual

The colors used by the editor’s Auto Syntax Styler are completely configurable. To change
the color of a language construct, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

Figure 115. Auto Syntax Styler

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

161

3. Select an appropriate color from the Color Style list box, and make sure that the Use
Default checkboxes are deselected.

4. Click the Foreground or Background color to display the Color dialog box (see
Figure 117). In the Color dialog box, select the appropriate color.

Figure 116. Options Dialog Box—Editor Tab

Using the Editor UM013034-1210

162

Zilog Developer Studio II – Z8 Encore!®

User Manual

If you want to use the default foreground or background color for the selected item, select
the Use Default checkbox.

5. Click OK to close the Color dialog box.

6. Click OK to close the Options dialog box.

Code Folding Margin
Code folding allows you to selectively hide and display various sections of the code as a
part of your routine editing operations. It also helps you to understand and analyze the
code faster by letting you concentrate on a particular section of complex or problematic
code and ignore all other sections.

The code folding margin displays the fold and unfold symbols, as shown in Figure 118.

Figure 117. Color Dialog Box

Note:

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

163

The folding points of a document are based on the hierarchical structure of the document
contents. In C programming code, the document hierarchy is determined by the brace
characters, conditional preprocessor macros, commented code block and file/function
header.

Code folding is available only with C and HTML files; it is not available with assembly
files.

Folding and unfolding the code does not change the content or structure of the code.

To contract or expand single foldable block of code, click the fold point, or press Ctrl +
= while the text caret is positioned on the fold pointing line of code or within the block of
code.

To contract or expand all foldable blocks of code, click anywhere on the fold margin while
pressing the Ctrl key.

To show or hide the folding margin of a codeset, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

Figure 118. Code Folding Margin

Using the Editor UM013034-1210

164

Zilog Developer Studio II – Z8 Encore!®

User Manual

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed.

4. Select the Display Code Folding Margin checkbox to display the code folding mar-
gin. This option is selected by default.

5. Select any one of the fold symbol option buttons Simple, Arrow, Circle or Box to
change the look and feel of the fold points. By default, Simple is selected.

6. Select the Fold Comments checkbox to display fold points for all of the commented
lines of code and text.

7. Select the Fold Preprocessors checkbox to display fold points for all of the prepro-
cessor conditional macro statements.

If you enable Code Folding Margin, the Wrap long Lines will be disabled automatically
and vice-versa.

Line Number Margin
Line numbers can orient you when working in a long file. It allows you to quickly navi-
gate to a specific line of code or to identify easily a given line of code. It would also be
helpful to have the line numbers appear in the margin to aid debugging.

Figure 119. Advance Editor Options—Display Code Folding Margin

Note:

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

165

You can select a line of text by clicking the associated line number on the line number
margin.

You can select multiple lines either by clicking and dragging the mouse on the line number
margin or by clicking the appropriate start line number and with the Shift key pressed,
clicking the appropriate end line number.

You can select all of the text in the document by clicking on the line number margin with
Ctrl key pressed.

To show or hide the line number margin, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed.

4. Select the Display Line Number Margin checkbox to display the line number margin.
This option is deselected by default.

Figure 120. Line Number Margin

Using the Editor UM013034-1210

166

Zilog Developer Studio II – Z8 Encore!®

User Manual

Type Info Tips
The Type Info Tips window is a hovering and short-lived small window that pops up to
display the type of an identifier in your code whenever you move the mouse pointer over
the identifer and let it remain there for more than a fraction of a second. The tips that dis-
play in these small windows can help you to read and write code faster as well as to locate
hard-to-find errors. See the example in Figure 122.

Type Info Tips becomes available for virtually all of the variables and functions declared
or defined in your project code and in all standard include files. You are not required to
build a project for Type Info Tips to become available.

Figure 121. Advance Editor Options—Display Line Number Margin

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

167

Highlighting and Finding Matched Braces
Move your text caret just inside a pair of braces { } or parentheses () or square brackets [
] and observe the matching pair as it becomes highlighted. This highlighting feature helps
you to locate a block, function or expression scope easily. See the examples in Figures 123
and 124.

Figure 122. Type Info Tips

Figure 123. Highlighting Matching Braces

Using the Editor UM013034-1210

168

Zilog Developer Studio II – Z8 Encore!®

User Manual

When braces or parentheses are nested, the innermost pair containing the text caret is
highlighted.

You can also locate the matching brace by pressing Ctrl+E; this keyboard shortcut is espe-
cially useful when the braces are extended over multiple pages. Place your text caret any-
where in between the braces or parentheses and then press Ctrl+E to move to the closing
or opening brace or parenthesis, respectively. Use this hotkey to quickly jump between
opening and closing braces or parentheses.

To select content within matching braces or parentheses, place the text caret anywhere in
between the braces or parentheses, respectively, then press Ctrl+Shift+E.

Matching Preprocessor Conditional Macros
Source code is often grouped between compiler preprocessor statements. The ZDS II edi-
tor will allow you to move from inside a conditional statement to the enclosing preproces-
sor statements.

Move the text cursor to the line of a preprocessor conditional statement or to a line that is
enclosed by preprocessor conditional statements, then perform either of the following
actions:

• Press Ctrl+K to find the matching preprocessor conditional statements that exist for-
ward or backward

Figure 124. Highlighting Matching Parentheses

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

169

• Press Ctrl+Shift+K to select the entire text within the matching preprocessor condi-
tional statements and the conditional statements

Wrap Long Lines
When working on text strings that extend beyond 80 characters, the Wrap Long Lines
function can become extremely useful. With this feature turned on, it will not be necessary
to continually scroll horizontally, because all long lines will be wrapped to fit the size of
the editing area. The editor displays a wrapping symbol at the beginning of all wrapped
lines, as shown in Figure 125.

To enable or disable the Wrap Long Lines function, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed, as shown in Figure 126.

4. Select the Wrap Long Lines checkbox to wrap all long lines. This option is deselected
by default; see Figure 126.

Figure 125. Wrapping Long Lines

Using the Editor UM013034-1210

170

Zilog Developer Studio II – Z8 Encore!®

User Manual

If you enable the Wrap Long Lines feature, the Code Folding Margin will be disabled
automatically, and vice versa.

Indentation Guides
Indentation guides are finely-dotted vertical lines that can assist in defining the indenta-
tions of code blocks. These indentation guides make it easy to see which constructs line
up, especially when they extend over multiple pages.

When you move the text caret in between a matching pair of braces { }, the indentation
guide will be highlighted, as shown in Figure 127.

Figure 126. Advance Editor Options—Wrap Long Lines

Note:

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

171

To enable or disable indentation guides, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed.

4. Select the Display Indentation Guide checkbox to enable indentation guides. This
option is deselected by default. See Figure 128.

Figure 127. Indentation Guides

Using the Editor UM013034-1210

172

Zilog Developer Studio II – Z8 Encore!®

User Manual

Zoom In/Out
The ZDS II Editor allows you to increase or decrease the magnification of all text without
changing font settings. This function can sometimes help to locate hard-to-find bugs in the
syntactical notations of your program.

• To magnify text, roll the mouse wheel up while pressing the Ctrl key, or press
Ctrl+Num Keyboard +.

• To shrink text, roll the mouse wheel down while pressing the Ctrl key, or press
Ctrl+Num Keyboard -.

• To reset the text to the original font size, double-click the left mouse button within the
editor area while pressing the Ctrl key, or press Ctrl+Num Keyboard /.

Bookmarks
You can set bookmarks to mark frequently accessed lines in your source file. After a book-
mark is set, you can use menus or keyboard commands to move to it. You can remove a
bookmark when you no longer need it.

Bookmarks are saved in the project workspace and therefore will be restored in between
instances of the IDE sessions.

Figure 128. Advance Editor Options—Display Indentation Guide

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

173

To insert a bookmark, position the cursor on the appropriate line of the active file and per-
form either of the following actions:

• Right-click in the Edit window and select Insert Bookmark from the resulting context
menu.

• Select Toggle Bookmark from the Edit menu.

Press Ctrl+F2.

Figure 129. Bookmark Example

Using_the_Editor_-_Opening_included_file.htm#Using_the_Editor_7098_23651
Using_the_Editor_-_Zoom_In_Out.htm#Using_the_Editor_7098_63422
Using_the_Editor_-_Zoom_In_Out.htm#Using_the_Editor_7098_63422

Using the Editor UM013034-1210

174

Zilog Developer Studio II – Z8 Encore!®

User Manual

To remove a bookmark, position the cursor on the line of the active file containing the
bookmark to be removed and perform either of the following actions:

• Right-click in the Edit window and select Remove Bookmark from the resulting con-
text menu.

• Select Toggle Bookmark from the Edit menu.

Press Ctrl+F2.

To remove all bookmarks in the active file, perform either of the following actions:

• Right-click in the Edit window and select Remove All Bookmarks from the resulting
context menu.

• Select Remove All Bookmarks from the Edit menu.

Press Ctrl+Shift+F2.

To jump to the next bookmark in the active file, perform either of the following actions:

Figure 130. Inserting a Bookmark

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

175

• Right-click in the Edit window and select Next Bookmark from the resulting context
menu.

• Select Next Bookmark from the Edit menu.

Press F2.

The search for the bookmark is started from the current cursor position and when a book-
mark is not found forward until the end of the file, the search is started from the beginning
of the file and will go on until a bookmark is reached. If no bookmark is found, this com-
mand has no effect.

To jump to the previous bookmark in the active file, perform either of the following
actions:

• Right-click in the Edit window and select Previous Bookmark from the resulting
context menu.

• Select Previous Bookmark from the Edit menu.

Press Shift+F2.

The search for the bookmark is started from the current cursor position and when a book-
mark is not found backward until the beginning of the file, the search is started from the
end of the file and will go on until a bookmark is reached. If no bookmark is found, this
command has no effect.

To select the text up to the next bookmark in the active file, Press Alt+F2.

To select the text up to the previous bookmark in the active file, Press Alt+Shift+F2.

Opening an Include File
Source files more often include header files that contain a preprocessor include statement.
The ZDS II editor allows you to jump to the include file instantaneously.

To open the include file, right-click the preprocessor include statement and perform one of
the following actions:

• Click Open File ‘<file_name.h>’ from the resulting context menu.

• Move the text cursor to the line containing the preprocessor include statement, and
press Alt+G.

You can jump to any header file that is part of the standard include path and your project
directory path. See Figure 131.

Using the Editor UM013034-1210

176

Zilog Developer Studio II – Z8 Encore!®

User Manual

The opening include file work well only with a project opened in the ZDS II. And with just
a file open in the ZDS II, the search is performed only within the file’s directory.

Highlighting a Program Counter Line
In debug mode, highlighting the Program Counter line helps you to locate the current PC
line easily. Figure 132 shows the PC line highlighted in yellow.

Figure 131. Opening an Include File

Note:

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

177

To highlight the PC line, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed.

4. Select the Highlight PC line checkbox in Debug mode to highlight the current PC
line. This option is deselected by default. Click the PC line Background Color button
to change the color of the highlighting.

Figure 132. Highlighting PC Line in Debug mode

Using the Editor UM013034-1210

178

Zilog Developer Studio II – Z8 Encore!®

User Manual

Mismatched Brace Highlighting
Move your text caret just behind the braces, parentheses or square brackets that are not
properly balanced and observe those that are mismatched become highlighted in red, as
shown in Figures 134 and 135.

Figure 133. Advance Editor Options—Highlight PC Line in Debug mode

Figure 134. Mismatched Brace Highlighting

UM013034-1210 Using the Editor

Zilog Developer Studio II – Z8 Encore!®

User Manual

179

Auto Conversion of “.” to “→”
The ZDS II editor, upon discovering that you typed a period (.) instead of an arrow (→)
after a pointer to a type of struct or union will automatically correct it and cause the
Member list box to pop up. Automatic conversion of a period (.) to an arrow (→) avoids
wasted builds and thereby allows you to be more productive with your code writing. See
Figure 136.

Figure 135. Mismatched Parenthesis Highlighting

Using the Editor UM013034-1210

180

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 136. Convert . to → Automatically

UM013034-1210 Using the ANSI C-Compiler

Zilog Developer Studio II – Z8 Encore!®

User Manual

181

Using the ANSI C-Compiler

The following sections provide you For functions that are declared to be monitor functions
by the use of #pragma _monitor, the saved value of the interrupt control register
(IRQCTL) will be inserted on the stack between the caller’s frame pointer and the return
address.

 writing C programs with the ANSI C-Compiler:

• Language Extensions on page 182

• Type Sizes on page 198

• Predefined Macros on page 199

• Calling Conventions on page 202

• Calling Assembly Functions from C on page 208

• Calling C Functions from Assembly on page 210

• Command Line Options on page 211

• Run-Time Library on page 212

• Start-Up Files on page 228

• Segment Naming on page 232

• Linker Command Files for C Programs on page 232

• ANSI Standard Compliance on page 240

• Warning and Error Messages on page 245

For functions that are declared to be monitor functions by the use of #pragma _monitor,
the saved value of the interrupt control register (IRQCTL) will be inserted on the stack
between the caller’s frame pointer and the return address.

 using the compiler in the developer’s environment, refer to Getting Started on page 1 and
Using the Integrated Development Environment on page 15.

The Command Processor allows you to use commands or script files to automate the exe-
cution of a significant portion of the IDE’s functionality. For more information about

Note:

Note:

Note:

Using the ANSI C-Compiler UM013034-1210

182

Zilog Developer Studio II – Z8 Encore!®

User Manual

using the Command Processor, see Appendix D. Using the Command Processor on
page 465.

Language Extensions

To give you additional control over the way the Z8 Encore! C-Compiler allocates storage
and to enhance its ability to handle common real-time constructs, the compiler implements
the following extensions to the ANSI C standard:

• Additional Keywords for Storage Specification on page 183

The compiler divides the Z8 Encore! CPU memory into three memory spaces: ROM,
RData (near RAM), and EData (far RAM). It provides the following keywords with
which you can control the storage location of data in these memory spaces:

– near

– far

– rom

These keywords can also be used to specify the memory space to which a pointer is
pointing to.

• Memory Models on page 187

The compiler supports two memory models: small and large. These models allow you
to control where data are stored by default. Each application can only use one model.
The model can affect the efficiency of your application. Some of the memory alloca-
tion defaults associated with a memory model can be overridden using the keywords
for storage specification.

• Call Frames on page 188

Call frames hold the arguments, local variables, and other pertinent information of an
instantiation of a procedure or function at a time. The Zilog Z8 Encore! compiler sup-
ports two types of call frames: static and dynamic. Dynamic call frames are allocated
on the run-time stack. Static call frames are allocated in static memory. The call frame
can affect the efficiency of your application.

• Interrupt Support on page 189

The Z8 Encore! CPU supports various interrupts. The C-Compiler provides language
extensions to designate a function as an interrupt service routine and provides features
to set each interrupt vector.

• Monitor Function Support on page 191

The C-Compiler provides a special function type to be used in monitor applications to
support efforts to create a real-time operating system kernel for Z8 Encore!.

UM013034-1210 Language Extensions

Zilog Developer Studio II – Z8 Encore!®

User Manual

183

• String Placement on page 192

Because the Z8 Encore! CPU has multiple address spaces, the C-Compiler provides
language extensions to specify the storage for string constants.

• Inline Assembly on page 193

The C-Compiler provides directives for embedding assembly instructions and direc-
tives into the C program.

• Placement Directives on page 193

The placement directives allow users to place objects at specific hardware addresses
and align objects at a given alignment.

• Char and Short Enumerations on page 195

The enumeration data type is defined as int as per ANSI C. The C-Compiler provides
language extensions to specify the enumeration data type to be other than int.

• Setting Flash Option Bytes in C on page 195

The Z8 Encore! CPU has two Flash option bytes. The C-Compiler provides language
extensions to define these Flash option bytes.

• Program RAM Support (Z8 Encore! XP 16K Series Only) on page 196

The Z8 Encore! XP 16K Series devices have additional RAM that can be used as Pro-
gram RAM (PRAM) optionally. The Z8 Encore! C-Compiler provides syntax to place
code for a function in PRAM.

• Preprocessor #warning Directive Support on page 197

The C-Compiler supports #warning directives in addition to #error directives for
diagnostic message generation.

• Supported New Features from the 1999 Standard on page 198

The Z8 Encore! C-Compiler is based on the 1989 ANSI C standard. Some new fea-
tures from the 1999 standard are supported in this compiler for ease of use.

Additional Keywords for Storage Specification
The near, far, and rom keywords are storage class specifiers and are used to control the
allocation of data objects by the compiler. They can be used on individual data objects
similar to the const and volatile keywords in the ANSI C standard. The storage speci-
fiers can only be used to control the allocation of global and static data. The allocation of
local data (nonstatic local) and function parameters is decided by the compiler and is
described in later sections. Any storage specifier used on local and parameter data is
ignored by the compiler.

The data allocation for various storage class specifiers is as follows:

• near

Using the ANSI C-Compiler UM013034-1210

184

Zilog Developer Studio II – Z8 Encore!®

User Manual

A variable declared with the near storage specifier is allocated in the 8-bit address-
able RData (near RAM) address space. The address range for these variables is 00-
FF. The corresponding assembler address space for these variables is RData. You can
set this address range within 00-FF based on device type and application requirement.

For example:

near int ni; /* ni is placed in RData address space */

• far

A variable declared with the far storage specifier is allocated in the 12-bit address-
able EData (far RAM) address space. The address range for these variables is 100-
FFF. The corresponding assembler address space for these variables is EData. You can
set this address range within 100-FFF based on device type and application require-
ment.

For example:

far int fi; /* fi is placed in EData address space */

In the Z8 Encore! compiler, the peripheral registers (address: F00-FFF) are also mapped
to the far storage specifier; no separate keyword is provided.

For example:

#define T0CTL0 (*(unsigned char volatile far*)0xF06)
T0CTL0 = 0x12;

• rom

A variable declared with the rom storage specifier is allocated in the 16-bit address-
able nonvolatile memory. The address range for these variables is 0000-FFFF. The
lower portion of this address space is used for the Flash option bytes and interrupt vec-
tor table. The corresponding assembler address space for these variables is ROM. You
can set this address range within 0000-FFFF based on his device type and application
requirement.

For example:

rom int ri; /* ri is placed in ROM address space */

Note:

UM013034-1210 Language Extensions

Zilog Developer Studio II – Z8 Encore!®

User Manual

185

Figure 137. Z8 Encore! Memory Layout

Storage Specification for Pointers

To properly access near, far, and rom objects using a pointer, the compiler provides the
ability to associate the storage specifier with the pointer type:

• near pointer

A near pointer points to near data.

• far pointer

A far pointer points to far data.

• rom pointer

A rom pointer points to rom data.

For example:

char *p; /* p is a pointer to a :
near char : small model
far char : large model. */

char far *fp; /* fp is a pointer to a far char,
fp itself is stored in:
near memory for small model
far memory for large model. */

char far * far fpf; /* fpf is a pointer to a far char,
fpf itself is stored in far
memory. */

char * near pn; /* pn is a pointer to a:

rom

0000

FFFF

near

far

FFF

100

00
FF

Register File

Flash

Using the ANSI C-Compiler UM013034-1210

186

Zilog Developer Studio II – Z8 Encore!®

User Manual

near char : small model
far char : large model
pn itself is stored in near
memory. */

char near * far npf; /* npf is a pointer to a near
char,
npf itself is stored in far
memory. */

char rom * near cpn; /* cpn is a pointer to a rom char,
cpn itself is stored in near
memory. */

Default Storage Specifiers

The default storage specifier is applied if none is specified. The default storage specifier
for a given type of data depends on the memory model chosen. See the following table for
the default storage specifiers for each model type.

When the deprecated –const=ROM option is selected, the default storage specifier for
const qualified variables is rom in both the small and large models. Zilog recommends
that you use the rom keyword to explicitly place a variable in the rom address space when
desired, rather than use that deprecated option (see Place Const Variables in ROM on
page 76).

Space Specifier on Structure and Union Members Ignored

The space specifier for a structure or union takes precedence over any space specifier
declared for an individual member of the structure. When the space specifier of a member
does not match the space specifier of its structure or union, the space specifier of the mem-
ber is ignored.

For example:

struct{
near char num; /* Warning: near space specifier
is ignored. */
near char * ptr; /* Correct: ptr points to a char in near
memory.
ptr itself is stored in the memory space of structure (far).

*/

Table 1. Default Storage Specifiers

Function Globals Locals String Const
Parameter
s Pointer

Small (S) rom near near near near near near

Large (L) rom far far far far far far

UM013034-1210 Language Extensions

Zilog Developer Studio II – Z8 Encore!®

User Manual

187

} far mystruct; /* All of mystruct is allocated in far memory.*/

Memory Models
The Z8 Encore! C-Compiler provides two memory models:

• Small Memory Model on page 187

• Large Memory Model on page 187

Each of these models directs the compiler where to place data in memory by default, to
maximize the efficiency of an application. This feature allows you to control where global
and static data are allocated, as well as where frames containing local and parameter data
are stored.

Small Memory Model

In the small memory model, global variables are allocated in the RData address space. The
address of these variables is 8 bits. The locals and parameters are allocated on the stack,
which is also located in the RData address space. The address of a local or parameter is an
8-bit address. Global variables can be manually placed into the EData or ROM address
space by using the address specifiers far and rom, respectively. Local (nonstatic) vari-
ables and parameters are always allocated in the RData address space, and any address
specifiers used in their declarations are ignored. Use of the small memory model does not
impose any restriction on your code size; only data memory is affected by the choice of
model.

The small memory model always produces more efficient code than the large model if
your application can use it. The use of the small model places stringent limits on the data
space available for the stack and data. It does help to produce smaller code, by enabling
the compiler to use shorter instructions with more compact addressing modes. If you are
near but slightly over the data-space limits of the small model, you might still be able to
use the small model by declaring enough selected global or static variables as far to get
your use of RData down to the available space.

The code used to access those far variables is less efficient than code to access near (i.e.,
RData) variables. Therefore, if you follow this plan, you must identify variables that are
seldom accessed in your program and designate them as far.

printf() usually cannot be used with the small model because the stack grows too large
and corrupts the data.

Large Memory Model

In the large memory model, global variables are allocated in the EData address space. The
address of these variables is 16 bits. The locals and parameters are allocated on the stack,
which is also located in the EData address space. The address of a local or parameter is a

Note:

Using the ANSI C-Compiler UM013034-1210

188

Zilog Developer Studio II – Z8 Encore!®

User Manual

16-bit address. Global variables can be manually placed into the RData or ROM address
space by using the address specifiers near or rom, respectively. Local (nonstatic) vari-
ables and parameters are always allocated in the EData address space, and any address
specifiers used in their declarations are ignored.

If you are forced to use the large model because of your data space and stack requirements,
you can still get some of the benefit of the more efficient code that is typical of the small
model. To do so, carefully choose the most frequently used global or static variables and
declare them near. This helps with both code size and even more so with execution speed
because more frequently executed code is more efficient.

One way of minimizing the amount of data space (RData and EData) your application
needs is to allocate a single buffer in data space to hold, for example, the largest of a num-
ber of strings you might need to display. The numerous strings are stored permanently in
ROM where space is often less limited. Each string, in turn, is then copied from ROM to
data space at the moment when it is needed.

Another way of saving space when data space (RData and EData) is at a premium is to
declare initialized tables that are not modified in the code with the rom keyword. The
trade-off here is that the execution speed is likely to be somewhat slower because the num-
ber of addressing modes available to the compiler for accessing rom variables is very
small.

Call Frames
Call frames hold the arguments, local variables, and other pertinent information of an
instantiation of a procedure or function at a time. The Zilog Z8 Encore! C-Compiler sup-
ports two types of call frames:

• Static Frames on page 188

• Dynamic Frames on page 189

Static Frames

In the static frames scheme, for each function in the program, a single frame is statically
allocated at compile time for storing the call frame containing the parameters and local
variables of the function.

Static call frames can significantly increase code efficiency. However, this is a restrictive
call-frame scheme. This option must be used with some care because errors ensue if it is
applied blindly and your code uses either recursion or calls through function pointers.
You can avoid those errors by finding the functions that use those language features and
declaring them reentrant. In the case of function pointers, it is the functions to which the
pointers refer, not the functions that make the calls that must be marked as reentrant.

The advantage of static frames is that because the compiler knows the absolute address of
each function parameter, it can generate more compact code to access parameters than in
dynamic frames where they must be accessed by offsetting from the stack pointer. For the

UM013034-1210 Language Extensions

Zilog Developer Studio II – Z8 Encore!®

User Manual

189

Z8 Encore! instruction set architecture, this code size savings is substantial. The savings
comes primarily not from using less space for frames, but from using less code to access
data in the frames. Thus, it is primarily a savings in code space, not in data space. It could
actually require more data space, although to mitigate this, the Z8 Encore! linker uses call-
graph techniques to overlay some function frames that cannot be simultaneously active.

The disadvantages of static frames are that they do not support two features of the C lan-
guage: recursion and making calls through function pointers. To allow a broader range of
applications to get the benefits of using static frames, the Z8 Encore! compiler provides
the reentrant keyword as another C language extension.

Dynamic Frames

The most familiar type of call frames, used exclusively by most desktop-oriented compil-
ers, are dynamic frames: when a function is called, space is dynamically allocated on the
stack to hold its return address, function parameters, and local variables.

Dynamic frames hold arguments and local variables on the run-time stack, allow recur-
sion, and allow reentrancy. Dynamic frames are the usual way of storing information
about an instance of a function call. Passing argument in dynamic frames is done by push-
ing the arguments on the stack in reverse (right to left) order.

Reentrant Keyword

This keyword notifies the compiler that in an application that otherwise uses static frames,
a dynamic frame must be used for any function declared reentrant.

For example, to declare the recursive_fn function as using a dynamic call frame, use
the following syntax:

reentrant int recursive_fn (int k)
{

 if (k == 0)
 return 1;

 return (k * recursive_fn (k-1));
}

When the static call frame option is selected, all call frames are assumed static by the com-
piler unless the reentrant storage class is used in the function declaration. Obviously, if
large numbers of functions in an application must be declared reentrant, the benefit of
using static frames diminishes proportionately.

When the dynamic call frame option is selected, all call frames are assumed reentrant by
the compiler.

Interrupt Support
To support interrupts, the Z8 Encore! C-Compiler provides the following features:

• interrupt Keyword on page 190

Using the ANSI C-Compiler UM013034-1210

190

Zilog Developer Studio II – Z8 Encore!®

User Manual

• Interrupt Vector Setup on page 190

interrupt Keyword

Functions that are preceded by #pragma interrupt or are associated with the interrupt
storage class are designated as interrupt handlers. These functions should neither take
parameters nor return a value. The compiler stores the machine state at the beginning of
these functions and restores the machine state at the end of these functions. Also, the com-
piler uses the iret instruction to return from these functions.

For example:

void interrupt isr_timer0(void)
{
}

or

#pragma interrupt
void isr_timer0(void)
{
}

Interrupt Vector Setup

The compiler provides two mechanisms for interrupt vector setup:

• SET_VECTOR Intrinsic Function on page 190

• _At Keyword on page 191

SET_VECTOR Intrinsic Function

SET_VECTOR can be used to specify the address of an interrupt handler for an interrupt
vector. Because the interrupt vectors of the Z8 Encore! microcontroller are usually in
ROM, they cannot be modified at run time. The SET_VECTOR function works by switch-
ing to a special segment and placing the address of the interrupt handler in the vector table.
No executable code is generated for this statement.

The following is the SET_VECTOR intrinsic function prototype:

intrinsic void SET_VECTOR(int vectnum,void (*hndlr)(void));

An example of the use of SET_VECTOR is as follows:

#include <eZ8.h>
extern void interrupt isr_timer0(void);
void main(void)
{
 SET_VECTOR(TIMER0, isr_timer0);
}

See SET_VECTOR on page 223 for supported values of vectnum.

UM013034-1210 Language Extensions

Zilog Developer Studio II – Z8 Encore!®

User Manual

191

_At Keyword

The _At keyword (described in Placement Directives on page 193) can be used in con-
junction with the interrupt keyword to associate an interrupt handler with an interrupt
vector. Because the interrupt vectors of the Z8 Encore! microcontroller are usually in
ROM, only one handler can be associated with an interrupt vector.

For example:

#include <eZ8.h>
void interrupt isr_timer0(void) _At TIMER0
{
}

Monitor Function Support
A special function qualifier type is provided to support users who are interested in creating
a real-time operating system (RTOS) kernel for the Z8 Encore!. Functions defined with
this qualifier are treated differently from other functions at the point of function entry and
function exit. At function entry, the global interrupt status is saved on the stack and inter-
rupts are then disabled, before any other action is taken including the setup of the normal
stack frame, if any. Upon exit from a monitor function, the last thing that happens before
returning from the function is that the previous interrupt state is restored from the stack.
These operations are useful or perhaps even critical in designing an RTOS and also pro-
vide the fastest possible way of disabling interrupts in a critical section of kernel code.

To define a function of this type, use the _monitor pragma, as in the following code:

#pragma _monitor
void my_kernel_fn (void)
{ … }

This feature does not work properly for functions that are also declared as interrupt service
routines. Avoid combining the use of the _monitor and interrupt qualifiers for the same
function.

The #pragma _monitor declaration has function scope and will affect the next function
definition (as opposed to a function declaration, that is, a function prototype) that the com-
piler encounters. For this reason, quite unexpected results can ensue if this pragma is used
in a function prototype, especially when function declarations and definitions are grouped
separately as is common practice. In the case of _monitor, these results might cause seri-
ous problems in your application by disabling interrupts in a function where this was not
your intention. Therefore, it is recommended that you avoid using this #pragma in func-
tion prototypes.

Note:

Using the ANSI C-Compiler UM013034-1210

192

Zilog Developer Studio II – Z8 Encore!®

User Manual

String Placement
When string constants (literals) such as "mystring" are used in a C program, they are
stored by the C-Compiler in the RData address space for the small memory model and in
the EData address space for the large memory model. However, sometimes this default
placement of string constants does not allow you adequate control over your memory use.
Therefore, language extensions are provided to give you more control over string place-
ment:

• N"mystring"

This defines a near string constant. The string is stored in RData. The address of the
string is a near pointer.

• F"mystring"

This defines a far string constant. The string is stored in EData. The address of the
string is a far pointer.

• R"mystring"

This defines a rom string constant. The string is stored in ROM. The address of the
string is a rom pointer.

The following is an example of string placement:

#include <sio.h>
void funcn (near char *str)
{
 while (*str)
 putch (*str++);
 putch ('\n');
}

void funcf (far char *str)
{
 while (*str)

 putch (*str++);
 putch ('\n');
}

void funcr (rom char *str)
{
 while (*str)

 putch (*str++);
 putch ('\n');
}

void main (void)
{

UM013034-1210 Language Extensions

Zilog Developer Studio II – Z8 Encore!®

User Manual

193

 funcn (N"nstr");
 funcf (F"fstr");
 funcr (R"rstr");
}

Inline Assembly
There are two methods of inserting assembly language within C code:

• Inline Assembly Using the Pragma Directive on page 193

• Inline Assembly Using the asm Statement on page 193

Inline Assembly Using the Pragma Directive

The first method uses the #pragma feature of ANSI C with the following syntax:

#pragma asm "<assembly line>"

This #pragma can be inserted anywhere within the C source file. The contents of
<assembly line> must be legal assembly language syntax. The usual C escape sequences
(such as \n, \t, and \r) are properly translated. The compiler does not process the
<assembly line>. Except for escape sequences, it is passed through the compiler verbatim.

Inline Assembly Using the asm Statement

The second method of inserting assembly language uses the asm statement:

asm("<assembly line>");

The asm statement cannot be within an expression and can be used only within the body of
a function.

The <assembly line> can be any string.The compiler does not check the legality of the
string.

As with the #pragma asm form, the compiler does not process the <assembly line>
except for translating the standard C escape sequences.

The compiler prefixes the name of every global variable with an underscore (_). Global
variables can therefore be accessed in inline assembly by prefixing their name with “_”.
The local variables and parameters cannot be accessed in inline assembly.

Placement Directives
The Zilog C-Compiler provides language extensions for the following directives:

• Placement of a Variable on page 194

• Placement of Consecutive Variables on page 194

• Alignment of a Variable on page 194

Using the ANSI C-Compiler UM013034-1210

194

Zilog Developer Studio II – Z8 Encore!®

User Manual

Placement of a Variable

The following syntax can be used to declare a global or static variable at an address:

char placed_char _At 0xff; // placed_char is assigned an
address 0xff.
far struct {
char ch;
int ii;

} ss _At 0xeff; // ss is assigned an address 0xeff

rom char init_char _At 0xffff = 33;

// init_char is in rom and
initialized to 33

Only placed variables with rom storage class specifier can be initialized. The placed vari-
ables with near and far storage class specifier cannot be initialized. The uninitialized
placed variables are not initialized to zero by the compiler start-up routine.

Placement of Consecutive Variables

The compiler also provides syntax to place several variables at consecutive addresses.

For example:

char ch1 _At 0xef0;
char ch2 _At …;
char ch3 _At …;

This places ch1 at address 0xef0, ch2 at the next address (0xef1) after ch1, and ch3 at
the next address (0xef2) after ch2. The _At … directive can only be used after a previous
_At or _Align directive.

Alignment of a Variable

The following syntax can be used to declare a global or static variable aligned at a speci-
fied alignment:

char ch2 _Align 2; // ch2 is aligned at even boundary
char ch4 _Align 4; // ch4 is aligned at a four byte boundary

Only aligned variables with the rom storage class specifier can be initialized. The aligned
variables with the near and far storage class specifiers cannot be initialized. The unini-
tialized aligned variables are not initialized to zero by the compiler start-up routine.

Note:

Note:

UM013034-1210 Language Extensions

Zilog Developer Studio II – Z8 Encore!®

User Manual

195

Char and Short Enumerations
The enumeration data type is defined as int as per ANSI C. The C-Compiler provides
language extensions to specify the enumeration data type to be other than int to save
space. The following syntax is provided by the C-Compiler to declare them as char or
short:

char enum
{
 RED = 0,
 YELLOW,
 BLUE,
 INVALID
} color;

short enum
{
 NEW= 0,
 OPEN,
 FIXED,
 VERIFIED,
 CLOSED
} status;

void main(void)
{
 if (color == RED)
 status = FIXED;
 else
 status = OPEN;
}

Setting Flash Option Bytes in C
The Z8 Encore! CPU provides up to two Flash option bytes to configure the device. These
Flash option bytes can be set in C, using the following syntax:

#include <eZ8.h>
FLASH_OPTION1 = val;
FLASH_OPTION2 = val;

where

• FLASH_OPTION1 is the Flash option byte at address 0

• FLASH_OPTION2 is the Flash option byte at address 1

Using the ANSI C-Compiler UM013034-1210

196

Zilog Developer Studio II – Z8 Encore!®

User Manual

For example:

#include <eZ8.h>
FLASH_OPTION1 = 0xFF;
FLASH_OPTION2 = 0xFF;

void main (void)
{
}

This example sets the Flash option bytes at addresses 0 and 1 as 0xFF. The Flash option
bytes can be written only once in a program. They are set at load time. When you set these
bytes, you must make sure that the settings match the actual hardware.

Program RAM Support (Z8 Encore! XP 16K Series Only)
The Z8 Encore! XP 16K Series devices have additional RAM that can optionally be used
as Program RAM (PRAM). The Z8 Encore! C-Compiler provides syntax to place code for
a function in PRAM. This feature can be useful for keeping device power consumption
low by arranging that frequently activated code be placed in PRAM so that the main body
of code, which often only must be executed at rare intervals, remains in the more power-
intensive Flash memory.

The compiler provides a pragma (#pragma PRAM) for this purpose. This pragma has
function scope and can only be used just before a function definition. The code for such
functions is then placed in a special segment called PRAMSEG.

For example:

#pragma PRAM
int func(void)
{

return 2;
}

The code for the func function is placed in the PRAMSEG segment. Multiple functions in a
program can be designated as PRAM functions by preceding each of them with #pragma
PRAM. A copy of the PRAMSEG is kept in ROM and copied to PRAM by the C start-up
module. For more details, see Linker Command Files for C Programs on page 232 and
Start-Up Files on page 228.

Only the code for the function designated as PRAM is placed by the compiler in PRAM-
SEG. Any functions called by such function are not automatically placed by the compiler
in PRAMSEG.

For example:

#pragma PRAM
int func(void)
{

UM013034-1210 Language Extensions

Zilog Developer Studio II – Z8 Encore!®

User Manual

197

return anotherfunc();
}

In the preceding example, only the code for func is placed in PRAMSEG. The code for
anotherfunc is placed in a segment in ROM. To place anotherfunc in PRAM, you
must precede it with #pragma PRAM also.

For example:

#pragma PRAM

int anotherfunc(void)

{

return 2;

}

The same is true for any library functions called from such functions. If you want to avoid
having these functions executed from Flash (which might partially defeat the power-sav-
ing goal of placing the functions that call them in PRAM), you must include the source for
the library function in your project and precede the library function with #pragma PRAM
if it is a C function or if it is an assembly function, change the segment of the function to
PRAMSEG using the segment PRAMSEG assembler directive.

The #pragma PRAM declaration has function scope and will affect the next function defi-
nition (as opposed to a function declaration, that is, a function prototype) that the compiler
encounters. For this reason, quite unexpected results can ensue if this pragma is used in a
function prototype, especially when function declarations and definitions are grouped sep-
arately as is common practice. Therefore it is recommended that you avoid using this
#pragma in function prototypes.

Preprocessor #warning Directive Support
A preprocessor line of the form

#warning token-sequence

causes the compiler to write a warning message consisting of the token-sequence. The
compiler continues the compilation process with #warning as opposed to #error.

For example, the following line in the C source:

#warning This is a test message

causes the compiler to generate the following warning:

Test.c (2,9) : WARNING (38) "This is a test message"

Note:

Using the ANSI C-Compiler UM013034-1210

198

Zilog Developer Studio II – Z8 Encore!®

User Manual

Supported New Features from the 1999 Standard
The Z8 Encore! compiler implements the following new features introduced in the ANSI
1999 standard, also known as ISO/IEC 9899:1999:

• C++ Style Comments on page 198

• Trailing Comma in Enum on page 198

• Empty Macro Arguments on page 198

• Long Long Int Type on page 198

C++ Style Comments

Comments preceded by // and terminated by the end of a line, as in C++, are supported.

Trailing Comma in Enum

A trailing comma in enum declarations is allowed. This essentially allows a common syn-
tactic error that does no harm. Thus, a declaration such as

enum color {red, green, blue,} col;

is allowed (note the extra comma after blue).

Empty Macro Arguments

Preprocessor macros that take arguments are allowed to be invoked with one or more
arguments empty, as in this example:

#define cat3(a,b,c) a b c
printf("%s\n", cat3("Hello ", ,”World"));
 // ^ Empty arg

Long Long Int Type

The long long int type is allowed. (In the Z8 Encore! C-Compiler, this type is treated
as the same as long, which is allowed by the standard.)

Type Sizes

The type sizes for the basic data types on the Z8 Encore! C-Compiler are as follows:

UM013034-1210 Predefined Macros

Zilog Developer Studio II – Z8 Encore!®

User Manual

199

The type sizes for the pointer data types on the Z8 Encore! C-Compiler are as follows:

All data are aligned on a byte boundary. Avoid writing code that depends on how data are
aligned.)

Predefined Macros

The Z8 Encore! C-Compiler comes with the following standard predefined macro names:

int 16 bits

short int 16 bits

char 8 bits

long 32 bits

float 32 bits

double 32 bits

near pointer 8 bits

far pointer 16 bits

rom pointer 16 bits

__AUS_SIZED_BY_TYPE__ Defined on all Zilog compilers and set to 0
or 1 as to whether the size of a bitfield
depends on the type(s) of the bitfield mem-
bers.

__BACKWARD_COMPATIBLE_BITFIELDS_
_

Defined on all Zilog compilers and set to 0
or 1 as to whether the implementation of
bitfields is compatible with that used before
January 2007.

__BITFIELDS_OVERLAP_AUS__ Defined on all Zilog compilers and set to 0
or 1 as to whether a bitfield member that
requires more bits than remains in the cur-
rent byte must begin a new byte. (A 0 indi-
cates that it does.)

__BITFIELDS_PACK_L2R__ Defined on all Zilog compilers and set to 0
or 1 as to whether bitfields back left to
right, that is, from most significant to least
significant bit.

__CONST_IN_RAM__ Defined if const objects are placed in RAM
memory.

__CONST_IN_ROM__ Defined if const objects are placed in ROM
memory.

Using the ANSI C-Compiler UM013034-1210

200

Zilog Developer Studio II – Z8 Encore!®

User Manual

None of these macro names can be the subject of a #define or a #undef preprocessing
directive. The values of these predefined macros (except for __LINE__ and __FILE__)
remain constant throughout the translation unit.

The following additional macros are predefined by the Z8 Encore! C-Compiler:

__CPU_NAME__ Defined on all Zilog compilers and
expands to the CPU name as passed on
the compile line.

__DATE__ This macro expands to the current date in
the format “Mmm dd yyyy” (a character
string literal), where the names of the
months are the same as those generated
by the asctime function and the first char-
acter of dd is a space character if the value
is less than 10.

__FILE__ This macro expands to the current source
file name (a string literal).

__LINE__ This macro expands to the current line
number (a decimal constant).

__NEW_AU_AT_TYPE_CHANGE__ Defined on all Zilog compilers and set to 0
or 1 as to whether a change in the type of
bit field members requires beginning a
new byte in the bitfield packing. (A 1 indi-
cates that it does.)

__STDC__ This macro is defined as the decimal con-
stant 1 and indicates conformance with
ANSI C.

__TIME__ This macro expands to the compilation
time in the format “hh:mm:ss” (a string lit-
eral).

__UNSIGNED_CHARS__ Defined if the type char is equivalent to the
type unsigned char.

__CONST_IN_RAM__ This macro is defined if the –const=ram command line compi-
lation option is used.

__CONST_IN_ROM__ This macro is defined if the –const=rom command line compi-
lation option is used.

__ENCORE__ This macro is defined and set to 1 for the Z8 Encore! compiler
and is otherwise undefined.

__EZ8__ This macro is defined and set to 1 for the Z8 Encore! compiler
and is otherwise undefined.

UM013034-1210 Predefined Macros

Zilog Developer Studio II – Z8 Encore!®

User Manual

201

All predefined macro names begin with two underscores and end with two underscores.
The following sections describe predefined macros:

• Examples on page 201

• Macros Generated by the IDE on page 202

Examples
The following program illustrates the use of some of these predefined macros:

#include <stdio.h>
void main()
{
#ifdef __ZILOG__
 printf("Zilog Compiler ");
#endif
#ifdef __ENCORE__
 printf("for Z8 Encore! ");
#endif
#ifdef __EZ8__
 printf("with eZ8 Cpu ");
#endif
#ifdef __ZDATE__
 printf("built on %d.\n", __ZDATE__);
#endif
}

__FPLIB__ This macro is defined on all Zilog compilers and indicates
whether the floating-point library is available. If the floating-
point library is available, the macro expands to 1; otherwise, it
expands to 0.

__MODEL__ This macro indicates the memory model used by the compiler
as follows:

0 Small model
3 Large model

__ZDATE__ This macro expands to the build date of the compiler in the for-
mat YYYYMMDD. For example, if the compiler were built on
May 31, 2006, then __ZDATE__ expands to 20060531. This
macro gives a means to test for a particular Zilog release or to
test that you are using a version of the compiler that was
released after a particular new feature has been added.

__ZILOG__ This macro is defined and set to 1 on all Zilog compilers to indi-
cate that the compiler is provided by Zilog.

Using the ANSI C-Compiler UM013034-1210

202

Zilog Developer Studio II – Z8 Encore!®

User Manual

Macros Generated by the IDE
In addition to the above predefined macros, the ZDS II IDE generates the following mac-
ros:

The macros generated by the IDE can be checked, and added to, by going to the Prepro-
cessor page of the Project Settings dialog box (see C: Preprocessor Page on page 69).

Calling Conventions

The Z8 Encore! C-Compiler imposes a strict set of rules on function calls. Except for spe-
cial run-time support functions, any function that calls or is called by a C function must
follow these rules. Failure to adhere to these rules can disrupt the C environment and
cause a C program to fail.The following sections describe the calling conventions:

• Function Call Mechanism: Dynamic Frame on page 202

• Function Call Mechanism: Static Frame on page 204

• Function Call Mechanism: Register Parameter Passing on page 206

• Return Value on page 207

• Special Cases on page 208

Function Call Mechanism: Dynamic Frame
A function (caller function) performs the following tasks when it calls another function
that has a dynamic call frame (called function):

1. Push parameters on the stack in reverse order (the right-most declared argument is
pushed first, and the left-most is pushed last). This places the left-most argument on
top of the stack when the function is called.

2. Then call the function. The call instruction pushes the return address on the top of the
stack.

3. On return from the called function, caller pops the arguments off the stack or incre-
ments the stack pointer.

_DEBUG Generated for DEBUG builds. This macro can be tested to insert addi-
tional code in debug builds for sanity checking or to simplify debugging.

NDEBUG Generated for release builds. This macro, if defined, prevents the
assert macro from generating any code.

_<cpu> Where <cpu> is the CPU name, for example, _Z8F1680 or _Z8F0830.

_<variant> Where <variant> is the specific variant of the CPU, for example,
_Z8F2480XX20XXSG or _Z8F0880XX20XXEG.

UM013034-1210 Calling Conventions

Zilog Developer Studio II – Z8 Encore!®

User Manual

203

The called function performs the following tasks:

1. If the called function is a monitor function only, push the existing value of the inter-
rupt control register IRQCTL on the stack and disable interrupts.

2. Push the frame pointer onto the stack and allocate the local frame:

a. Set the frame pointer to the current value of the stack pointer.

b. Decrement the stack pointer by the size of locals and temporaries, if required.

3. Execute the code for the function.

4. If the function returns a scalar value, place it in the return value registers. For func-
tions returning an aggregate, see Special Cases on page 208.

5. Deallocate the local frame (set the stack pointer to the current value of frame pointer)
and restore the frame pointer from stack.

6. If the called function is a monitor function only, restore the interrupt control register
IRQCTL from the stack.

7. Return.

All registers, other than the return register, are considered as caller save; that is, they are
saved and restored by the caller function. The flag register is not saved and restored by the
caller function.

The function call mechanism described in this section is a dynamic call mechanism. In a
dynamic call mechanism, each function allocates memory on the stack for its locals and
temporaries during the run time of the program. When the function has returned, the
memory that it was using is freed from the stack. Figure 138 shows a diagram of the Z8
Encore! C-Compiler dynamic call frame layout.

Using the ANSI C-Compiler UM013034-1210

204

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 138. Dynamic Call Frame Layout

For functions that are declared to be monitor functions by the use of #pragma _monitor,
the saved value of the interrupt control register (IRQCTL) will be inserted on the stack
between the caller’s frame pointer and the return address.

Function Call Mechanism: Static Frame
A function (caller function) performs the following tasks when it calls another function
which has a static call frame (called function):

1. For a non-varargs function, load parameters into the corresponding static locations
for the function. For a varargs function, a dynamic frame is always used, and all
parameters are pushed on the stack in reverse order.

2. Then call the function. The call instruction pushes the return address on the top of the
stack.

3. On return from the function, the return address is automatically popped from the stack
by the ret instruction.

The called function performs the following tasks:

1. If the called function is a monitor function only, push the existing value of the inter-
rupt control register IRQCTL on the stack and disable interrupts.

 Temporaries

Locals

Callers Frame Pointer
Small Model: 8:0
Large Model: 16:0

Return Address 16:0

Parameter 0

Parameter 1

…

Parameter N

FP

SP

Run Time Stack

High Address

Low Address

Note:

UM013034-1210 Calling Conventions

Zilog Developer Studio II – Z8 Encore!®

User Manual

205

2. Push the frame pointer onto the stack and set the frame pointer to the current value of
the stack pointer.

3. Execute the code for the function.

4. If the function returns a scalar value, place it in the return registers. For functions
returning an aggregate, see Special Cases on page 208.

5. Set the stack pointer to the current value of the frame pointer and restore the frame
pointer from the stack.

6. If the called function is a monitor function only, restore the interrupt control register
IRQCTL from the stack.

7. Return.

For a static frame function, steps 2 and 5 are only done if the –debug (Debug) or
–reduceopt (Limit Optimizations for Easier Debugging) option is selected. All registers,
other than the return register, are considered as caller save, that is, they are saved and
restored by the caller function. The flag register is not saved and restored by the caller
function.

The preceding function call mechanism is a static call mechanism. The structure of a static
call frame is described in Structure of a Static Call Frame on page 205.

Structure of a Static Call Frame

For the static frame function fun, the local variables and parameters are allocated in a
frame labeled _f_fun for a large model and _n_fun for a small model. The parameters
are numbered from left to right and are named as _x_fun, where x indicates the number
associated with the parameter. In the following example, _0_fun represents the left-most
parameter (ch1), and _1_fun represents the next parameter (ch2).

C Source, Small Model

void fun(char ch1, char ch2) { }

Static Frame in Generated Assembly

.FRAME _n_fun,?_n_fun,RDATA

_1_fun:

DS 1

_0_fun:

DS 1

The .FRAME directive defines the beginning of the static call frame of a function. It con-
tinues to the next segment directive in assembly and has the following form:

.FRAME <framename>, <segname>, <space>

Using the ANSI C-Compiler UM013034-1210

206

Zilog Developer Studio II – Z8 Encore!®

User Manual

where

• <framename> is the name of the frame being declared.

• <segname> is the name of the local and parameter segment.

• <space> is the address space that holds the static frame.

If the static frame function calls other functions, then they must be referred to within the
.FRAME segment of the static frame function. This reference is done by including the
.FCALL directive. The .FCALL directive helps the linker to optimally allocate the static
call frames using the call-graph technique.

.FCALL <framename>

where <framename> is the name of the frame of the function called from the static frame
function.

For example:

 void fun(char ch1, char ch2) {
 fun1(ch1);
 }

.FRAME _n_fun,?_n_fun,RDATA

.FCALL _n_fun1
_1_fun:

DS 1
_0_fun:

DS 1

Function Call Mechanism: Register Parameter Passing
A function (caller function) performs the following tasks when it calls another function
using the register parameter passing scheme with a dynamic or static frame:

1. For a non-varargs function, place the scalar parameters (not structures or unions) of
the called function in registers R8–R13 starting from left to right. Push the remaining
parameters including the non-scalar parameters on the stack for dynamic frame func-
tions or load into the static locations for static frame functions.

For a varargs function, a dynamic frame is always used, no parameter is passed in
register, and all parameters are pushed on the stack in reverse order.

2. Then call the function. The call instruction pushes the return address on the top of the
stack.

3. On return from the function, the return address is automatically popped from the stack
by the ret instruction.

4. On return from the called function, if there were any stack parameters, caller pops
them off the stack or increments the stack pointer.

UM013034-1210 Calling Conventions

Zilog Developer Studio II – Z8 Encore!®

User Manual

207

The called function performs the following tasks:

1. If the called function is a monitor function only, push the existing value of the inter-
rupt control register IRQCTL on the stack and disable interrupts.

2. Push the frame pointer onto the stack and allocate the local frame:

a. Set the frame pointer to the current value of the stack pointer.

b. Decrement the stack pointer by the size of locals and temporaries on stack, if
required.

3. Execute the code for the function.

4. If the function returns a scalar value, place it in the return value registers. For func-
tions returning an aggregate, see Special Cases on page 208.

5. Deallocate the local frame (set the stack pointer to the current value of frame pointer),
if required, and restore the frame pointer from stack.

6. If the called function is a monitor function only, restore the interrupt control register
IRQCTL from the stack.

7. Return.

All registers, other than the return register, are considered as caller save; that is, they are
saved and restored by the caller function. The flag register is not saved and restored by the
caller function. For a static frame function, steps 2 and 5 are only done if the –debug
(Debug) or –reduceopt (Limit Optimizations for Easier Debugging) option is selected.

In the case of a monitor function, add (-1) to the offsets of all arguments on the stack to
take into account the insertion of the saved interrupt control register IRQCTL on the stack.

Return Value
The compiler places the return values of a function in the following registers:

Return Type Return Value Registers

char R0

short R0,R1

int R0,R1

long R0,R1,R2,R3

float R0,R1,R2,R3

double R0,R1,R2,R3

Note:

Using the ANSI C-Compiler UM013034-1210

208

Zilog Developer Studio II – Z8 Encore!®

User Manual

For functions returning an aggregate, see Special Cases on page 208 for details on how
they are returned.

Special Cases
Some function calls do not follow the mechanism described in Function Call Mechanism:
Dynamic Frame on page 202. Such cases are described in the following sections:

• Returning Structure on page 208

• Not Allocating a Local Frame on page 208

Returning Structure

If the function returns a structure, the caller allocates the space for the structure and then
passes the address of the return space to the called function as an additional and first argu-
ment. To return a structure, the called function then copies the structure to the memory
block pointed to by this argument.

Not Allocating a Local Frame

The compiler does not allocate a local frame for a function in the following case:

• The function does not have any local stack variables, stack arguments, or compiler-
generated temporaries.

and

• The function does not return a structure.

and

• The function is compiled without the debug option.

Calling Assembly Functions from C

The Z8 Encore! C-Compiler allows mixed C and assembly programming. A function writ-
ten in assembly can be called from C if the assembly function follows the C calling con-
ventions as described in Calling Conventions on page 202.

This section covers the following topics:

• Function Naming Convention on page 209

near * R0

far * R0,R1

rom * R0,R1

Return Type Return Value Registers

UM013034-1210 Calling Assembly Functions from C

Zilog Developer Studio II – Z8 Encore!®

User Manual

209

• Argument Locations on page 209

• Return Values on page 210

• Preserving Registers on page 210

Function Naming Convention
Assembly function names must be preceded with an _ (underscore). The compiler prefixes
the function names with an underscore in the generated assembly. For example, a call to
myfunc() in C is translated to a call to _myfunc in generated assembly by the compiler.

Argument Locations
The assembly function must assign the location of the arguments following the C calling
conventions as described in Calling Conventions on page 202.

For example, if you are using the following C prototype:

void myfunc(short arga, long argb, char argc, short * argd)

The location of the arguments must be as follows for a static frame function:

arga : _0_myfunc

argb: _1_myfunc

argc: _2_myfunc

argd: _3_myfunc

The location of the arguments must be as follows for a static frame function with register
parameter passing:

arga: R8, R9

argb: R10, R11, R12, R13

argc: _0_myfunc

argd: _1_myfunc

For a dynamic frame function, the arguments will be on stack. Their offsets from the stack
pointer at the entry point of the assembly function are as follows:

arga: -2

argb: -4

argc: -8

argd: -9

Using the ANSI C-Compiler UM013034-1210

210

Zilog Developer Studio II – Z8 Encore!®

User Manual

For a dynamic frame function with register parameter passing, some of the arguments will
be in registers and some on stack. Their registers/offsets from the stack pointer at the entry
point of the assembly function are as follows:

arga: R8, R9

argb: R10, R11, R12, R13

argc: -2

argd: -3

Return Values
The assembly function must return the value in the location specified by the C calling con-
vention as described in Calling Conventions on page 202.

For example, if you are using the following C prototype:

long myfunc(short arga, long argb, short *argc)

The assembly function must return the long value in registers R0, R1, R2, and R3.

Preserving Registers
The Z8 Encore! C-Compiler implements a caller save scheme. The caller function pre-
serves the registers, and the called assembly function is not expected to save and restore
any registers that it uses.

Calling C Functions from Assembly

The C functions that are provided with the compiler library can also be used to add func-
tionality to an assembly program. You can also create your own C functions and call them
from an assembly program.

In the C functions, all registers, other than return registers, are considered as caller save.
Therefore, the caller assembly function must make sure that it saves on the stack any reg-
isters that are in use before calling the C function and which also must be available after
the call. The caller assembly procedure then restores those registers after the return from
the C function. The flag register need not be saved and restored by the caller assembly
function.

The following example (Assembly File on page 211 and Referenced C Function Prototype
on page 211) shows an assembly source file referencing the sin function written in the
large, dynamic model. The sin function is defined in the C run-time library
(crtldd.lib).

UM013034-1210 Command Line Options

Zilog Developer Studio II – Z8 Encore!®

User Manual

211

The C-Compiler precedes the function names with an underscore in the generated assem-
bly. See Function Naming Convention on page 209.

Assembly File
globals on

xref _sin

segment far_data
val:dl %3F060A96 ; 0.523599
res:dl 0

segment code
_main:

PUSHX _val+3
PUSHX _val+2
PUSHX _val+1
PUSHX _val ; Load the argument, LSB first, MSB last
CALL _sin ; Call the function,

the result is in R0, R1, R2, R3
POP R4
POP R4
POP R4
POP R4 ; Pop the argument from stack
LDX _res,R0 ; Save the result, MSB from R0, LSB from

R3
LDX _res+1,R1
LDX _res+2,R2
LDX _res+3,R3
ret

Referenced C Function Prototype
double sin(double arg);
// double is the same as float on Z8 Encore! C-Compiler

Command Line Options

The compiler, in similar fashion to the other tools in ZDS II, can be run from the command
line for processing inside a script, and so on. See Compiler Command Line Options on
page 460 for the list of compiler commands that are available from the command line.

Note:

Using the ANSI C-Compiler UM013034-1210

212

Zilog Developer Studio II – Z8 Encore!®

User Manual

Run-Time Library

The C-Compiler provides a collection of run-time libraries. The largest section of these
libraries consists of an implementation of much of the C Standard Library. A small library
of functions specific to Zilog or to Z8 Encore! is also provided.

You can run the buildrtl.bat batch file to generate the libraries from the RTL source
(that might have been modified by you) directly into the following directory:

ZILOGINSTALL\ZDSII_product_version\lib\std

where

• ZILOGINSTALL is the ZDS II installation directory. For example, the default installa-
tion directory is C:\Program Files\Zilog

• version is the ZDS II version number. For example, version might be 4.11.0 or
5.0.0

The Z8 Encore! C-Compiler is a conforming freestanding 1989 ANSI C implementation
with some exceptions. In accordance with the definition of a freestanding implementation,
the compiler supports the required standard header files <float.h>, <limits.h>,
<stdarg.h>, and <stddef.h>. It also supports additional standard header files and
Zilog-specific nonstandard header files.

The standard header files and functions are, with minor exceptions, fully compliant with
the ANSI C Standard. They are described in detail in Appendix B. C Standard Library on
page 393. The deviations from the ANSI Standard in these files are summarized in Library
Files Not Required for Freestanding Implementation on page 244.

The ZDS II for Z8 Encore! microcontrollers comes with additional Zilog-specific func-
tions to program the Z8 Encore! peripherals. These additional functions together form the
Zilog Standard Library (ZSL) and are described in the Z8 Encore! Using Zilog Standard
Library (ZSL) White Paper (WP0010).

The following sections describe the use and format of the nonstandard, Zilog-specific run-
time libraries:

• Zilog Header Files on page 213

• Zilog Functions on page 215

The Zilog-specific header files provided with the compiler are listed in the following table
and described in Zilog Header Files on page 213.

Table 2. Nonstandard Header Files

Header Description

<eZ8.h> Z8 Encore! defines and functions

<sio.h> Serial input/output functions

UM013034-1210 Run-Time Library

Zilog Developer Studio II – Z8 Encore!®

User Manual

213

The Zilog-specific header files are located in the following directory:

<ZDS Installation Directory>\include\zilog

where <ZDS Installation Directory> is the directory in which Zilog Developer Studio was
installed. By default, this is C:\Program Files\Zilog\ZDSII_Z8ENCORE!_<ver-
sion>, where <version> might be 4.11.0 or 5.0.0.

All external identifiers declared in any of the headers are reserved, whether or not the
associated header is included. All external identifiers and macro names that begin with an
underscore are also reserved. If the program redefines a reserved external identifier, even
with a semantically equivalent form, the behavior is indeterminate.

Zilog Header Files
The Zilog header files are described in the following sections:

• Architecture-Specific Functions <eZ8.H> on page 213

• Nonstandard I/O Functions <sio.h> on page 214

Architecture-Specific Functions <eZ8.H>

A Z8 Encore!-specific header file <eZ8.h> is provided that has prototypes for Zilog-spe-
cific C library functions and macro definitions.

Macros

<eZ8.h> has the macro definitions for all Z8 Encore! microcontroller peripheral registers.

For example:

Refer to the appropriate Z8 Encore! product specification for the list of peripheral registers
supported.

<eZ8.h> also has the macro definition for the Z8 Encore! Flash option bytes:

T0H Expands to (*(unsigned char volatile near*)0xF00)

FLASH_OPTION1 Expands to a rom char at address 0x0.

FLASH_OPTION2 Expands to a rom char at address 0x1.

Note:

Note:

Using the ANSI C-Compiler UM013034-1210

214

Zilog Developer Studio II – Z8 Encore!®

User Manual

<eZ8.h> also has a macro for interrupt vector addresses:

Refer to the appropriate Z8 Encore! product specification for the list of peripheral registers
supported.

Functions

Nonstandard I/O Functions <sio.h>

This header contains nonstandard Z8 Encore! specific input/output macros and functions.

Macros

Functions

RESET Expands to Reset vector number.

intrinsic void EI(void); Enable interrupts.

intrinsic void DI(void); Disable interrupts.

intrinsic SET_VECTOR(int,void (* func) (void)); Set interrupt vector.

void reentrant INIT_FLASH(unsigned short freq); Initialize Flash frequency.

char reentrant READ_FLASH(rom const void *addr); Read Flash memory.

void reentrant WRITE_FLASH(rom const void *addr,char val); Write Flash memory.

char reentrant READ_NVDS(char addr); Read NVDS memory.

int reentrant WRITE_NVDS(char value, char addr); Write NVDS memory.

int reentrant READ_NVDS_GET_STATUS(char addr); Read NVDS, get status.

char reentrant WRITE_NVDS_GET_STATUS(char value, char addr); Write NVDS, get status.

intrinsic void RI(unsigned char istat); Restores interrupts.

intrinsic unsigned char TDI(void); Tests and disables interrupts.

_DEFFREQ Expands to unsigned long default frequency.

_DEFBAUD Expands to unsigned long default baud rate.

_UART0 Expands to an integer indicating UART0.

_UART1 Expands to an integer indicating UART1.

int getch(void) ; Returns the data byte available in the selected
UART.

int init_uart(int port,unsigned long freq, unsigned long
baud);

Initializes the selected UART for specified set-
tings and returns the error status.

unsigned char kbhit(void); Checks the receive data available on selected
UART.

UM013034-1210 Run-Time Library

Zilog Developer Studio II – Z8 Encore!®

User Manual

215

These I/O functions are provided in each of two libraries:

• A limited C Serial IO library

• A full-fledged Zilog Standard Library (ZSL)

When you select ZSL, these functions are linked from ZSL; otherwise, these functions are
linked from the C Serial IO library.

Zilog Functions
The following functions are Zilog specific:

• DI on page 216

• EI on page 216

• getch on page 216

• INIT_FLASH on page 217

• init_uart on page 218

• kbhit on page 219

• putch on page 219

• READ_FLASH on page 220

• READ_NVDS on page 221

• READ_NVDS_GET_STATUS on page 221

• RI on page 222

• select_port on page 223

• SET_VECTOR on page 223

• TDI on page 225

• WRITE_FLASH on page 226

• WRITE_NVDS on page 227

• WRITE_NVDS_GET_STATUS on page 227

reentrant unsigned char putch(char) ; Sends a character to the selected UART and
returns the error status.

int select_port(int port); Selects the UART. Default is _UART0.

Note:

Using the ANSI C-Compiler UM013034-1210

216

Zilog Developer Studio II – Z8 Encore!®

User Manual

DI

The DI function is a Zilog function that disables all interrupts. This is an intrinsic function
and is inline expanded.

Synopsis

#include <eZ8.h>
intrinsic void DI(void);

Example

#include <eZ8.h>

void main(void)
{

DI(); /* Disable interrupts */
}

EI

The EI function is a Zilog function that enables all interrupts. This is an intrinsic function
and is inline expanded.

Synopsis

#include <eZ8.h>
intrinsic void EI(void);

Example

#include <eZ8.h>

void main(void)
{

EI(); /* Enable interrupts */
}

getch

The getch function is a ZILOG function that waits for the next character to appear at the
serial port and returns its value. This function does not wait for end-of-line to return as
getchar does. getch does not echo the character received.

Synopsis

#include <sio.h>
int getch(void) ;

Returns

The next character that is received at the selected UART.

UM013034-1210 Run-Time Library

Zilog Developer Studio II – Z8 Encore!®

User Manual

217

Example

#include <sio.h>
int val;
void main()
{

init_uart(_UART0,_DEFFREQ,_DEFBAUD);
val = getch(); // Get character from _UART0

}

Before using this function, the init_uart() function must be called to initialize and
select the UART. The default UART is _UART0.

INIT_FLASH

The INIT_FLASH function is a Zilog function that sets the target clock frequency for
Flash write. The following target clock frequencies are predefined in eZ8.h for conve-
nience:

FREQ20000 /* for 20 MHz */

FREQ18432 /* for 18.432 MHz */

FREQ16000 /* for 16 MHz */

FREQ14000 /* for 14 MHz */

FREQ12000 /* for 12 MHz */

FREQ08000 /* for 8 MHz */

FREQ04000 /* for 4 MHz */

Synopsis

#include <eZ8.h>
void reentrant INIT_FLASH(unsigned short freq);

Returns

None.

Example

#include <eZ8.h>
char x;
void main()
{

INIT_FLASH(FREQ18432); /* Target clock frequency */
WRITE_FLASH((rom const *)0x2f00,x); /* write to Flash */

Note:

Using the ANSI C-Compiler UM013034-1210

218

Zilog Developer Studio II – Z8 Encore!®

User Manual

X = READ_FLASH((rom const *)0x2f00); /* read from Flash */
}

Do not write to Flash memory more than twice. To write to Flash memory more than
twice, you must perform a page erase.

Beginning with the ZDS II for Z8 Encore! release 4.8, there is a slight change in the func-
tion prototype for INIT_FLASH.

Previous Prototype

#if defined(_Z8F642)
void reentrant INIT_FLASH(unsigned short freq);
#else
void intrinsic reentrant INIT_FLASH(unsigned short freq);
#endif

New Prototype

void reentrant INIT_FLASH(unsigned short freq);

For most Z8 Encore! microcontroller variants, the intrinsic keyword has been deleted
in the ZDS II release 4.8.0. This change is taken care of automatically as long as you are
using the standard Zilog library version of INIT_FLASH and including the standard
header file ez8.h. However, since the new standard header uses the new prototype, if you
have customized INIT_FLASH in your application, you must make modifications so that
the header and function declarations agree.

init_uart
The init_uart function is a Zilog function that selects the specified UART and initial-
izes it for specified settings and returns the error status.

Synopsis

#include <sio.h>
int init_uart(int port, unsigned long freq, unsigned long baud);

Returns

Returns 0 if initialization is successful and 1 otherwise.

Example

#include <stdio.h>
#include <sio.h>
void main()
{

init_uart(_UART0,_DEFFREQ,_DEFBAUD);

Notes:

UM013034-1210 Run-Time Library

Zilog Developer Studio II – Z8 Encore!®

User Manual

219

printf("Hello UART0\n"); // Write to _UART0
}

_DEFFREQ is automatically set from the IDE based on the clock frequency setting in the
Configure Target dialog box. See Setup on page 100.

kbhit

The kbhit function is a Zilog function that determines whether there is receive data avail-
able on the selected UART.

Synopsis

#include <sio.h>
unsigned char kbhit(void) ;

Returns

Returns 1 if there is receive data available on the selected UART; otherwise, it returns 0.

Example

#include <sio.h>
unsigned char hit;
void main()
{

init_uart(_UART0,_DEFFREQ,_DEFBAUD);
hit = kbhit() ; // Check if any character available on _UART0

}

Before using this function, the init_uart() function must be called to initialize and
select the UART. The default UART is _UART0.

putch

The putch function is a Zilog function that sends a character to the selected UART and
returns the error status.

Synopsis

#include <sio.h>
reentrant unsigned char putch(char ch) ;

Returns

A zero is returned on success; a nonzero is returned on failure.

Example

#include <sio.h>
char ch = 'c' ;
unsigned char err;

Note:

Using the ANSI C-Compiler UM013034-1210

220

Zilog Developer Studio II – Z8 Encore!®

User Manual

void main()
{

init_uart(_UART0,_DEFFREQ,_DEFBAUD);
err = putch(ch) ; // Send character to _UART0

}

Before using this function, the init_uart() function must be called to initialize and
select the UART. The default UART is _UART0.

READ_FLASH

The READ_FLASH function is a Zilog function that reads a value from Flash memory at
the specified address.

Synopsis

#include <eZ8.h>
char reentrant READ_FLASH(rom const void *addr);

Returns

The function returns data read from the specified address addr.

Example

#include <eZ8.h>
char x;
void main()
{
 INIT_FLASH(_DEFFREQ); /* Target clock frequency */
 WRITE_FLASH((rom const *)0x2f00,x); /* write to Flash */
 x = READ_FLASH((rom const *)0x2f00); /* read from Flash */
}

Beginning with the ZDS II for Z8 Encore! release 4.8, there is a slight change in the func-
tion prototype for READ_FLASH.

Previous Prototype

#if defined(_Z8F642)
char reentrant READ_FLASH(rom const void *addr);
#else
char intrinsic reentrant READ_FLASH(rom const void *addr);
#endif

Note:

Note:

UM013034-1210 Run-Time Library

Zilog Developer Studio II – Z8 Encore!®

User Manual

221

New Prototype

char reentrant READ_FLASH(rom const void *addr);

For most Z8 Encore! processor variants, the intrinsic keyword has been deleted in the
ZDS II release 4.8.0. This change is taken care of automatically as long as you are using
the standard Zilog library version of READ_FLASH and including the standard header
file ez8.h. However, since the new standard header uses the new prototype, if you have
customized READ_FLASH in your application, you must make modifications so that the
header and function declarations agree.

READ_NVDS

The READ_NVDS function is a Zilog function that reads a value from NVDS memory at
the specified address.

Synopsis

#include <ez8.h>
reentrant char READ_NVDS(char address)
reentrant char nvds_read(char address)

Returns

The function returns the character read from NVDS at the address specified.

Example

#include <eZ8.h>
char x;
void main()
{
 INIT_FLASH(_DEFFREQ); /* Target clock frequency */
 WRITE_NVDS(x, 0x10); /* write x to NVDS at address 0x10 */
 x = READ_NVDS(0x10); /* read NVDS at address 0x10 */
}

_DEFFREQ is automatically set from the IDE based on the clock frequency setting in the
Configure Target dialog box.

READ_NVDS_GET_STATUS

The READ_NVDS_GET_STATUS function is a Zilog function that reads a value from
NVDS memory at the specified address and gets the status.

Synopsis

#include <ez8.h>
int reentrant READ_NVDS_GET_STATUS(char addr);
int reentrant nvds_read_get_status (char addr);

Using the ANSI C-Compiler UM013034-1210

222

Zilog Developer Studio II – Z8 Encore!®

User Manual

Returns

The function returns the value read and the status of NVDS read as per the device specifi-
cation. The status is in the lower byte of the return value. The upper byte of the return
value contains the data read.

Example
#include <eZ8.h>

char x, wstatus, rstatus;
unsigned int val;

void main()
{
 wstatus = WRITE_NVDS_GET_STATUS(x, 0x10);
 /* write x to NVDS at address 0x10, and get the status */
 val = READ_NVDS_GET_STATUS(0x10); /* read NVDS at address
0x10 */
 x = (val >> 8) & 0xFF; /* extract data */
 rstatus = val & 0xFF; /* extract read status */
}

RI

RI (restore interrupt) is a Zilog intrinsic function that restores interrupt status. It is
intended to be paired with an earlier call to TDI(), which has previously saved the existing
interrupt status. See TDI on page 225 for a discussion of that function. The interrupt status
to be restored is passed as a parameter to RI(). This function is an intrinsic function and is
inline expanded.

Synopsis

#include <eZ8.h>
intrinsic void RI(unsigned char istat);

Example

#include <eZ8.h>

void main(void)
{
 unsigned char istat;
 istat = TDI(); /* Test and Disable Interrupts */
 /* Do Something */
 RI(istat); /* Restore Interrupts */
}

UM013034-1210 Run-Time Library

Zilog Developer Studio II – Z8 Encore!®

User Manual

223

select_port

The select_port function is a Zilog function that selects the UART. The default is
_UART0. The init_uart function can be used to configure either _UART0 or _UART1
and select the UART passed as the current one for use. All calls to putch, getch, and
kbhit use the selected UART. You can also change the selected UART using the
select_port function without having to reinitialize the UART.

Synopsis

#include <sio.h>
int select_port(int port) ;

Returns

A zero is returned on success; a nonzero is returned on failure.

Example

#include <stdio.h>
#include <sio.h>
void main(void)
{

init_uart(_UART0,_DEFFREQ,_DEFBAUD);
init_uart(_UART1,_DEFFREQ,_DEFBAUD);
select_port(_UART0);
printf("Hello UART0\n"); // Write to uart0
select_port(_UART1);
printf("Hello UART1\n"); // Write to uart1

}

SET_VECTOR

SET_VECTOR is a Zilog intrinsic function provided by the compiler to specify the address
of an interrupt handler for an interrupt vector. Because the interrupt vectors of the Z8
Encore! microcontroller are usually in ROM, they cannot be modified at run time. The
SET_VECTOR function works by switching to a special segment and placing the address of
the interrupt handler in the vector table. No executable code is generated for this state-
ment. Calls to the SET_VECTOR intrinsic function must be placed within a function body.

Synopsis

#include <eZ8.h>
intrinsic void SET_VECTOR(int vectnum,void (*hndlr)(void));

where

• vectnum is the interrupt vector number for which the interrupt handler hndlr is to be
set.

Using the ANSI C-Compiler UM013034-1210

224

Zilog Developer Studio II – Z8 Encore!®

User Manual

• hndlr is the interrupt handler function pointer. The hndlr function must be declared
to be of type interrupt with no parameters and return void (no parameters and no
return).

The following values for vectnum are supported for most Z8 Encore! parts (all those that
do not fall into the more specific categories covered in the next two tables):

The following values for vectnum are supported for Z8 Encore! Motor Control CPUs:

RESET
WDT
TRAP
TIMER2
TIMER1
TIMER0
UART0_RX
UART0_TX
I2C
SPI
ADC
P7AD
P6AD
P5AD

P4AD
P3AD
P2AD
P1AD
P0AD
TIMER3
UART1_RX
UART1_TX
DMA
C3
C2
C1
C0

RESET
WDT
TRAP
PWMTIMER
PWMFAULT
ADC
CMP
TIMER0
UART0_RX
UART0_TX
SPI
I2C

C0
PB
P7A
P3A
P6A
P2A
P5A
P1A
P4A
P0A
POTRAP
WOTRAP

UM013034-1210 Run-Time Library

Zilog Developer Studio II – Z8 Encore!®

User Manual

225

The following values for vectnum are supported for the Z8 Encore! XP 16K Series:

Returns

None

Example

#include <eZ8.h>

extern void interrupt isr_timer0(void);

void main(void)

{

SET_VECTOR(TIMER0, isr_timer0); /* setup TIMER0 vector */

}

TDI

TDI (test and disable interrupts) is a Zilog intrinsic function that supports users creating
their own critical sections of code. It saves the previous interrupt status and disables inter-
rupts. The previous interrupt status is returned from TDI(). This function is intended to be
paired with a later call to RI(), which restores the previously existing interrupt status. See
RI on page 222 for a discussion of that function. The TDI function is an intrinsic function
and is inline expanded.

Synopsis

#include <eZ8.h>
intrinsic unsigned char TDI(void);

RESET
WDT
TRAP
TIMER2
TIMER1
TIMER0
UART0_RX
UART0_TX
I2C
SPI
ADC
P7AD
P6AD
P5AD

P4AD
P3AD
P2AD
P1AD
P0AD
MCT
UART1_RX
UART1_TX
C3
C2
C1
C0
POTRAP
WOTRAP

Using the ANSI C-Compiler UM013034-1210

226

Zilog Developer Studio II – Z8 Encore!®

User Manual

Example

#include <eZ8.h>

void main(void)
{
 unsigned char istat;
 istat = TDI(); /* Test and Disable Interrupts */
 /* Do Something */
 RI(istat); /* Restore Interrupts */
}

WRITE_FLASH

The WRITE_FLASH function is a Zilog function that writes a value to Flash memory at
the specified address.

Synopsis

#include <ez8.h>
void reentrant WRITE_FLASH(rom const void *addr,char val);

Returns

If successful, the function returns zero; otherwise, it returns a nonzero value.

Example

#include <eZ8.h>
char x;
void main()
{
 INIT_FLASH(_DEFFREQ); /* Target clock frequency */
 WRITE_FLASH((rom const *)0x2f00,x); /* write to Flash */
 x = READ_FLASH((rom const *)0x2f00); /* read from Flash */
}

Do not write to Flash memory more than twice. To write to Flash memory more than
twice, you must perform a page erase.

When you use the WRITE_FLASH function to write to Flash, the target clock frequency
must be initialized using the INIT_FLASH function (see page 217).

Beginning with the ZDS II for Z8 Encore! release 4.8, there is a slight change in the func-
tion prototype for WRITE_FLASH.

Previous Prototype

#if defined(_Z8F642)

Note:

UM013034-1210 Run-Time Library

Zilog Developer Studio II – Z8 Encore!®

User Manual

227

void reentrant WRITE_FLASH(rom const void *addr,char val);
#else
void intrinsic reentrant WRITE_FLASH(rom const void *addr,char
val);
#endif

New Prototype

void reentrant WRITE_FLASH(rom const void *addr,char val);

For most Z8 Encore! microcontroller variants, the intrinsic keyword has been deleted
in the ZDS II release 4.8.0. This change is taken care of automatically as long as you are
using the standard Zilog library version of WRITE_FLASH and including the standard
header file ez8.h. However, since the new standard header uses the new prototype, if you
have customized WRITE_FLASH in your application, you must make modifications so
that the header and function declarations agree.

WRITE_NVDS

The WRITE_NVDS function is a Zilog function that writes a value to NVDS memory at
the specified address.

Synopsis

#include <ez8.h>
reentrant int WRITE_NVDS(char value, char address)
reentrant int nvds_write(char value, char address)

Returns

If successful, the function returns zero; otherwise, it returns a nonzero value.

Example

#include <eZ8.h>
char x;
void main()
{
 INIT_FLASH(_DEFFREQ); /* Target clock frequency */
 WRITE_NVDS(x, 0x10); /* write x to NVDS at address 0x10 */
 x = READ_NVDS(0x10); /* read NVDS at address 0x10 */
}

_DEFFREQ is automatically set from the IDE based on the clock frequency setting in the
Configure Target dialog box.

WRITE_NVDS_GET_STATUS

The WRITE_NVDS_GET_STATUS function is a Zilog function that writes a value to
NVDS memory at the specified address and gets the status.

Using the ANSI C-Compiler UM013034-1210

228

Zilog Developer Studio II – Z8 Encore!®

User Manual

Synopsis

#include <ez8.h>
char reentrant WRITE_NVDS_GET_STATUS(char value, char addr);
char reentrant nvds_write_get_status (char value, char addr);

Returns

The function returns the status of NVDS write as per the device specification.

Example

#include <eZ8.h>

char x, wstatus, rstatus;
unsigned int val;

void main()
{
 wstatus = WRITE_NVDS_GET_STATUS(x, 0x10);
 /* write x to NVDS at address 0x10, and get the status */
 val = READ_NVDS_GET_STATUS(0x10); /* read NVDS at address
0x10 */
 x = (val >> 8) & 0xFF; /* extract data */
 rstatus = val & 0xFF; /* extract read status */
}

Start-Up Files

The start-up or C run-time initialization file is an assembly program that performs required
start-up functions and then calls main, which is the C entry point. The start-up program
performs the following C run-time initializations:

• Initialize the register pointer and stack pointer.

• Clear the near and far uninitialized variables to zero.

• Set the initialized near and far variables to their initial value from ROM.

• For Z8 Encore! XP 16K only, initialize the segment pramseg from ROM.

• Set the initial value of the interrupt register pointer.

• Allocate space for interrupt vectors and Flash option bytes.

• Allocate space for the errno variable used by the C run-time libraries.

The following table lists the start-up files provided with the Z8 Encore! C-Compiler.

UM013034-1210 Start-Up Files

Zilog Developer Studio II – Z8 Encore!®

User Manual

229

Customizing Start-Up Files
The C start-up object files provided with the Z8 Encore! C Compiler are generic files and
can be tailored to meet the application requirements. Before modifying the C start-up
module, perform the following steps:

1. Copy the corresponding C start-up source file to a new file in your project directory.
For the small model, use startups.asm as the file from which you copy; for the
large model, use startupl.asm.

2. Add the newly copied C start-up file to your project files by using the Add Files com-
mand from the Project menu.

3. Select the Settings command from the Project menu.

The Project Settings dialog box is displayed.

4. Select the Objects and Libraries page.

5. Select the Included in Project and Use Standard Start-Up Linker Commands
checkboxes.

Use the following guidelines when customizing the C start-up file:

• If you do not have any uninitialized global or static variables in near memory, the
start-up file does not have to clear the near uninitialized variables to zero.

As an example, for the large model:

near int val; // Not OK to skip clearing uninitialized near
data:

Table 3. Z8 Encore! Start-Up Files

Name Description

lib\zilog\startups.obj C start-up object file for small model

src\boot\common\startups.asm C start-up source file for small model

lib\zilog\startupl.obj C start-up object file for large model

src\boot\common\startupl.asm C start-up source file for large model

lib\zilog\startupf01as.obj C start-up object file for 1K XP small model

lib\zilog\startupf01al.obj C start-up object file for 1K XP large model

lib\zilog\startupf04as.obj C start-up object file for 4K XP small model

lib\zilog\startupf04al.obj C start-up object file for 4K XP large model

lib\zilog\startupf1680s.obj C start-up object file for 16K XP small model

lib\zilog\startupf1680l.obj C start-up object file for 16K XP large model

Using the ANSI C-Compiler UM013034-1210

230

Zilog Developer Studio II – Z8 Encore!®

User Manual

// Uninitialized global in near memory
int val ; // OK to skip clearing uninitialized near data:
// Uninitialized global in far memory

For the small model:

int val; // Not OK to skip clearing uninitialized near data:
// Uninitialized global in near memory

far int val ; // OK to skip clearing uninitialized near data:
// Uninitialized global in far memory

Alternatively, if your application does not assume that the near uninitialized global or
static variables are initialized to zero by the C start-up module, the start-up code does
not have to perform this function.

This can be achieved by adding the following code just before segment startup:

CLRRRAM SET FALSE

• If you do not have any initialized global or static variables in near memory, the start-
up code does not have to set the initialized global and static near variables to their ini-
tial value from rom.

As an example, for the large model:

near int val = 20; // Not OK to skip initializing near data:
// Initialized global in near memory

int val = 20; // OK to skip initializing near data:
// Initialized global in far memory

For the small model:

int val = 20; // Not OK to skip initializing near data:
// Initialized global in near memory

far int val = 20; // OK to skip initializing near data:
// Initialized global in far memory

Alternatively, if your application does require global or static variables in near mem-
ory to have initialized values and you perform the initialization in your program as
part of the code, the start-up code does not have to perform this function.

For example:

near int val;

void main (void)
{
 val = 20; // Initialization performed as part of the code
}

This can be achieved by adding the following just before segment startup.

COPYRRAM SET FALSE

UM013034-1210 Start-Up Files

Zilog Developer Studio II – Z8 Encore!®

User Manual

231

• If you do not have any uninitialized global or static variables in far memory, the start-
up code does not have to clear the far uninitialized variables to zero.

As an example, for the small model:

far int val; // Not OK to skip clearing uninitialized far data:
// Uninitialized global in far memory

int val ; // OK to skip clearing uninitialized far data:
// Uninitialized global in near memory

For the large model:

int val; // Not OK to skip clearing un-initialized far data:
// Uninitialized global in far memory

near int val ; // OK to skip clearing un-initialized far data:
// Uninitialized global in near memory

Alternatively, if your application does not assume that the far uninitialized global or
static variables are initialized to zero by the C start-up module, the start-up code does
not have to perform this function.

This can be achieved by adding the following code just before segment startup.

CLRERAM SET FALSE

• If you do not have any initialized global or static variables in far memory, the start-up
code does not have to set the initialized global and static far variables to their initial
value from rom.

As an example, for the small model:

far int val = 20; // Not OK to skip initializing far data:
// Initialized global in far memory

int val = 20; // OK to skip initializing far data:
// Initialized global in near memory

For the large model:

int val = 20; // Not OK to skip initializing far data:
// Initialized global in far memory

near int val = 20; // OK to skip initializing far data:
// Initialized global in near memory

Alternatively, if your application does require global or static variables in far memory
to have initialized values and you perform the initialization in your program as part of
the code, the start-up code does not have to perform this function.

For example:

far int val;

void main (void)
{

Using the ANSI C-Compiler UM013034-1210

232

Zilog Developer Studio II – Z8 Encore!®

User Manual

 val = 20; // Initialization performed as part of the code
}

This can be achieved by adding the following code just before segment startup:

COPYERAM SET FALSE

• For the Z8 Encore! 16K XP Series CPUs, if you do not have any code in PRAM, the
start-up code does not have to copy the PRAM code from rom to its PRAM location.

This can be achieved by adding the following code just before segment startup:

COPYPRAM SET FALSE

For Z8 Encore! microcontroller devices with small Flash memory sizes especially, the pre-
ceding steps can be very useful to reduce the code size of the C start-up module.

Segment Naming

The compiler places code and data into separate segments in the object file. The different
segments used by the compiler are listed in the following table.

Linker Command Files for C Programs

This section describes how the Z8 Encore! linker is used to link a C program. For a more
detailed description of the linker and the various commands it supports, see Using the

Table 4. Segments

Segment Description

NEAR_DATA near initialized global and static data

NEAR_BSS near uninitialized global and static data

NEAR_TEXT near constant strings

FAR_DATA far initialized global and static data

FAR_BSS far uninitialized global and static data

FAR_TEXT far constant strings

ROM_DATA rom global and static data

ROM_TEXT rom constant strings

PRAMSEG Program ram code

fname_TEXT rom code for file fname (fname is translated in some cases)

__VECTORS_nnn rom interrupt vector at address nnn

STARTUP rom C startup

UM013034-1210 Linker Command Files for C Programs

Zilog Developer Studio II – Z8 Encore!®

User Manual

233

Linker/Locator on page 327. A C program consists of compiled and assembled object
module files, compiler libraries, user-created libraries, and special object module files
used for C run-time initializations. These files are linked based on the commands given in
the linker command file. Because the linker command file coordinates the actions of the
compiler and linker, it is appropriate to discuss this topic in this section.

The default linker command file is automatically generated by the ZDS II IDE whenever a
build command is issued. It has information about the ranges of various address spaces
for the selected device, the assignment of segments to spaces, order of linking, and so on.
The default linker command file can be overridden by the user.

The linker processes the object modules (in the order in which they are specified in the
linker command file), resolves the external references between the modules, and then
locates the segments into the appropriate address spaces as per the linker command file.

The linker depicts the memory of the Z8 Encore! CPU using a hierarchical memory model
containing spaces and segments. Each memory region of the CPU is associated with a
space. Multiple segments can belong to a given space. Each space has a range associated
with it that identifies valid addresses for that space. The hierarchical memory model for
the Z8 Encore! CPU is shown in Figure 139. Figure 140 depicts how the linker links and
locates segments in different object modules.

Figure 139. Z8 Encore! Hierarchical Memory Model

Note: * PRAM and PRAMSEG are only available on Z8 Encore! 16K XP devices.

Z8 Encore!
Memory Spaces

RData Space
(Register File)

EData Space
(Register File)

NEAR_BSS
Segment

NEAR_DATA
Segment

FAR_BSS
Segment

FAR_DATA
Segment

ROM Space
(Flash)

ROM_DATA
Segment

ROM_TEXT
Segment

NEAR_TEXT
Segment

FAR_TEXT
Segment

PRAMSEG*
Segment

fname_TEXT
Segment

__VECTORS
Segment

STARTUP
Segment

PRAM Space*
(Program RAM)

Using the ANSI C-Compiler UM013034-1210

234

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 140. Multiple File Linking

Linker Referenced Files
The default linker command file generated by the ZDS II IDE references system object
files and libraries based on the compilation memory model that you selected. A list of the
system object files and libraries is given in the following table. The linker command file
automatically selects and links to the appropriate version of the C run-time and (if neces-
sary) floating-point libraries from the list shown in the following table, based on your
project settings.

Table 5. Linker Referenced Files

File Description

startups.obj C start-up for small model.

startupl.obj C start-up for large model.

startupf01as.obj C start-up object file for 1K XP small model.

startupf01al.obj C start-up object file for 1K XP large model.

startupf04as.obj C start-up object file for 4K XP small model.

startupf04al.obj C start-up object file for 4K XP large model.

Startupf1680s.obj C start-up object file for 16K XP small model.

Startupf1680l.obj C start-up object file for 16K XP large model.

Note: * PRAM is only available on Z8 Encore! 16K XP devices.

U1 V1 X1 U2 X2 V2 U3 V3

Linker

U1 V1 U3 U2 V2 X2 X1 V3

Module one.obj Module two.obj Module three.obj

Space PRAM* Space ROM Space EData

Y1 Y2 X3

X3 Y1 Y2

Space RData

UM013034-1210 Linker Command Files for C Programs

Zilog Developer Studio II – Z8 Encore!®

User Manual

235

fpdumyl.lib Floating-point do-nothing stubs for large model, no debug information.

fpdumyld.lib Floating-point do-nothing stubs for large model, with debug information.

fpdumys.lib Floating-point do-nothing stubs for small model, no debug information.

fpdumysd.lib Floating-point do-nothing stubs for small model, with debug information.

chelp.lib Code generator helper routines, no debug information.

chelpd.lib Code generator helper routines, with debug information.

pchelp.lib Code generator helper routines in pram, no debug information.

pchelpd.lib Code generator helper routines in pram, with debug information.

crtld.lib C run-time library for large dynamic model, no debug information.

crtldd.lib C run-time library for large dynamic model, with debug information.

crtls.lib C run-time library for large static model, no debug information.

crtlsd.lib C run-time library for large static model, with debug information.

crtsd.lib C run-time library for small dynamic model, no debug information.

crtsdd.lib C run-time library for small dynamic model, with debug information.

crtss.lib C run-time library for small static model, no debug information.

crtssd.lib C run-time library for small static model, with debug information.

fpld.lib Floating point library for large dynamic model, no debug information.

fpldd.lib Floating-point library for large dynamic model, with debug information.

fpls.lib Floating-point library for large static model, no debug information.

fplsd.lib Floating-point library for large static model, with debug information.

fpsd.lib Floating-point library for small dynamic model, no debug information.

fpsdd.lib Floating-point library for small dynamic model, with debug information.

fpss.lib Floating-point library for small static model, no debug information.

fpssd.lib Floating-point library for small static model, with debug information.

csiold.lib C serial IO library for large dynamic model, no debug information.

csioldd.lib C serial IO library for large dynamic model, with debug information.

csiols.lib C serial IO library for large static model, no debug information.

csiolsd.lib C serial IO library for large static model, with debug information.

csiosd.lib C serial IO library for small dynamic model, no debug information.

csiosdd.lib C serial IO library for small dynamic model, with debug information.

Table 5. Linker Referenced Files (Continued)

File Description

Using the ANSI C-Compiler UM013034-1210

236

Zilog Developer Studio II – Z8 Encore!®

User Manual

csioss.lib C serial IO library for small static model, no debug information.

csiossd.lib C serial IO library for small static model, with debug information.

crtf04ald.lib C run-time library for XP large dynamic model, no debug information.

crtf04aldd.lib C run-time library for XP large dynamic model, with debug information.

crtf04als.lib C run-time library for XP large static model, no debug information.

crtf04alsd.lib C run-time library for XP large static model, with debug information.

crtf04asd.lib C run-time library for XP small dynamic model, no debug information.

crtf04asdd.lib C run-time library for XP small dynamic model, with debug information.

crtf04ass.lib C run-time library for XP small static model, no debug information.

crtf04assd.lib C run-time library for XP small static model, with debug information.

csiof1680ld.lib C serial IO library for 16K XP large dynamic model, no debug information.

csiof1680ldd.lib C serial IO library for 16K XP large dynamic model, with debug information.

csiof1680ls.lib C serial IO library for 16K XP large static model, no debug information.

csiof1680lsd.lib C serial IO library for 16K XP large static model, with debug information.

csiof1680sd.lib C serial IO library for 16K XP small dynamic model, no debug information.

csiof1680sdd.lib C serial IO library for 16K XP small dynamic model, with debug information.

csiof1680ss.lib C serial IO library for 16K XP small static model, no debug information.

csiof1680ssd.lib C serial IO library for 16K XP small static model, with debug information.

csiofmcld.lib C serial IO library for MC large dynamic model, no debug information.

csiofmcldd.lib C serial IO library for MC large dynamic model, with debug information.

csiofmcls.lib C serial IO library for MC large static model, no debug information.

csiofmclsd.lib C serial IO library for MC large static model, with debug information.

csiofmcsd.lib C serial IO library for MC small dynamic model, no debug information.

csiofmcsdd.lib C serial IO library for MC small dynamic model, with debug information.

csiofmcss.lib C serial IO library for MC small static model, no debug information.

csiofmcssd.lib C serial IO library for MC small static model, with debug information.

csiof8pinld.lib C serial IO library for 8-pin large dynamic model, no debug information.

csiof8pinldd.lib C serial IO library for 8-pin large dynamic model, with debug information.

csiof8pinls.lib C serial IO library for 8-pin large static model, no debug information.

csiof8pinlsd.lib C serial IO library for 8-pin large static model, with debug information.

Table 5. Linker Referenced Files (Continued)

File Description

UM013034-1210 Linker Command Files for C Programs

Zilog Developer Studio II – Z8 Encore!®

User Manual

237

Linker Symbols
The default linker command file defines some system symbols, which are used by the C
start-up file to initialize the stack pointer, clear the uninitialized variables to zero, set the
initialized variables to their initial value, set the heap base, and so on. The following table
shows the list of symbols that might be defined in the linker command file, depending on
the compilation memory model that you selected.

csiof8pinsd.lib C serial IO library for 8-pin small dynamic model, no debug information.

csiof8pinsdd.lib C serial IO library for 8-pin small dynamic model, with debug information.

csiof8pinss.lib C serial IO library for 8-pin small static model, no debug information.

csiof8pinssd.lib C serial IO library for 8-pin small static model, with debug information.

Table 6. Linker Symbols

Symbol Description

_low_neardata Base of near_data segment after linking

_len_neardata Length of near_data segment after linking

_low_near_romdata Base of the rom copy of near_data segment after linking

_low_fardata Base of far_data segment after linking

_len_fardata Length of far_data segment after linking

_low_far_romdata Base of the rom copy of far_data segment after linking

_low_pramseg Base of pramseg segment after linking

_len_pramseg Length of pramseg segment after linking

_low_pram_romdata Base of the rom copy of pramseg segment after linking

_low_nearbss Base of near_bss segment after linking

_len_nearbss Length of near_bss segment after linking

_low_farbss Base of far_bss segment after linking

_len_farbss Length of far_bss segment after linking

_far_stack Top of stack for large model is set as highest address of EData

_near_stack Top of stack for small model is set as highest address of RData

_far_heapbot Base of heap for large model is set as highest allocated EData address

Table 5. Linker Referenced Files (Continued)

File Description

Using the ANSI C-Compiler UM013034-1210

238

Zilog Developer Studio II – Z8 Encore!®

User Manual

Sample Linker Command File
The sample default linker command file for a project using the large dynamic compilation
model is discussed here as a good example of the contents of a linker command file in
practice and how the linker commands it contains work to configure your load file. The
default linker command file is automatically generated by the ZDS II IDE. If the project
name is test.zdsproj, for example, the default linker command file name is
test_debug.linkcmd. You can add additional directives to the linking process by spec-
ifying them in the Additional Linker Directives dialog box (see Additional Directives on
page 85). Alternatively, you can define your own linker command file by selecting the
Use Existing button (see Use Existing on page 86).

The most important of the linker commands and options in the default linker command file
are now discussed individually, in the order in which they are typically found in the linker
command file:

-FORMAT=OMF695, INTEL32
-map -maxhexlen=64 -quiet -warnoverlap -NOxref -unresolved=fatal
-sort NAME=ascending -warn –debug -NOigcase

In this command, the linker output file format is selected to be OMF695, which is based
on the IEEE 695 object file format, and INTEL32, which is the Intel Hex 32 format. This
setting is generated from options selected in the Output page (see Linker: Output Page on
page 96). The –map (Generate Map File), -sort (Sort Symbols By Address), and -max-
hexlen (Maximum Bytes per Hex File Line) settings are also generated from options
selected in the Output page.

The –warnoverlap (Warn on Segment Overlap) and –unresolved (Treat Undefined
Symbols as Fatal) options are generated from options selected in the Warnings page (see
Linker: Warnings Page on page 95).

The other options shown here are all generated from the settings selected in the General
page of the Project Settings dialog box (see General Page on page 58).

RANGE ROM $0 : $FFFF
RANGE RDATA $20 : $FF
RANGE EDATA $100 : $EFF

_near_heapbot Base of heap for small model is set as highest allocated RData
address

_far_heaptop Top of heap for large model is set as highest address of EData

_near_heaptop Top of heap for small model is set as highest address of RData

Table 6. Linker Symbols (Continued)

Symbol Description

UM013034-1210 Linker Command Files for C Programs

Zilog Developer Studio II – Z8 Encore!®

User Manual

239

The ranges for the three address spaces are defined here. These ranges are taken from the
settings in Address Spaces page (see Linker: Address Spaces Page on page 92).

CHANGE NEAR_TEXT=NEAR_DATA
CHANGE FAR_TEXT=FAR_DATA

The NEAR_TEXT and FAR_TEXT segments are renamed to NEAR_DATA and
FAR_DATA segments, respectively, by the preceding commands. The NEAR_TEXT and
FAR_TEXT segments contain constant strings in RData and EData, respectively. This
reduces the number of initialized segments from four to two, and the C start-up then only
must initialize two segments.

ORDER FAR_BSS, FAR_DATA
ORDER NEAR_BSS,NEAR_DATA

These ORDER commands specify the link order of these segments. The FAR_BSS seg-
ment is placed at lower addresses with the FAR_DATA segment immediately following it
in the EData space. Similarly, NEAR_DATA follows after NEAR_BSS in the RData
space.

COPY NEAR_DATA ROM
COPY FAR_DATA ROM

This COPY command is a linker directive to make the linker place a copy of the initialized
data segments NEAR_DATA and FAR_DATA into the ROM address space. At run time,
the C start-up module then copies the initialized data back from the ROM address space to
the RData (NEAR_DATA segment) and EData (FAR_DATA segment) address spaces.
This is the standard method to ensure that variables get their required initialization from a
nonvolatile stored copy in a typical embedded application where there is no offline mem-
ory such as disk storage from which initialized variables can be loaded.

define _low_near_romdata = copy base of NEAR_DATA
define _low_neardata = base of NEAR_DATA
define _len_neardata = length of NEAR_DATA
define _low_far_romdata = copy base of FAR_DATA
define _low_fardata = base of FAR_DATA
define _len_fardata = length of FAR_DATA
define _low_pram_romdata = copy base of PRAMSEG
define _low_pramseg = base of PRAMSEG
define _len_pramseg = length of PRAMSEG
define _low_nearbss = base of NEAR_BSS
define _len_nearbss = length of NEAR_BSS
define _low_farbss = base of FAR_BSS
define _len_farbss = length of FAR_BSS
define _far_heapbot = top of EData
define _far_heaptop = highaddr of EData
define _far_stack = highaddr of EData
define _near_heapbot = top of RData
define _near_heaptop = highaddr of RData
define _near_stack = highaddr of RData

Using the ANSI C-Compiler UM013034-1210

240

Zilog Developer Studio II – Z8 Encore!®

User Manual

These are the linker symbol definitions described in Table 6. They allow the compiler to
know the bounds of the different memory areas that must be initialized in different ways
by the C start-up module.

"c:\sample\test"= \
 C:\PROGRA~1\Zilog\ZD3E4C~1.0\lib\startupl.obj, \
 .\foo.obj, \
C:\PROGRA~1\Zilog\ZD3E4C~1.0\lib\chelpd.lib, \
 C:\PROGRA~1\Zilog\ZD3E4C~1.0\lib\crtldd.lib, \
 C:\PROGRA~1\Zilog\ZD3E4C~1.0\lib\fpldd.lib, \
C:\PROGRA~1\Zilog\ZD3E4C~1.0\zilog\csioldd.lib

This final command shows that, in this example, the linker output file is named
test.lod. The source object file (foo.obj) is to be linked with the other modules that
are required to make a complete executable load file. In this case, those other modules are
the C start-up modules for the large model (startupl.obj), the code generator helper
library (chelpd.lib), the C run-time library for the large dynamic model with debug
(crtldd.lib), the floating-point library (fpldd.lib), and the C Serial IO library for
that same configuration (csioldd.lib).

An important point to understand in using the linker is that the linker intelligently links in
only those object modules that are necessary to resolve its list of unresolved symbols.
Also, the Zilog version of the C Standard Library is organized so that each module con-
tains only a single function or, in a few cases, a few closely related functions. So, although
the C run-time library contains a very large number of functions from the C Standard
Library, if your application only calls two of those functions, then only those two are
linked into your application (plus any functions that are called by those two functions in
turn). This means it is safe for you to simply link in a large library, such as crtldd.lib
and fpldd.lib in this example. No unnecessary code is linked in, and you avoid the
extra work of painstakingly finding the unresolved symbols and linking only to those spe-
cific functions.

ANSI Standard Compliance

The Zilog Z8 Encore! C-Compiler is a freestanding ANSI C compiler (see Freestanding
Implementation on page 240), complying with the 1989 ISO standard, which is also
known as ANSI Standard X3.159-1989 with some deviations, which are described in
Deviations from ANSI C on page 241.

Freestanding Implementation
A freestanding implementation of the C language is a concept defined in the ANSI stan-
dard itself, to accommodate the needs of embedded applications that cannot be expected to
provide all of the services of the typical desktop execution environment (which is called a
hosted environment in the terms of the standard). In particular, it is presumed that there are
no file system and no operating system. The use of the standard term freestanding imple-

UM013034-1210 ANSI Standard Compliance

Zilog Developer Studio II – Z8 Encore!®

User Manual

241

mentation means that the compiler must contain, at least, a specific subset of the full ANSI
C features. This subset consists of those basic language features appropriate to embedded
applications. Specifically, the list of required header files and associated library functions
is minimal, namely <float.h>, <limits.h>, <stdarg.h>, and
<stddef.h>. A freestanding implementation is allowed to additionally support all or
parts of other standard header files but is not required to. The Z8 Encore! C-Compiler, for
example, supports a number of additional headers from the standard library, as specified in
Library Files Not Required for Freestanding Implementation on page 244.

A conforming implementation (that is, a compiler) is allowed to provide extensions, as
long as they do not alter the behavior of any program that uses only the standard features
of the language. The Zilog Z8 Encore! C-Compiler uses this concept to provide language
extensions that are useful for developing embedded applications and for making efficient
use of the resources of the Z8 Encore! CPU. These extensions are described in Language
Extensions on page 182.

Deviations from ANSI C
The differences between the Zilog Z8 Encore! C-Compiler and the freestanding imple-
mentation of ANSI C Standard consist of both extensions to the ANSI standard and devia-
tions from the behavior described by the standard. The extensions to the ANSI standard
are explained in Language Extensions on page 182.

There are a small number of areas in which the Z8 Encore! C-Compiler does not behave as
specified by the standard. These areas are described in the following sections:

• Prototype of Main on page 241

• Double Treated as Float on page 242

• const Keyword and ROM on page 242

• Const Correctness in the Standard Header Files on page 243

• ANSI Promotions Disabled on page 243

• Library Files Not Required for Freestanding Implementation on page 244

Prototype of Main

As per ANSI C, in a freestanding environment, the name and type of the function called at
program start-up are implementation defined. Also, the effect of program termination is
implementation defined.

For compatibility with hosted applications, the Z8 Encore! C-Compiler uses main() as
the function called at program startup. Because the Z8 Encore! compiler provides a free-
standing execution environment, there are a few differences in the syntax for main(). The
most important of these is that, in a typical small embedded application, main() never
executes a return because there is no operating system for a value to be returned to and it is

Using the ANSI C-Compiler UM013034-1210

242

Zilog Developer Studio II – Z8 Encore!®

User Manual

also not intended to terminate. If main() does terminate and the standard Zilog Z8
Encore! C start-up module is in use, control simply goes to the following statement:

_exit:
JR _exit

For this reason, in the Z8 Encore! C-Compiler, main() must be of type void; any
returned value is ignored. Also, main() is not passed any arguments. In short, the follow-
ing is the prototype for main():

void main (void);

Unlike the hosted environment in which the closest allowed form for main is as follows:

int main (void);

Double Treated as Float

The Z8 Encore! C-Compiler does not support a double-precision floating-point type. The
type double is accepted but is treated as if it were float.

const Keyword and ROM

The Z8 Encore! C-Compiler by default assumes const in RAM and places const vari-
ables without any storage qualifications in RData for the small model and EData for the
large model. With the const in RAM option in affect, the C-Compiler follows the ANSI
C standard rules for const parameters.

However, the C-Compiler also provides a deprecated option to place such const variables
in ROM memory instead. When this option is selected, the treatment of the const key-
word is emphatically non-ANSI. Specifically, when this option is selected, the const key-
word is treated as equivalent to rom. Then, the function prototype

void foo (const char* src);

implies that the src string is in ROM memory, and any code that calls foo should pass
only a const or rom string as src string argument. This restriction comes because the Z8
Encore! microcontroller has different machine instructions for accessing its different
memory spaces (LDC, LD, and LDX). This is a deviation from ANSI C. The compiler
reports an “Incompatible data types” error for code that does not follow the preceding
restriction.

Under the ANSI standard, the const qualification on a parameter merely implies that the
function cannot modify the parameter and a non-const qualified argument can be passed
as the corresponding parameter.

The effect of this deviation from the standard is primarily that, in code that must be porta-
ble for all options of the compiler and linker (such as the source code for library functions
provided by the compiler), parameters cannot be declared const.

On new applications, Zilog discourages this use of the const keyword to place data in
ROM. Zilog recommends declaring constant data (such as tables) using the rom keyword

UM013034-1210 ANSI Standard Compliance

Zilog Developer Studio II – Z8 Encore!®

User Manual

243

instead. Where portability is a consideration, this can easily be done by preprocessor mac-
ros.

For example:

#ifdef __EZ8__
define ROM rom
#else
define ROM const
#endif
ROM struct TableElement[] table = { /* stuff */};

Const Correctness in the Standard Header Files

In general, Zilog header files are not const correct due to the issue raised in const Key-
word and ROM on page 242. In the Zilog library, for example, strcpy is (effectively)
declared as:

char* strcpy(char* dst, char* src);

but the ANSI standard requires

char* strcpy(char* dst, const char* src);

As noted, this is done to avoid compile-time errors if the deprecated const variables in
ROM compilation option were selected and then strcpy() was called with an argument
for src that had not been declared const.

ANSI Promotions Disabled

The ANSI standard requires that integer variables smaller than int (such as char) always
be promoted to int before any computation.

The Z8 Encore! C-Compiler is ANSI compliant in this regard when ANSI promotions are
enabled. The C-Compiler analyzes and promotes variables smaller than int to int, only
where necessary to mimic the ANSI behavior.

As an example, for the following statement:

char ch1, ch2, ch3;

ch1 = ch2 * ch3;

The compiler does not promote ch2 and ch3 to int before the multiplication operation,
so the char result is not affected.

For the following statement:

char ch2, ch3;
int ii;

ii = ch2 * ch3;

Using the ANSI C-Compiler UM013034-1210

244

Zilog Developer Studio II – Z8 Encore!®

User Manual

The compiler promotes ch2 and ch3 to int before the multiplication operation, so the
result is of type int.

The Z8 Encore! C-Compiler also provides a deprecated option to disable ANSI promo-
tions. The ANSI behavior is not guaranteed when this option is selected, and Zilog does
not recommend using this option.

Library Files Not Required for Freestanding Implementation

As noted in Freestanding Implementation on page 240, only four of the standard library
header files are required by the standard to be supported in a freestanding compiler such as
the Z8 Encore! C-Compiler. However, the compiler does support many of the other stan-
dard library headers as well. The supported headers are listed here. The support offered in
the Zilog libraries is fully compliant with the standard except as noted here:

• <assert.h>

• <ctype.h>

• <errno.h>

• <math.h>

The Zilog implementation of this library is not fully ANSI compliant in the general
limitations of the handling of floating-point numbers: namely, Zilog does not fully
support floating-point NANs, INFINITYs, and related special values. These special
values are part of the full ANSI/IEEE 754-1985 floating-point standard that is refer-
enced in the ANSI C Standard.

• <stddef.h>

• <stdio.h>

Zilog supports only the portions of stdio.h that make sense in the embedded envi-
ronment. Specifically, Zilog defines the ANSI required functions that do not depend
on a file system. For example, printf and sprintf are supplied but not fprintf.

• <stdlib.h>

This header is ANSI compliant in the Zilog library except that the following functions
of limited or no use in an embedded environment are not supplied:

strtoul()
_Exit()
atexit()

UM013034-1210 Warning and Error Messages

Zilog Developer Studio II – Z8 Encore!®

User Manual

245

Warning and Error Messages

If you see an internal error message, please report it to Technical Support at http://
support.zilog.com. Zilog staff will use the information to diagnose or log the prob-
lem.

This section covers the following topics:

• Preprocessor Warning and Error Messages on page 245

• Front-End Warning and Error Messages on page 248

• Optimizer Warning and Error Messages on page 258

• Code Generator Warning and Error Messages on page 260

Preprocessor Warning and Error Messages
000 Illegal constant expression in directive.

A constant expression made up of constants and macros that evaluate to constants can
be the only operands of an expression used in a preprocessor directive.

001 Concatenation at end-of-file. Ignored.

An attempt was made to concatenate lines with a backslash when the line is the last
line of the file.

002 Illegal token.

An unrecognizable token or non-ASCII character was encountered.

003 Illegal redefinition of macro <name>.

An attempt was made to redefine a macro, and the tokens in the macro definition do
not match those of the previous definition.

004 Incorrect number of arguments for macro <name>.

An attempt was made to call a macro, but too few or too many arguments were given.

005 Unbalanced parentheses in macro call “<name>”.

An attempt was made to call <name> macro with a parenthesis embedded in the argu-
ment list that did not match up.

006 Cannot redefine <name> keyword.

An attempt was made to redefine a keyword as a macro.

007 Illegal directive.

Note:

Using the ANSI C-Compiler UM013034-1210

246

Zilog Developer Studio II – Z8 Encore!®

User Manual

The syntax of a preprocessor directive is incorrect.

008 Illegal "#if" directive syntax.

The syntax of a #if preprocessor directive is incorrect.

009 Bad preprocessor file. Aborted.

An unrecognizable source file was given to the compiler.

010 Illegal macro call syntax.

An attempt was made to call a macro that does not conform to the syntax rules of the
language.

011 Integer constant too large.

An integer constant that has a binary value too large to be stored in 32 bits was
encountered.

012 Identifier <name> is undefined

The syntax of the identifier is incorrect.

013 Illegal #include argument.

The argument to a #include directive must be of the form "pathname" or <file-
name>.

014 Macro "<name>" requires arguments.

An attempt was made to call a macro defined to have arguments and was given none.

015 Illegal "#define" directive syntax.

The syntax of the #define directive is incorrect.

016 Unterminated comment in preprocessor directive.

Within a comment, an end of line was encountered.

017 Unterminated quoted string.

Within a quoted string, an end of line was encountered.

018 Escape sequence ASCII code too large to fit in char.

The binary value of an escape sequence requires more than 8 bits of storage.

019 Character not within radix.

An integer constant was encountered with a character greater than the radix of the
constant.

020 More than four characters in string constant.

A string constant was encountered having more than four ASCII characters.

021 End of file encountered before end of macro call.

UM013034-1210 Warning and Error Messages

Zilog Developer Studio II – Z8 Encore!®

User Manual

247

The end of file is reached before right parenthesis of macro call.

022 Macro expansion caused line to be too long.

The line must be shortened.

023 "##" cannot be first or last token in replacement string.

The macro definition cannot have “##” operator in the beginning or end.

024 "#" must be followed by an argument name.

In a macro definition, “#” operator must be followed by an argument.

025 Illegal "#line" directive syntax.

In #line <linenum> directive, <linenum> must be an integer after macro expansion.

026 Cannot undefine macro "name".

The syntax of the macro is incorrect.

027 End-of-file found before "#endif" directive.

#if directive was not terminated with a corresponding #endif directive.

028 "#else" not within #if and #endif directives.

#else directive was encountered before a corresponding #if directive.

029 Illegal constant expression.

The constant expression in preprocessing directive has invalid type or syntax.

030 Illegal macro name <name>.

The macro name does not have a valid identifier syntax.

031 Extra "#endif" found.

#endif directive without a corresponding #if directive was found.

032 Division by zero encountered.

Divide by zero in constant expression found.

033 Floating point constant over/underflow.

In the process of evaluating a floating-point expression, the value became too large to
be stored.

034 Concatenated string too long.

Shorten the concatenated string.

035 Identifier longer than 32 characters.

Identifiers must be 32 characters or shorter.

036 Unsupported CPU "name" in pragma.

Using the ANSI C-Compiler UM013034-1210

248

Zilog Developer Studio II – Z8 Encore!®

User Manual

An unknown CPU encountered.

037 Unsupported or poorly formed pragma.

An unknown #pragma directive encountered.

038 (User-supplied text)

A user-created #error or #warning directive has been encountered. The user-sup-
plied text from the directive is printed with the error/warning message.

039 Unexpected end of file

An end of file encountered with in a comment, string or character.

040 Unmatched "#else" found

#else directive without a corresponding #if directive was found.

041 Unmatched "#elif" found

#elif directive without a corresponding #if directive was found.

042 "#" preceded by non whitespace character

The preprocessor line has characters other than white space (blanks, tabs, new lines,
comments etc) before ‘#’.

043 Unterminated quoted character

An end of line was encountered within a quoted character.

044 Empty file encountered

The source file contains only white spaces (blanks, tabs, new lines, comments, and so
on) after preprocessing.

Front-End Warning and Error Messages
100 Syntax error.

A syntactically incorrect statement, declaration, or expression was encountered.

101 Function "<name>" already declared.

An attempt was made to define two functions with the same name.

102 Constant integer expression expected.

A non-integral expression was encountered where only an integral expression can be.

103 Constant expression overflow.

In the process of evaluating a constant expression, value became too large to be stored
in 32 bits.

UM013034-1210 Warning and Error Messages

Zilog Developer Studio II – Z8 Encore!®

User Manual

249

104 Function return type mismatch for "<name>".

A function prototype or function declaration was encountered that has a different
result from a previous declaration.

105 Argument type mismatch for argument <name>.

The type of an actual parameter does not match the type of the formal parameter of the
function called.

106 Cannot take address of un-subscripted array.

An attempt was made to take the address of an array with no index. The address of the
array is already implicitly calculated.

107 Function call argument cannot be void type.

An attempt was made to pass an argument to a function that has type void.

108 Identifier "<name>" is not a variable or enumeration constant name.

In a declaration, a reference to an identifier was made that was not a variable name or
an enumeration constant name.

109 Cannot return a value from a function returning "void".

An attempt was made to use a function defined as returning void in an expression.

110 Expression must be arithmetic, structure, union or pointer type.

The type of an operand to a conditional expression was not arithmetic, structure, union
or pointer type.

111 Integer constant too large

Reduce the size of the integer constant.

112 Expression not compatible with function return type.

An attempt was made to return a value from function that cannot be promoted to the
type defined by the function declaration.

113 Function cannot return value of type array or function.

An attempt was made to return a value of type array or function.

114 Structure or union member may not be of function type.

An attempt was made to define a member of structure or union that has type function.

115 Cannot declare a typedef within a structure or union.

An attempt was made to declare a typedef within a structure or union.

Using the ANSI C-Compiler UM013034-1210

250

Zilog Developer Studio II – Z8 Encore!®

User Manual

116 Illegal bit field declaration.

An attempt was made to declare a structure or union member that is a bit field and is
syntactically incorrect.

117 Unterminated quoted string

Within a quoted string, an end of line was encountered.

118 Escape sequence ASCII code too large to fit in char

The binary value of an escape sequence requires more than 8 bits of storage.

119 Character not within radix

An integer constant was encountered with a character greater than the radix of the
constant.

120 More than one character in string constant

A string constant was encountered having more than one ASCII character.

121 Illegal declaration specifier.

An attempt was made to declare an object with an illegal declaration specifier.

122 Only type qualifiers may be specified with a struct, union, enum, or typedef.

An attempt was made to declare a struct, union, enum, or typedef with a declaration
specifier other than const and volatile.

123 Cannot specify both long and short in declaration specifier.

An attempt was made to specify both long and short in the declaration of an object.

124 Only "const" and "volatile" may be specified within pointer declarations.

An attempt was made to declare a pointer with a declaration specifier other than const
and volatile.

125 Identifier "<name>" already declared within current scope.

An attempt was made to declare two objects of the same name in the same scope.

126 Identifier "<name>" not in function argument list, ignored.

An attempt was made to declare an argument that is not in the list of arguments when
using the old style argument declaration syntax.

127 Name of formal parameter not given.

The type of a formal parameter was given in the new style of argument declarations
without giving an identifier name.

128 Identifier "<name>" not defined within current scope.

An identifier was encountered that is not defined within the current scope.

UM013034-1210 Warning and Error Messages

Zilog Developer Studio II – Z8 Encore!®

User Manual

251

129 Cannot have more than one default per switch statement.

More than one default statements were found in a single switch statement.

130 Label "<name>" is already declared.

An attempt was made to define two labels of the same name in the same scope.

131 Label "<name> not declared.

A goto statement was encountered with an undefined label.

132 "continue" statement not within loop body.

A continue statement was found outside a body of any loop.

133 "break" statement not within switch body or loop body.

A break statement was found outside the body of any loop.

134 "case" statement must be within switch body.

A case statement was found outside the body of any switch statement.

135 "default" statement must be within switch body.

A default statement was found outside the body of any switch statement.

136 Case value <name> already declared.

An attempt was made to declare two cases with the same value.

137 Expression is not a pointer.

An attempt was made to dereference value of an expression whose type is not a
pointer.

138 Expression is not a function locator.

An attempt was made to use an expression as the address of a function call that does
not have a type pointer to function.

139 Expression to left of "." or "->" is not a structure or union.

An attempt was made to use an expression as a structure or union, or a pointer to a
structure or union, whose type was neither a structure or union, or a pointer to a struc-
ture or union.

140 Identifier "<name>" is not a member of <name> structure.

An attempt was made to reference a member of a structure that does not belong to the
structure.

141 Object cannot be subscripted.

An attempt was made to use an expression as the address of an array or a pointer that
was not an array or pointer.

Using the ANSI C-Compiler UM013034-1210

252

Zilog Developer Studio II – Z8 Encore!®

User Manual

142 Array subscript must be of integral type.

An attempt was made to subscript an array with a non integral expression.

143 Cannot dereference a pointer to "void".

An attempt was made to dereference a pointer to void.

144 Cannot compare a pointer to a non-pointer.

An attempt was made to compare a pointer to a non-pointer.

145 Pointers to different types may not be compared.

An attempt was made to compare pointers to different types.

146 Pointers may not be added.

It is not legal to add two pointers.

147 A pointer and a non-integral may not be subtracted.

It is not legal to subtract a non-integral expression from a pointer.

148 Pointers to different types may not be subtracted.

It is not legal to subtract two pointers of different types.

149 Unexpected end of file encountered.

In the process of parsing the input file, end of file was reached during the evaluation of
an expression, statement, or declaration.

150 Unrecoverable parse error detected.

The compiler became confused beyond the point of recovery.

151 Operand must be a modifiable lvalue.

An attempt was made to assign a value to an expression that was not modifiable.

152 Operands are not assignment compatible.

An attempt was made to assign a value whose type cannot be promoted to the type of
the destination.

153 "<name>" must be arithmetic type.

An expression was encountered whose type was not arithmetic where only arithmetic
types are allowed.

154 "<name>" must be integral type.

An expression was encountered whose type was not integral where only integral types
are allowed.

UM013034-1210 Warning and Error Messages

Zilog Developer Studio II – Z8 Encore!®

User Manual

253

155 "<name>" must be arithmetic or pointer type.

An expression was encountered whose type was not pointer or arithmetic where only
pointer and arithmetic types are allowed.

156 Expression must be an lvalue.

An expression was encountered that is not an lvalue where only an lvalue is allowed.

157 Cannot assign to an object of constant type.

An attempt was made to assign a value to an object defined as having constant type.

158 Cannot subtract a pointer from an arithmetic expression.

An attempt was made to subtract a pointer from an arithmetic expression.

159 An array is not a legal lvalue.

Cannot assign an array to an array.

160 Cannot take address of a bit field.

An attempt was made to take the address of a bit field.

161 Cannot take address of variable with register storage class.

An attempt was made to take the address of a variable with register storage class.

162 Conditional expression operands are not compatible.

One operand of a conditional expression cannot be promoted to the type of the other
operand.

163 Casting a non-pointer to a pointer.

An attempt was made to promote a non-pointer to a pointer.

164 Type name of cast must be scalar type.

An attempt was made to cast an expression to a non-scalar type.

165 Operand to cast must be scalar type.

An attempt was made to cast an expression whose type was not scalar.

166 Expression is not a structure or union.

An expression was encountered whose type was not structure or union where only a
structure or union is allowed.

167 Expression is not a pointer to a structure or union.

An attempt was made to dereference a pointer with the arrow operator, and the expres-
sion’s type was not pointer to a structure or union.

Using the ANSI C-Compiler UM013034-1210

254

Zilog Developer Studio II – Z8 Encore!®

User Manual

168 Cannot take size of void, function, or bit field types.

An attempt was made to take the size of an expression whose type is void, function, or
bit field.

169 Actual parameter has no corresponding formal parameter.

An attempt was made to call a function whose formal parameter list has fewer ele-
ments than the number of arguments in the call.

170 Formal parameter has no corresponding actual parameter.

An attempt was made to call a function whose formal parameter list has more ele-
ments than the number of arguments in the call.

171 Argument type is not compatible with formal parameter.

An attempt was made to call a function with an argument whose type is not compati-
ble with the type of the corresponding formal parameter.

172 Identifier "<name>" is not a structure or union tag.

An attempt was made to use the dot operator on an expression whose type was not
structure or union.

173 Identifier "<name>" is not a structure tag.

The tag of a declaration of a structure object does not have type structure.

174 Identifier "<name>" is not a union tag.

The tag of a declaration of a union object does not have type union.

175 Structure or union tag "<name>" is not defined.

The tag of a declaration of a structure or union object is not defined.

176 Only one storage class may be given in a declaration.

An attempt was made to give more than one storage class in a declaration.

177 Type specifier cannot have both "unsigned" and "signed".

An attempt was made to give both unsigned and signed type specifiers in a decla-
ration.

178 "unsigned" and "signed" may be used in conjunction only with "int", "long" or "char".

An attempt was made to use signed or unsigned in conjunction with a type specifier
other than int, long, or char.

179 "long" may be used in conjunction only with "int" or "double".

An attempt was made to use long in conjunction with a type specifier other than int or
double.

UM013034-1210 Warning and Error Messages

Zilog Developer Studio II – Z8 Encore!®

User Manual

255

180 Illegal bit field length.

The length of a bit field was outside of the range 0-32.

181 Too many initializers for object.

An attempt was made to initialize an object with more elements than the object con-
tains.

182 Static objects can be initialized with constant expressions only.

An attempt was made to initialize a static object with a non-constant expression.

183 Array "<name>" has too many initializers.

An attempt was made to initialize an array with more elements than the array contains.

184 Structure "<name>" has too many initializers.

An attempt was made to initialize a structure with more elements than the structure
has members.

185 Dimension size may not be zero, negative or omitted.

An attempt was made to omit the dimension of an array, which is not the right-most
dimension, or any dimension of the array was set as less than or equal to zero.

186 First dimension of "<name>" may not be omitted.

An attempt was made to omit the first dimension of an array which is not external and
is not initialized.

187 Dimension size must be greater than zero.

An attempt was made to declare an array with a dimension size of zero.

188 Only "register" storage class is allowed for formal parameter.

An attempt was made to declare a formal parameter with storage class other than reg-
ister.

189 Cannot take size of array with missing dimension size.

An attempt was made to take the size of an array with an omitted dimension.

190 Identifier "<name>" already declared with different type or linkage.

An attempt was made to declare a tentative declaration with a different type than a
declaration of the same name; or, an attempt was made to declare an object with a dif-
ferent type from a previous tentative declaration.

191 Cannot perform pointer arithmetic on pointer to void.

An attempt was made to perform pointer arithmetic on pointer to void.

Using the ANSI C-Compiler UM013034-1210

256

Zilog Developer Studio II – Z8 Encore!®

User Manual

192 Cannot initialize object with "extern" storage class.

An attempt was made to initialize variable with extern storage class.

193 Missing "<name>" detected.

An attempt was made to use a variable without any previous definition or declaration.

194 Recursive structure declaration.

A structure member cannot be of same type as the structure itself.

195 Initializer is not assignment compatible.

The initializer type does not match with the variable being initialized.

196 Empty parameter list is an obsolescent feature.

Empty parameter lists are not allowed.

197 No function prototype "<name>" in scope.

The function <name> is called without any previous definition or declaration.

198 "old style" formal parameter declarations are obsolescent.

Change the parameter declarations.

201 Only one memory space can be specified

An attempt was made to declare a variable with multiple memory space specifier.

202 Unrecognized/invalid type specifier

A type specifier was expected, and something different (such as a label or symbol)
was read. Or, a valid type specifier was read but cannot be used in this context.

204 Ignoring space specifier (e.g. near, far, rom) on local, parameter or struct member

An attempt was made to declare a local, parameter, or struct member with a memory
space specifier. The space specifier for a local or parameter is decided based on the
memory model chosen. The space specifier for a struct member is decided based on
the space specifier of the entire struct. Any space specifier on local, parameter, or
struct member is ignored.

 205 Ignoring const or volatile qualifier

An attempt was made to assign a pointer to a type with const qualifier to a pointer to a
type with no const qualifier.

or

An attempt was made to assign a pointer to a type with volatile qualifier to a pointer to
a type with no volatile qualifier.

UM013034-1210 Warning and Error Messages

Zilog Developer Studio II – Z8 Encore!®

User Manual

257

206 Cannot initialize typedef

An attempt was made to initialize a typedef.

207 Aggregate or union objects may be initialized with constant expressions only

An attempt was made to initialize an array element, a structure, or union member with
an expression that cannot be evaluated at compile time.

208 Operands are not cast compatible

An attempt was made to cast an operand to an incompatible type, for example, casting
a rom pointer to a far pointer.

209 Ignoring space specifier (e.g. near, far) on function

An attempt was made to declare a function as near or far.

210 Invalid use of placement or alignment option

An attempt was made to use a placement or alignment option on a local or parameter.

212 No previous use of placement or alignment options

An attempt was made to use the _At … directive without any previous use of the _At
address directive.

213 Function "<name>" must return a value

An attempt was made to return from a non void function without providing a return
value.

214 Function return type defaults to int

The return type of the function was not specified so the default return type was
assumed. A function that does not return anything should be declared as void.

215 Signed/unsigned mismatch

An attempt was made to assign a pointer to a signed type with a pointer to an unsigned
type and vice versa.

216 “<name>” Initialization needs curly braces

An attempt is made to initialize a structure of union without enclosing the initializa-
tion in curly braces ‘{’ and ‘}’.

217 Cannot open include file “<name>”

An attempt to open the include file <name> failed. Check the path of <name> in com-
bination with the –usrinc and -stdinc command line options for the existence of
the file.

218 Function definition declared auto

An attempt is made to define a function with auto storage class.

Using the ANSI C-Compiler UM013034-1210

258

Zilog Developer Studio II – Z8 Encore!®

User Manual

219 Parameter type given in both old style and new style

While defining a function, an attempt is made to specify the parameter type in both old
style and new style.

220 Cannot perform pointer arithmetic on function pointer

An attempt is made to perform pointer arithmetic (+, -) on function pointer.

221 Type defaults to int

A variable declared with no type is treated as of type int. A function declared with no
return type is treated as a function returning int.

222 Statement has no effect

If the statement is not modifying any variables and only reading them, this warning is
generated. If the variable read is a volatile variable, this warning is not generated.

223 Indirectly called function must be of reentrant type

In Static frame applications, any indirectly called function must be specified as the
reentrant type using the reentrant keyword.

224 Conflicting string placement directive in string constant

There are multiple string placement directives in a string constant that attempt to
direct the placement of the string in different address spaces.

Optimizer Warning and Error Messages
250 Missing format parameter to (s)printf

This message is generated when a call to printf or sprintf is missing the format param-
eter and the inline generation of printf calls is requested.

For example, a call of the form:

printf();

251 Can't preprocess format to (s)printf

This message is generated when the format parameter to printf or sprintf is not a string
literal and the inline generation of printf calls is requested.

For example, the following code causes this warning:

static char msg1 = "x = %4d";
char buff[sizeof(msg1)+4];
sprintf(buff,msg1,x); // WARNING HERE

This warning is generated because the line of code is processed by the real printf or
sprintf function, so that the primary goal of the inline processing, reducing the code
size by removing these functions, is not met.

When this message is displayed, you have three options:

UM013034-1210 Warning and Error Messages

Zilog Developer Studio II – Z8 Encore!®

User Manual

259

– Deselect the Generate Printfs Inline checkbox (see C: Advanced Page on
page 71) so that all calls to printf and sprintf are handled by the real printf
or sprintf functions.

– Recode to pass a string literal.

– For example, the code in the example can be revised as:

define MSG1 "x = %4d"
char buff[sizeof(MSG1)+4];
sprintf(buff,MSG1,x); // OK

– Keep the Generate Printfs Inline checkbox selected and ignore the warning. This
loses the primary goal of the option but results in the faster execution of the calls
to printf or sprintf that can be processed at compile time, a secondary goal of the
option.

252 Bad format string passed to (s)printf

This warning occurs when the compiler is unable to parse the string literal format and
the inline generation of printf calls is requested. A normal call to printf or
sprintf is generated (which might also be unable to parse the format).

253 Too few parameters for (s)printf format

This error is generated when there are fewer parameters to a call to printf or sprintf
than the format string calls for and the inline generation of printf calls is requested.

For example:

printf("x = %4d\n");

254 Too many parameters for (s)printf format

This warning is generated when there are more parameters to a call to printf or sprintf
than the format string calls for and the inline generation of printf calls is requested.

For example:

printf("x = %4d\n", x, y);

The format string is parsed, and the extra arguments are ignored.

 255 Missing declaration of (s)printf helper function, variable, or field

This warning is generated when the compiler has not seen the prototypes for the printf
or sprintf helper functions it generates calls to. This occurs if the standard include file
stdio.h has not been included or if stdio.h from a different release of ZDS II has been
included.

256 Can't preprocess calls to vprintf or vsprintf

This message is generated when the code contains calls to vprintf or vsprintf and
the inline generation of printf calls is requested. The reason for this warning and the
solutions are similar to the ones for message 201: Can’t preprocess format to (s)printf.

Using the ANSI C-Compiler UM013034-1210

260

Zilog Developer Studio II – Z8 Encore!®

User Manual

257 Not all paths through “<name>” return a value

The function declared with a return type is not returning any value at least on one path
in the function.

258 Variable "<name>" may be used before it is defined

If there is at least one path through the function that uses a local variable before it is
defined, this warning is reported.

Code Generator Warning and Error Messages
303 Case value <number> already defined.

If a case value consists of an expression containing a sizeof, its value is not known
until code generation time. Thus, it is possible to have two cases with the same value
not caught by the front end. Review the switch statement closely.

308 Excessive Registers required at line <num> of function <func>.

Excessive Page 0 registers are required at line number <num>. The compiler does not
perform register spilling, so complex expressions that generate this error must be fac-
tored into two or more expressions.

309 Interrupt function <name> cannot have arguments.

A function declared as an interrupt function cannot have function arguments.

310 Index out of range, truncating index of <num> to 255.

The compiler detected an array access outside of the 0.255 byte range. Use a tempo-
rary variable if you must access an array element outside of this range.

312 Aggregate Copy out of range, truncating copy size of <num> to 255.

The compiler limits structure sizes to 255 bytes. An attempt was made to copy struc-
tures greater than 255 bytes. Use the memcpy library function if structures greater than
255 bytes are required.

313 Bitfield Length exceeds x bits.

The compiler only accepts bit-field lengths of 8 bits or less for char bit-fields, 16 bits
or less for short and int bit-fields, and 32 bits or less for long bit-fields.

UM013034-1210 Using the Macro Assembler

Zilog Developer Studio II – Z8 Encore!®

User Manual

261

Using the Macro Assembler

You use the Macro Assembler to translate Z8 Encore! assembly language files with the
.asm extension into relocatable object modules with the .obj extension. After your relo-
catable object modules are complete, you convert them into an executable program using
the linker/locator. The Macro Assembler can be configured using the Assembler page of
the Project Settings dialog box (see Assembler Page on page 61).

The Command Processor allows you to use commands or script files to automate the exe-
cution of a significant portion of the IDE’s functionality. For more information about the
Command Processor, see Appendix D. Using the Command Processor on page 465.

The following topics are covered in this section:

• Address Spaces and Segments on page 262

• Output Files on page 265

• Source Language Structure on page 267

• Expressions on page 271

• Directives on page 278

• Structured Assembly on page 300

• Conditional Assembly on page 308

• Macros on page 311

• Labels on page 315

• Source Language Syntax on page 317

• Compatibility Issues on page 320

• Warning and Error Messages on page 321

For more information about Z8 Encore! CPU instructions, see the eZ8 CPU Instruction
Set Description section in the eZ8 CPU User Manual (UM0128).

Note:

Note:

http://www.zilog.com/docs/um0128.pdf

Using the Macro Assembler UM013034-1210

262

Zilog Developer Studio II – Z8 Encore!®

User Manual

Address Spaces and Segments

You access the memory regions of the Z8 Encore! microcontroller by using segment direc-
tives. A segment is a contiguous set of memory locations. All segments are attached to
exactly one memory space. The Z8 Encore! Assembler has predefined spaces and seg-
ments. The following sections describe address spaces and segments:

• Allocating Processor Memory on page 262

• Address Spaces on page 262

• Segments on page 263

• Assigning Memory at Link Time on page 265

Allocating Processor Memory
All memory locations, whether data or code, must be defined within a segment. There are
two types of segments:

• Absolute segments

An absolute segment is any segment with a fixed origin. The origin of a segment can
be defined with the ORG directive. All data and code in an absolute segment are
located at the specified physical memory address.

• Relocatable segments

A relocatable segment is a segment without a specified origin. At link time, linker
commands are used to specify where relocatable segments are to be located within
their space. Relocatable segments can be assigned to different physical memory loca-
tions without re-assembling.

Address Spaces
The memory regions for the Z8 Encore! microprocessor are represented by the address
spaces listed in Linker: Address Spaces Page on page 92. Briefly, the main address spaces
are the ROM space (used for program storage and some constant data) and the data spaces
RData and EData. Both RData and EData are used to store nonconstant data; RData is 8-
bit addressable memory with a maximum range of 00H-FFH, and EData is 12-bit address-
able memory with a maximum range of 100H-EFFH. Some CPUs also have specialized
NVDS (Non-Volatile Data Storage) and PRAM (Program RAM) spaces, which are
described more fully in Linker: Address Spaces Page on page 92.

Code and data are allocated to these spaces by using segments attached to the space.

UM013034-1210 Address Spaces and Segments

Zilog Developer Studio II – Z8 Encore!®

User Manual

263

Segments
Segments are used to represent regions of memory. Only one segment is considered active
at any time during the assembly process. A segment must be defined before setting it as
the current segment. Every segment is associated with one and only one address space.

The following sections describe segments:

• Predefined Segments on page 263

• User-Defined Segments on page 264

Predefined Segments

For convenience, the segments listed in the following table are predefined by the assem-
bler. Each segment gets assigned to one of the address spaces. All of the predefined seg-
ments listed here can be aligned on any byte boundary.

Initialized segments in RDATA or EDATA, such as NEAR_BSS or FAR_DATA, require
start-up code to initialize them because only segments in ROM or EROM can actually be
initialized by the assembler/linker. For an example of how to do this, study the C start-up
code, in ZILOGINSTALL\ZDSII_product_version\src\rtl\common\ start-
ups.asm, and the linker command files automatically generated for a C project.

Table 7. Predefined Segments

Segment ID Space Contents Default Origin

near_bss RData Uninitialized data Relocatable

far_bss EData Uninitialized data Relocatable

near_data RData Initialized data Relocatable

far_data EData Initialized data Relocatable

rom_data ROM Initialized data Relocatable

near_txt RData String constants Relocatable

far_txt EData String constants Relocatable

rom_text ROM String constants Relocatable

code ROM Code Relocatable

text RData Initialized data Relocatable

__vectors_nnn ROM Interrupt vectors Absolute

pramseg PRAM Code Relocatable

Note:

Using the Macro Assembler UM013034-1210

264

Zilog Developer Studio II – Z8 Encore!®

User Manual

The predefined segment text is generated by the compiler, which moves it to either the
near_data or far_data segment, depending on the memory model that is in use. See
Memory Models on page 187.

For every vector directive that locates an interrupt vector at address nnn (where n repre-
sents a hexadecimal digit), the assembler generates an absolute segment in ROM named
__vectors_nnn.

The pramseg segment is available only for the subset of Z8 Encore! CPUs that support
the PRAM (Program RAM) address space.

User-Defined Segments

You can define a new segment using the following directives:

DEFINE MYSEG,SPACE=ROM
SEGMENT MYSEG

MYSEG becomes the current segment when the assembler processes the SEGMENT direc-
tive, and MYSEG remains the current segment until a new SEGMENT directive appears.
MYSEG can be used as a segment name in the linker command file.

You can define a new segment in RAM using the following directives:

DEFINE MYDATA,SPACE=RDATA
SEGMENT MYDATA

or

DEFINE MYDATA,SPACE=EDATA
SEGMENT MYDATA

The DEFINE directive creates a new segment and attaches it to a space. For more informa-
tion about using the DEFINE directive, see DEFINE on page 285. The SEGMENT directive
attaches code and data to a segment. The SEGMENT directive makes that segment the cur-
rent segment. Any code or data following the directive resides in the segment until another
SEGMENT directive is encountered. For more information about the SEGMENT directive,
see SEGMENT on page 291.

A segment can also be defined with a boundary alignment and/or origin.

• Alignment

Aligning a segment tells the linker to place all instances of the segment in your pro-
gram on the specified boundary.

Notes:

UM013034-1210 Output Files

Zilog Developer Studio II – Z8 Encore!®

User Manual

265

Although a module can enter and leave a segment many times, each module still has only
one instance of a segment.

• Origin

When a segment is defined with an origin, the segment becomes an absolute segment,
and the linker places it at the specified physical address in memory.

Assigning Memory at Link Time
At link time, the linker groups those segments of code and data that have the same name
and places the resulting segment in the address space to which it is attached. However, the
linker handles relocatable segments and absolute segments differently:

• Relocatable segments

If a segment is relocatable, the linker decides where in the address space to place the
segment.

• Absolute segments

If a segment is absolute, the linker places the segment at the absolute address specified
as its origin.

At link time, you can redefine segments with the appropriate linker commands. For more
information about link commands, see Linker Commands on page 329.

Output Files

The assembler creates the following files and names them the name of the source file but
with a different extension:

• <source>.lst contains a readable version of the source and object code generated by
the assembler. The assembler creates <source>.lst unless you deselect the Generate
Assembly Listing Files (.lst) checkbox in the Assembler page of the Project Set-
tings dialog box. See Generate Assembly Listing Files (.lst) on page 69.

• <source>.obj is an object file in relocatable OMF695 format. The assembler creates
<source>.obj.

Do not use source input files with .lst or .obj extensions. The assembler does not as-
semble files with these extensions; therefore, the data contained in the files is lost.

Note:

Note:

Caution:

Using the Macro Assembler UM013034-1210

266

Zilog Developer Studio II – Z8 Encore!®

User Manual

Source Listing (.lst) Format
The listing file name is the same as the source file name with a .lst file extension.
Assembly directives allow you to tailor the content and amount of output from the assem-
bler.

Each page of the listing file (.lst) contains the following elements:

• Heading with the assembler version number

• Source input file name

• Date and time of assembly

Source lines in the listing file are preceded by the following elements:

• Include level

• Plus sign (+) if the source line contains a macro

• Line number

• Location of the object code created

• Object code

The include level starts at level A and works its way down the alphabet to indicate nested
includes. The format and content of the listing file can be controlled with directives
included in the source file:

• NEWPAGE

• TITLE

• NOLIST

• LIST

• MACLIST ON/OFF

• CONDLIST ON/OFF

Error and warning messages follow the source line containing the error(s). A count of the
errors and warnings detected is included at the end of the listing output file.

The addresses in the assembly listing are relative. To convert the relative addresses into
absolute addresses, select the Show Absolute Addresses in Assembly Listings check-
box on the Output page (see Show Absolute Addresses in Assembly Listings on page 98).
This option uses the information in the .src file (generated by the compiler when the -
keepasm option is used or when the Generate Assembly Source checkbox is selected

Note:

UM013034-1210 Source Language Structure

Zilog Developer Studio II – Z8 Encore!®

User Manual

267

[see Generate Assembly Source Code on page 68]) and the .map file to change all of the
relative addresses in the assembly listing into absolute addresses.

Object Code (.obj) File
The object code output file name is the same as the source file name with an .obj exten-
sion. This file contains the relocatable object code in OMF695 format and is ready to be
processed by the linker and librarian.

Source Language Structure

The following sections describe the form of an assembly source file:

• General Structure on page 267

• Assembler Rules on page 269

General Structure
Every nonblank line in an assembly source file is either a source line or a comment line.
The assembler ignores blank lines. Each line of input consists of ASCII characters termi-
nated by a carriage return. An input line cannot exceed 512 characters.

A backslash (\) at the end of a line is a line continuation. The following line is concate-
nated onto the end of the line with the backslash, as in the C programming language. Place
a space or any other character after the backslash if you do not want the line to be contin-
ued.

The following sections describe the general source language structure:

• Source Line on page 267

• Comment Line on page 268

• Label Field on page 268

• Instruction on page 268

• Directive on page 269

• Case Sensitivity on page 269

Source Line

A source line is composed of an optional label followed by an instruction or a directive. It
is possible for a source line to contain only a label field.

Using the Macro Assembler UM013034-1210

268

Zilog Developer Studio II – Z8 Encore!®

User Manual

Comment Line

A semicolon (;) terminates the scanning action of the assembler. Any text following the
semicolon is treated as a comment. A semicolon that appears as the first character causes
the entire line to be treated as comment.

Label Field

A label must meet at least one of the following conditions:

• It must be followed by a colon.

• It must start at the beginning of the line with no preceding white space (start in column
1).

• It can be defined by an EQU directive using the following syntax:

<label> EQU <expression>

See EQU on page 288 for more information about this type of label definition.

• Any instruction followed by a colon is treated as a label.

• Any instruction not followed by a colon is treated as an instruction, even if it starts in
the first column.

The first character of a label can be a letter, an underscore _ , a dollar sign ($), a question
mark (?), a period (.), or pound sign (#). Following characters can include letters, digits,
underscores, dollar signs ($), question marks (?), periods (.), or pound signs (#). The label
can be followed by a colon (:) that completes the label definition. A label can only be
defined once. The maximum label length is 129 characters.

Labels that can be interpreted as hexadecimal numbers are not allowed.

For example:

ADH:
ABEFH:

cannot be used as labels.

See Labels on page 315 and Hexadecimal Numbers on page 275 for more information.

Instruction

An instruction contains one valid assembler instruction that consists of a mnemonic and its
arguments. When an instruction is in the first column, it is treated as an instruction and not
a label. Use commas to separate the operands. Use a semicolon or carriage return to termi-
nate the instruction. For more information about Z8 Encore! CPU instructions, see the eZ8
CPU Instruction Set Description section of the eZ8 CPU User Manual (UM0128).

http://www.zilog.com/docs/um0128.pdf

UM013034-1210 Source Language Structure

Zilog Developer Studio II – Z8 Encore!®

User Manual

269

Directive

A directive tells the assembler to perform a specified task. Use a semicolon or carriage
return to terminate the directive. Use spaces or tabs to separate the directive from its oper-
ands. See Directives on page 278 for more information.

Case Sensitivity

In the default mode, the assembler treats all symbols as case sensitive. Select the Ignore
Case of Symbols checkbox of the General page in the Project Settings dialog box to
invoke the assembler and ignore the case of user-defined identifiers (see Ignore Case of
Symbols on page 60). Assembler reserved words are not case sensitive.

Assembler Rules
The following sections describe the assembler rules:

• Reserved Words on page 269

• Assembler Numeric Representation on page 271

• Character Strings on page 271

Reserved Words

The following list contains reserved words that the assembler uses. You cannot use these
words as symbol names or variable names. Also, reserved words are not case sensitive.

.align .ascii .asciz .ASECT .ASG

.assume .bes .block .bss .byte

.copy .data .def .ELIF .ELSE

.ELSEIF .emsg .ENDIF .ENDM .ENDMAC

.ENDMACRO .ENDSTRUCT .ENDWITH .EQU .ER

.even .extern .FCALL .file .FRAME

.global .IF .include .int .LIST

.long .MACEND .MACRO .MLIST .mmsg

.MNOLIST .NEWBLOCK .ORG .PAGE .public

.R .ref .RR .SBLOCK .sect

.SET .space .STRING .STRUCT .TAG

.text .UNION .USECT .VAR .WITH

.wmsg .word .WRG _ER _R

_RR _WRG ADC ALIGN ASCII

ASCIZ ASECT ASSUME BES BFRACT

BLKB BLKL BLKP BLKW BSS

Using the Macro Assembler UM013034-1210

270

Zilog Developer Studio II – Z8 Encore!®

User Manual

byte C C0 C1 C2

C3 CHIP COMMENT CONDLIST COPY

CPU DATA DB DBYTE DD

DEFB DEFINE DF DL DMA

DOT_IDENT DPTR DS DW DW24

ELSEIF END ENDC ENDM ENDMACRO

ENDMODULE ENDS ENDSTRUCT EQ ERROR

ESECT EXIT F FCALL FCB

FILE FLAGS FRACT FRAME GE

GLOBAL GLOBALS GREGISTER GT HIGH

I2C IFDIFF IFE IFFALSE IFNDEF

IFNDIFF IFNMA IFNSAME IFNTRUE IFZ

IGNORE INCLUDE LE LEADZERO LFRACT

LIST long LONGREG LOW LT

MACCNTR MACDELIM MACEND MACEXIT MACFIRST

MACLIST MACNOTE MESSAGE MI MLIST

MNOLIST MODULE NC NE NEWBLOCK

NEWPAGE NOCONDLIST NOLIST NOMACLIST NOSPAN

NOV NZ OFF ON ORG

ORIGIN OV PAGELENGTH PAGEWIDTH PL

POPSEG PP_ASG PP_CONCAT PP_DEF PP_ELIF

PP_ELSE PP_ENDIF PP_ENDMAC PP_EQU PP_EVAL

PP_EXPRESSION PP_GREG PP_IF PP_IFDEF PP_IFMA

PP_IFNDEF PP_IFNMA PP_LOCAL PP_MACEXIT PP_MACRO

PP_NOSAME PP_NIF PP_SAME PP_SBLOCK PP_VAR

PRINT PT PUSHSEG PW r0

r10 r11 r12 r13 r14

r15 r2 r3 r4 r5

r6 r7 r8 r9 RESET

RP rr0 rr10 rr12 rr14

rr2 rr4 rr6 rr8 SCOPE

SEGMENT SET SHORTREG SPH SPI

STRING STRUCT SUBTITLE T TAG

TEXT TIMER0 TIMER1 TIMER2 TIMER3

TITLE TRAP UART0_RX UART0_TX UART1_RX

UART1_TX UBFRACT UFRACT UGE UGT

UM013034-1210 Expressions

Zilog Developer Studio II – Z8 Encore!®

User Manual

271

Additionally, do not use the instruction mnemonics or assembler directives as symbol or
variable names.

Assembler Numeric Representation

Numbers are represented internally as signed 32-bit integers. Floating-point numbers are
32-bit IEEE standard single-precision values. The assembler detects an expression oper-
and that is out of range for the intended field and generates appropriate error messages.

Character Strings

Character strings consist of printable ASCII characters enclosed by double (") or single
(') quotes. A double quote used within a string delimited by double quotes and a single
quote used within a string delimited by single quotes must be preceded by a back slash (\).
A single quoted string consisting of a single character is treated as a character constant.
The assembler does not automatically insert null character (0's) at the end of a text string.
A character string cannot be used as an operand.

For example:

DB "STRING" ; a string
DB 'STRING',0 ; C printable string
DB "STRING\"S" ; embedded quote
DB 'a','b','c' ; character constants

Expressions

In most cases, where a single integer or float value can be used as an operand, an expres-
sion can also be used. The assembler evaluates expressions in 32-bit signed arithmetic or
64-bit floating-point arithmetic. Logical expressions are bitwise operators.

The assembler detects overflow and division-by-zero errors. The following sections
describe the syntax of writing an expression:

• Arithmetic Operators on page 272

ULE ULFRACT ULT UN_IF UNSUPPORTED

USER_ERROR USER_EXIT USER_WARNING VAR VECTOR

WARNING WDT word XDEF XREF

Z ZBREAK ZCONTINUE ZELSE ZELSEIF

ZENDIF ZIF ZIGNORE ZREPEAT ZSECT

ZUSECT ZWEND ZWHILE ZUNTIL

Note:

Using the Macro Assembler UM013034-1210

272

Zilog Developer Studio II – Z8 Encore!®

User Manual

• Relational Operators on page 272

• Boolean Operators on page 273

• HIGH and LOW Operators on page 273

• HIGH16 and LOW16 Operators on page 274

• .FTOL Operator on page 274

• .LTOF Operator on page 274

• Decimal Numbers on page 274

• Hexadecimal Numbers on page 275

• Binary Numbers on page 275

• Octal Numbers on page 275

• Character Constants on page 276

• Operator Precedence on page 276

• Automatic Working Register Definitions on page 277

Arithmetic Operators

You must put spaces before and after the modulus operator to separate it from the rest of
the expression.

Relational Operators
For use only in conditional assembly expressions.

<< Left Shift

>> Arithmetic Right Shift

** Exponentiation

* Multiplication

/ Division

% Modulus

+ Addition

- Subtraction

Note:

UM013034-1210 Expressions

Zilog Developer Studio II – Z8 Encore!®

User Manual

273

Boolean Operators

HIGH and LOW Operators
The HIGH and LOW operators can be used to extract specific bytes from an integer
expression. The LOW operator extracts the byte starting at bit 0 of the expression, while
the HIGH operator extracts the byte starting at bit 8 of the expression.

HIGH and LOW can also be used to extract portions of a floating-point value.

For example:

LOW (X) ; 8 least significant bits of X
HIGH (X) ; 8 most significant bits of X

The syntax of these operators is:

<operator> <expression>

For example:

HIGH <expression>

HIGH (and LOW) takes the entire expression to the right of it as its operand. This means that
an expression such as

HIGH(PAOUT)|LOW(PAOUT&%f0)

is parsed as, in effect,

HIGH((PAOUT | LOW(PAOUT & %f0)))

== Equal Synonyms: .eq., .EQ.

!= Not Equal Synonyms: .ne., .NE.

> Greater Than Synonyms: .gt., .GT.

< Less Than Synonyms: .lt., .LT.

>= Greater Than or Equal Synonyms: .ge., .GE.

<= Less Than or Equal Synonyms: .le., .LE.

& Bitwise AND Synonyms: .and., .AND.

| Bitwise inclusive OR Synonyms: .or., .OR.

^ Bitwise exclusive XOR Synonyms: .xor., .XOR.

~ Complement

! Boolean NOT Synonyms: .not., .NOT.

Using the Macro Assembler UM013034-1210

274

Zilog Developer Studio II – Z8 Encore!®

User Manual

If HIGH is only intended to operate on PAOUT in this example, its operation must be
restricted with parentheses.

For example:

(HIGH(PAOUT))|LOW(PAOUT&%f0)

HIGH16 and LOW16 Operators
The HIGH16 and LOW16 operators can be used to extract specific 16-bit words from an
integer expression. The LOW16 operator extracts the word starting at bit 0 of the expres-
sion; the HIGH16 operator extracts the word starting at bit 16 of the expression.

HIGH16 and LOW16 can also be used to extract portions of a floating-point value.

For example:

LOW16 (X) ; 16 least significant bits of X
HIGH16 (X) ; 16 most significant bits of X

.FTOL Operator
The .FTOL operator can be used to convert a floating-point value to an integer.

For example:

fval equ 12.34

segment CODE
LD r0,#.FTOL(fval) ; 12 is loaded into r0.

.LTOF Operator
The .LTOF operator can be used to convert an integer value to a floating-point value.

For example:

val equ 12
fval DF .LTOF(val)

Decimal Numbers
Decimal numbers are signed 32-bit integers consisting of the characters 0–9 inclusive
between -2147483648 and 2147483647. Positive numbers are indicated by the absence
of a sign. Negative numbers are indicated by a minus sign (-) preceding the number.
Underscores (_) can be inserted between digits to improve readability.

For example:

1234 ; decimal
-123_456 ; negative decimal
1_000_000; decimal number with underscores
123; NOT an integer but a name. Underscore can be neither first

nor last character.

UM013034-1210 Expressions

Zilog Developer Studio II – Z8 Encore!®

User Manual

275

12E-45 ; decimal float
-123.456 ; decimal float
123.45E6 ; decimal float

Hexadecimal Numbers
Hexadecimal numbers are signed 32-bit integers ending with the h or H suffix (or starting
with the % prefix) and consisting of the characters 0–9 and A–F. A hexadecimal number
can have 1 to 8 characters. Positive numbers are indicated by the absence of a sign. Nega-
tive numbers are indicated by a minus sign (-) preceding the number. Underscores (_) can
be inserted between hexadecimal digits to improve readability, but only when the % prefix
is used instead of the H suffix.

For example:

ABCDEFFFH ; hexadecimal
%ABCDEFFF ; hexadecimal
-0FFFFh ; negative hexadecimal
%ABCD_EFFF; hexadecimal number with underscore
ADC0D_H; NOT a hexadecimal number but a name

; underscores not allowed with the H suffix

Binary Numbers
Binary numbers are signed 32-bit integers ending with the character b or B and consisting
of the characters 0 and 1. A binary number can have 32 characters. Positive numbers are
indicated by the absence of a sign. Negative numbers are indicated by a minus sign (-)
preceding the number. Underscores (_) can be inserted between binary digits to improve
readability.

For example:

-0101b ; negative binary number
0010_1100_1010_1111B; binary number with underscores

Octal Numbers
Octal numbers are signed 32-bit integers ending with the character o or O and consisting of
the characters 0–7. An octal number can have 1 to 11 characters. Positive numbers are
indicated by the absence of a sign. Negative numbers are indicated by a minus sign (-)
preceding the number. Underscores (_) can be inserted between octal digits to improve
readability.

For example:

1234o ; octal number
-1234o ; negative octal number
1_234o; octal number with underscore

Using the Macro Assembler UM013034-1210

276

Zilog Developer Studio II – Z8 Encore!®

User Manual

Character Constants
A single printable ASCII character enclosed by single quotes (') can be used to represent
an ASCII value. This value can be used as an operand value.

For example:

'A' ; ASCII code for "A"
'3' ; ASCII code for "3"

Operator Precedence
The following table shows the operator precedence in descending order, with operators of
equal precedence on the same line. Operators of equal precedence are evaluated left to
right. Parentheses can be used to alter the order of evaluation.

Shift Left (<<) and OR (|) have the same operator precedence and are evaluated from left
to right. If you must alter the order of evaluation, add parentheses to ensure the desired
operator precedence.

For example:

ld a, 1<<2 | 1<<2 | 1<<1

The constant expression in the preceding instruction evaluates to 2A H.

If you want to perform the Shift Left operations before the OR operation, use parentheses
as:

ld a, #(1<<2)|(1<<2)|(1<<1)

Table 8. Operator Precedence

Level 1 ()

Level 2 ~ unary- ! high low

Level 3 ** * / %

Level 4 + - & | ^ >> <<

Level 5 < > <= >= == !=

Note:

UM013034-1210 Expressions

Zilog Developer Studio II – Z8 Encore!®

User Manual

277

The modified constant expression evaluates to 6 H.

Automatic Working Register Definitions
Z8 Encore! supports 4-, 8-, and 12-bit addressing of registers. Automatic working register
definitions allow you to specify which mode the assembler uses. The default is 12-bit
mode.

The following examples show how to use automatic working register definitions:

lab equ %54
ldx @r1,@.ER(lab) is encoded as 8754E1
ldx @.ER(lab),@r2 is encoded as 97E254

ldx rp, #.WRG(wbase)

If wbase is at %234, it is then equivalent to:

ldx rp, #%32

ld r0,.R(reg)

If reg is at %43, it is then equivalent to:

ld r0, r3

ldc r2,@.RR(rreg)

If rreg is at %46, it is then equivalent to:

ldc r2,@rr6

Define Bank0, Space = RData, org =0
segment Bank0

.ER Indicates that the enclosed address is to be encoded as a 8-bit register pair
address. Only valid in ldx instruction.

.R Indicates that the lower nibble of the enclosed label has to be encoded in the
instruction.

.RR Indicates that the enclosed label is at the even boundary and the lower nibble is
to be encoded in the instruction.

.WRG Computes the value to store in the RP register so that the given label can be
accessed using the 4- or 8-bit addressing mode.

Using the Macro Assembler UM013034-1210

278

Zilog Developer Studio II – Z8 Encore!®

User Manual

testme ds 1

segment Code

srp #.WRG(testme)
incw .RR(testme)

You must be careful if you want to use escaped mode addressing with 8-bit addresses in
extended addressing instructions such as LDX, ADDX, and ANDX, as described in the eZ8
CPU User Manual (UM0128). This is sometimes referred to as RP-based page addressing
because the upper 4 bits of the address are taken from RP[0:3] and a page from 00H to
FFH of addressing is taken from the low 8 bits of the operand. The point to be careful
about is that to use this type of addressing, you have to use the hexadecimal digit E as the
top nibble of your instruction.

For example:

LDX %E25,%213

writes to a destination address whose lower 8 bits are 25H and whose upper 4 bits are
taken from the RP, as intended. Conversely, if you write:

LDX %25,%213

this latter instruction is converted by the assembler into the only accepted form of LDX that
matches the operands that are given; specifically, %25 is taken to be the 12-bit operand
025H, and that is used as the destination of the load.

Directives

Directives control the assembly process by providing the assembler with commands and
information. These directives are instructions to the assembler itself and are not part of the
microprocessor instruction set. The following sections provide details for each of the sup-
ported assembler directives:

• ALIGN on page 279

• .COMMENT on page 279

• CPU on page 280

• Data Directives on page 280

• DEFINE on page 285

• DS on page 287

Note:

http://www.zilog.com/docs/um0128.pdf
http://www.zilog.com/docs/um0128.pdf

UM013034-1210 Directives

Zilog Developer Studio II – Z8 Encore!®

User Manual

279

• END on page 287

• EQU on page 288

• INCLUDE on page 289

• LIST on page 289

• NEWPAGE on page 289

• NOLIST on page 290

• ORG on page 290

• SEGMENT on page 291

• SUBTITLE on page 291

• TITLE on page 291

• VAR on page 292

• VECTOR on page 293

• XDEF on page 294

• XREF on page 295

• Structures and Unions in Assembly Code on page 295

ALIGN
Forces the object following to be aligned on a byte boundary that is a multiple of <value>.

Synonym

align

Syntax

<align_directive> = > ALIGN <value>

Example

ALIGN 2
DW EVEN_LABEL

.COMMENT
The .COMMENT assembler directive classifies a stream of characters as a comment.

The .COMMENT assembler directive causes the assembler to treat an arbitrary stream of
characters as a comment. The delimiter can be any printable ASCII character. The assem-
bler treats as comments all text between the initial and final delimiter, as well as all text on
the same line as the final delimiter.

Using the Macro Assembler UM013034-1210

280

Zilog Developer Studio II – Z8 Encore!®

User Manual

You must not use a label on this directive.

Synonym

COMMENT

Syntax

.COMMENT delimiter [text] delimiter

Example

.COMMENT $ An insightful comment

of great meaning $

This text is a comment, delimited by a dollar sign, and spanning multiple source lines. The
dollar sign ($) is a delimiter that marks the line as the end of the comment block.

CPU
Defines to the assembler which member of the Z8 Encore! family is targeted. From this
directive, the assembler can determine which instructions are legal as well as the locations
of the interrupt vectors within the CODE space.

The CPU directive is used to determine the physical location of the interrupt vectors.

Syntax

<cpu_definition> = > CPU = <cpu_name>

Example

CPU = Z8F6423

Data Directives
Data directives allow you to reserve space for specified types of data. The following data
directives are available:

• BFRACT and UBFRACT Declaration Types on page 281

• FRACT and UFRACT Declaration Types on page 282

• BLKB Declaration Type on page 282

• BLKL Declaration Type on page 282

• BLKW Declaration Type on page 283

• DB Declaration Type on page 283

Note:

UM013034-1210 Directives

Zilog Developer Studio II – Z8 Encore!®

User Manual

281

• DD Declaration Type on page 283

• DF Declaration Type on page 284

• DL Declaration Type on page 284

• DW Declaration Type on page 284

• DW24 Declaration Type on page 285

Syntax

<data directive> = > <type> <value_list>
<type> => BFRACT

=> BLKB
=> BLKL
=> BLKW
=> DB
=> DD
=> DF
=> DL
=> DW
=> DW24
=> FRACT
=> UBFRACT
=> UFRACT

<value_list> => <value>
 => <value_list>,<value>
<value> => <expression>|<string_const>

The BLKB, BLKL, and BLKW directives can be used to allocate a block of byte, long, or
word data, respectively.

BFRACT and UBFRACT Declaration Types

Syntax

BFRACT signed fractional (8 bits)

UBFRACT unsigned fractional (8 bits)

Examples

BFRACT [3]0.1, [2]0.2 ; Reserve space for five 8-bit
; signed fractional numbers.
 ; Initialize first 3 with 0.1,
 ; last 2 with a 0.2.

UBFRACT [50]0.1,[50]0.2 ; Reserve space for 100 8-bit
 ; unsigned fractional numbers.
 ; Initialize first 50 with a

Using the Macro Assembler UM013034-1210

282

Zilog Developer Studio II – Z8 Encore!®

User Manual

 ; 0.1, second 50 with a 0.2
BFRACT 0.5 ; Reserve space for one 8-bit signed, fractional number

 ; and initialize it to 0.5.

FRACT and UFRACT Declaration Types

Syntax

FRACT signed fractional (8 bits)

UFRACT unsigned fractional (8 bits)

Examples

FRACT [3]0.1, [2]0.2 ; Reserve space for five 16-bit
 ; signed fractional numbers.
 ; Initialize first 3 with 0.1,
 ; last 2 with a 0.2.

UFRACT [50]0.1,[50]0.2 ; Reserve space for 100 16-bit
 ; unsigned fractional numbers.
 ; Initialize first 50 with a
 ; 0.1, second 50 with a 0.2

FRACT 0.5 ; Reserve space for one 16-bit signed, fractional number
 ; and initialize it to 0.5.

BLKB Declaration Type

Syntax

BLKB number of bytes (8 bits each) [, <init_value>]

Examples

BLKB 16 ; Allocate 16 uninitialized bytes.
BLKB 16, -1 ; Allocate 16 bytes and initialize them to -1.

BLKL Declaration Type

Syntax

BLKL number of longs (32 bits each) [, <init_value>]

Examples

BLKL 16 ; Allocate 16 uninitialized longs.
BLKL 16, -1 ; Allocate 16 longs and initialize them to -1.

UM013034-1210 Directives

Zilog Developer Studio II – Z8 Encore!®

User Manual

283

BLKW Declaration Type

Syntax

BLKW number of words (16 bits each) [, <init_value>]

Examples

BLKW 16 ; Allocate 16 uninitialized words.
BLKW 16, -1 ; Allocate 16 words and initialize them to -1.

DB Declaration Type

Synonyms

.byte, .ascii, .asciz, DEFB, FCB, STRING, .STRING, byte

Syntax

DB byte data (8 bits)

Examples

DB "Hello World" ; Reserve and initialize 11 bytes.
DB 1,2 ; Reserve 2 bytes. Initialize the
 ; first word with a 1 and the second with a 2.
DB %12 ; Reserve 1 byte. Initialize it with ; %12.

There is no trailing null for the DB declaration type, except that a trailing null is added for
the otherwise identical .asciz declaration type.

DD Declaration Type

Synonym

.double

Syntax

DD double signed floating-point value (32 bits)

Example

DD 0.1, -16.42 ; Reserve space for 2 64-bit double-precision
; signed floating-point numbers. Initialize the
; first with 0.1 and the last with -16.42.

Note:

Using the Macro Assembler UM013034-1210

284

Zilog Developer Studio II – Z8 Encore!®

User Manual

DF Declaration Type

Synonym

.float

Syntax

DF word signed floating-point constant (32 bits)

Example

DF 0.1,0.2 ; Reserve space for 2 32-bit single-precision signed
 ; floating-point numbers. Initialize the
 ; first with 0.1 and the last with 0.2.

DF .5 ; Reserve space for 1 word signed
 ; floating-point number and initialize it to 0.5.

DL Declaration Type

Synonyms

.long, long

Syntax

DL long (32 bits)

Examples

DL 1,2 ; Reserve 2 long words. Initialize the
; first with a 1 and last with a 2.

DL %12345678 ; Reserve space for 1 long word and
 ; initialize it to %12345678.

DW Declaration Type

Synonyms

.word, word, .int

Syntax

DW word data (16 bits)

Examples

DW "Hello World" ; Reserve and initialize 11 words.
DW 1,2 ; Reserve 2 words. Initialize the
 ; first word with a 1 and the second with a 2.
DW %1234 ; Reserve 1 word and initialize it with %1234.

UM013034-1210 Directives

Zilog Developer Studio II – Z8 Encore!®

User Manual

285

There is no trailing null for the DW declaration type. When used for an ASCII character
string as in the first example here, each letter gets 16 bits with the upper 8 bits zero.

DW24 Declaration Type

Synonyms

.word24, .trio, .DW24

Syntax

DW24 word data (24 bits)

Examples

dw24 %123456; Reserve one 24-bit entity and initialize it with
%123456
.trio %789abc; Reserve one 24-bit entity and initialize it with
%798abc

DEFINE
Defines a segment with its associated address space, alignment, and origin. You must
define a segment before you can use it, unless it is a predefined segment. If a clause is not
given, use the default for that definition. For more information about the SEGMENT direc-
tive, see SEGMENT on page 291; for a list of predefined segments, see Predefined Seg-
ments on page 263.

The following sections describe the supported clauses:

• ALIGN Clause on page 286

• MAYINIT Clause on page 286

• ORG Clause on page 286

• SPACE Clause on page 287

Synonym

.define

Syntax

<segment_definition> =>
DEFINE<ident>[<space_clause>][align_clause>][<org_clause>][<mayinit_clause>]

Note:

Using the Macro Assembler UM013034-1210

286

Zilog Developer Studio II – Z8 Encore!®

User Manual

Examples

DEFINE near_code ; Uses the defaults of the current
 ; space, byte alignment and relocatable.

DEFINE irq_table,ORG=%FFF8 ; Uses current space, byte alignment,
 ; and absolute starting address at

 ; memory location %FFF8.

ALIGN Clause

Allows you to select the alignment boundary for a segment. The linker places modules in
this segment on the defined boundary. The boundary, expressed in bytes, must be a power
of two (1, 2, 4, 8, and so on).

Syntax

<align_clause> => ,ALIGN = <int_const>

Example

DEFINE fdata,SPACE = EData,ALIGN = 2
; Aligns on 2-byte boundary, relocatable.

MAYINIT Clause

A MAYINIT clause explicitly allows data in the segment to be initialized by, for example,
DB directives. Only segments in ROM or EROM can be directly initialized by assembler,
and the MAYINIT clause is not necessary for segments in these spaces. The initialization
of segments in RDATA or EDATA requires coordination of the assembler, linker, and
start-up code. If you must initialize data in a segment in RDATA or EDATA, use the
MAYINIT clause to enable the initialization directives in that segment. See the note in
Predefined Segments on page 263 on how to use start-up code to complete the initializa-
tion.

Syntax

<mayinit_clause> => , MAYINIT

Example

DEFINE mySeg, SPACE=EDATA, MAYINIT

ORG Clause

Allows you to specify where the segment is to be located, making the segment an absolute
segment. The linker places the segment at the memory location specified by the ORG
clause. The default is no ORG, and thus the segment is relocatable.

UM013034-1210 Directives

Zilog Developer Studio II – Z8 Encore!®

User Manual

287

Syntax

<org_clause> => ,ORG = <int_const>

Synonym

ORIGIN

Example

DEFINE near_code,ORG = %FFF8
; Uses current space, byte alignment, and absolute starting
; address at memory location %FFF8.

SPACE Clause

A SPACE clause defines the address space in which the segment resides. The linker groups
together segments with the same space identification. See Address Spaces on page 262 for
available spaces.

Syntax

<space_clause> => ,SPACE = <ident>

Examples

DEFINE fdata,SPACE = EData,ALIGN = 2
; Aligns on 2-byte boundary, relocatable.

DS
Defines storage locations that do not need to be initialized.

Synonym

.block

Syntax

<define_storage> => DS <value>

Examples

NAME: DS 10 ; Reserve 10 bytes of storage.
DS 22 ; Reserve 22 bytes of storage.

END
Informs the assembler of the end of the source input file. If the operand field is present, it
defines the start address of the program. During the linking process, only one module can

Using the Macro Assembler UM013034-1210

288

Zilog Developer Studio II – Z8 Encore!®

User Manual

have a start address; otherwise, an error results. The END directive is optional for those
modules that do not need a start address.

Any text found after an END directive is ignored.

Synonym

.end

Syntax

<end_directive> => END[<expression>]

Example

END start ; Use the value of start as the program start address.

EQU
Assigns symbolic names to numeric or string values. Any name used to define an equate
must not have been previously defined. Other equates and label symbols are allowed in the
expression, provided they are previously defined. Labels are not allowed in the expres-
sion.

There are restrictions on exporting EQU-defined symbolic names using the XDEF directive
or importing them using XREF. Specifically, a floating-point, string or symbolic register
name EQU cannot be exported. In the following example, length, width, and area can
be exported, but myreg cannot.

Synonyms

.equ, .EQU, EQUAL, .EQUAL

Syntax

 <label> EQU <expression>

Examples

length EQU 6 ; first dimension of rectangle
width EQU 11; second dimension of rectangle
area EQU length * width; area of the rectangle
myreg EQU rr4 ; symbolic name of a register pair

Note:

Note:

UM013034-1210 Directives

Zilog Developer Studio II – Z8 Encore!®

User Manual

289

INCLUDE
Allows the insertion of source code from another file into the current source file during
assembly. The included file is assembled into the current source file immediately after the
directive. When the EOF (End of File) of the included file is reached, the assembly
resumes on the line after the INCLUDE directive.

The file to include is named in the string constant after the INCLUDE directive. The file
name can contain a path. If the file does not exist, an error results and the assembly is
aborted. A recursive INCLUDE also results in an error.

INCLUDE files are contained in the listing (.lst) file unless a NOLIST directive is active.

Synonyms

.include, .copy, copy

Syntax

<include_directive> => INCLUDE[<string_const>]

Examples

INCLUDE "calc.inc" ; include calc header file
INCLUDE "\test\calc.inc" ; contains a path name
INCLUDE calc.inc ; ERROR, use string constant

LIST
Instructs the assembler to send output to the listing file. This mode stays in effect until a
NOLIST directive is encountered. No operand field is allowed. This mode is the default
mode.

Synonyms

.list, .LIST

Syntax

<list_directive> => LIST

Example

LIST
NOLIST

NEWPAGE
Causes the assembler to start a new page in the output listing. This directive has no effect
if NOLIST is active. No operand is allowed.

Using the Macro Assembler UM013034-1210

290

Zilog Developer Studio II – Z8 Encore!®

User Manual

Synonyms

.page, PAGE

Syntax

<newpage_directive> => NEWPAGE

Example

NEWPAGE

NOLIST
Turns off the generation of the listing file. This mode remains in effect until a LIST direc-
tive is encountered. No operand is allowed.

Synonym

.NOLIST

Syntax

<nolist_directive> => NOLIST

Example

LIST
NOLIST

ORG
The ORG assembler directive sets the assembler location counter to a specified value in the
address space of the current segment.

The ORG directive must be followed by an integer constant, which is the value of the new
origin.

Synonyms

ORIGIN, .ORG

Syntax

<org_directive> => ORG <int_const>

Examples
ORG %1000 ; Sets the location counter at %1000 in the address space of
current segment
ORG LOOP ; ERROR, use an absolute constant

UM013034-1210 Directives

Zilog Developer Studio II – Z8 Encore!®

User Manual

291

On encountering the ORG assembler directive, the assembler creates a new absolute seg-
ment with a name starting with $$$org. This new segment is placed in the address space
of the current segment, with origin at the specified value and alignment as 1.

Zilog recommends that segments requiring the use of ORG be declared as absolute seg-
ments from the outset by including an ORG clause in the DEFINE directive for the segment.

SEGMENT
Specifies entry into a previously defined segment.

The SEGMENT directive must be followed by the segment identifier. The default segment is
used until the assembler encounters a SEGMENT directive. The internal assembler program
counter is reset to the previous program counter of the segment when a SEGMENT directive
is encountered. See Table 7, “Predefined Segments,” on page 263 for the names of pre-
defined segments.

Synonyms

.section, SECTION

Syntax

<segment_directive> => SEGMENT <ident>

Example

SEGMENT code ; predefined segment
DEFINE data ; user-defined

SUBTITLE
Causes a user-defined subtitle to be displayed below the TITLE on each page of the listing
file. The new subtitle remains in effect until the next SUBTITLE directive. The operand
must be a string constant.

Syntax

<subtitle_directive> => SUBTITLE <string_const>

Example

SUBTITLE "My Project Subtitle"

TITLE
Causes a user-defined TITLE to be displayed in the listing file. The new title remains in
effect until the next TITLE directive. The operand must be a string constant.

Note:

Using the Macro Assembler UM013034-1210

292

Zilog Developer Studio II – Z8 Encore!®

User Manual

Synonym

.title

Syntax

<title_directive> => TITLE <string_const>

Example

TITLE "My Title"

VAR
The VAR directive works similarly to an EQU directive except you are allowed to change
the value of the label. In the following example, STRVAR is assigned three different values.
This causes an error if EQU was used instead of VAR.

Synonym

.VAR, SET, .SET

Syntax

 <label> VAR <expression>

Example
 A 6 SEGMENT NEAR_DATA
 A 7 ALIGN 2
 000000FF A 8 STRVAR VAR FFH
000000 FF A 9 DB STRVAR
 A 10 SEGMENT TEXT
000000 A 11 L__0:
000000 4641494C 4544 A 12 DB "FAILED"
000006 00 A 13 DB 0
 A 14 SEGMENT NEAR_DATA
 A 15 ALIGN 2
 00000000 A 16 STRVAR VAR L__0
 A 17
000002 A 18 _fail_str:
000002 00 A 19 DB STRVAR
 A 20 SEGMENT TEXT
000007 A 21 L__1:
000007 50415353 4544 A 22 DB "PASSED"
00000D 00 A 23 DB 0
 00000007 A 24 STRVAR VAR L__1
 A 25 SEGMENT NEAR_DATA
 A 26 ALIGN 2
000004 A 27 _pass_str:
000004 07 A 28 DB STRVAR

UM013034-1210 Directives

Zilog Developer Studio II – Z8 Encore!®

User Manual

293

VECTOR
Initializes an interrupt or reset vector to a program address. <vector name> specifies
which vector is being selected. Except for Z8 Encore! MC or 16 K XP parts, which are
covered in the succeeding tables, <vector name> must be represented by one of the fol-
lowing terms:

For Z8 Encore! MCTM (Motor Control) CPUs, <vector name> must be represented by
one of the following terms:

RESET
WDT
TRAP
TIMER2
TIMER1
TIMER0
UART0_RX
UART0_TX
I2C
SPI
ADC
P7AD
P6AD
P5AD
P4AD

P3AD
P2AD
P1AD
P0AD
TIMER3
UART1_RX
UART1_TX
DMA
C3
C2
C1
C0
POTRAP (primary oscillator fail trap—for Z8F04A series)
WOTRAP (watchdog oscillator fail trap—for Z8F04A series)

RESET
WDT
TRAP
PWMTIMER
PWMFAULT
ADC
CMP
TIMER0
UART0_RX
UART0_TX

SPI
12C
C0
PB
P7A, P31
P6A, P2A
P5A, P1A
P4A, P0A
POTRAP
WOTRAP

Using the Macro Assembler UM013034-1210

294

Zilog Developer Studio II – Z8 Encore!®

User Manual

For the Z8 Encore! 16K XP CPUs, <vector name> must be represented by one of the fol-
lowing terms:

Syntax

<vector_directive> => VECTOR <vector name> = <expression>

Examples

VECTOR WDT = irq0_handler
VECTOR TRAP = irq1_handler

XDEF
Defines a list of labels in the current module as an external symbol that are to be made
publicly visible to other modules at link time. The operands must be labels that are defined
somewhere in the assembly file.

Synonyms

.global, GLOBAL, .GLOBAL, .public, .def, public

Syntax

<xdef_directive> => XDEF <ident list>

Examples

XDEF label
XDEF label1,label2,label3

RESET
WDT
TRAP
TIMER2
TIMER1
TIMER0
UART0_RX
UART0_TX
I2C
SPI
ADC
P7AD
P6AD
P5AD

P4AD
P3AD
P2AD
P1AD
P0AD
MCT
UART1_RX
UART1_TX
C3
C2
C1
C0
POTRAP
WOTRAP

UM013034-1210 Directives

Zilog Developer Studio II – Z8 Encore!®

User Manual

295

XREF
Specifies that a list of labels in the operand field are defined in another module. The refer-
ence is resolved by the linker. The labels must not be defined in the current module. This
directive optionally specifies the address space in which the label resides.

Synonyms

.extern, EXTERN, EXTERNAL, .ref

Syntax

<xref_directive> => XREF <ident_space_list>
<ident_space_list> => <ident_space>
 => <ident_space_list>, <ident_space>
<ident_space> => <ident> [:<space>]

Examples

XREF label
XREF label1,label2,label3
XREF label:ROM

Structures and Unions in Assembly Code
The assembler provides a set of directives to group data elements together, similar to high-
level programming language constructs like a C structure or a Pascal record. These direc-
tives allow you to declare a structure or union type consisting of various elements, assign
labels to be of previously declared structure or union type, and provide multiple ways to
access elements at an offset from such labels.

The assembler directives associated with structure and union support are listed in the fol-
lowing table:

The structure and union directives are described in the following sections:

• .STRUCT and .ENDSTRUCT Directives on page 296

Assembler Directive Description

.STRUCT Group data elements in a structure type

.ENDSTRUCT Denotes end of structure or union type

.UNION Group data elements in a union type

.TAG Associate label with a structure or union type

.WITH A section in which the specified label or structure tag is
implicit

.ENDWITH Denotes end of with section

Using the Macro Assembler UM013034-1210

296

Zilog Developer Studio II – Z8 Encore!®

User Manual

• .TAG Directive on page 297

• .UNION Directive on page 299

• .WITH and .ENDWITH Directives on page 299

.STRUCT and .ENDSTRUCT Directives

A structure is a collection of various elements grouped together under a single name for
convenient handling. The .STRUCT and .ENDSTRUCT directives can be used to define the
layout for a structure in assembly by identifying the various elements and their sizes. The
.STRUCT directive assigns symbolic offsets to the elements of a structure. It does not allo-
cate memory. It merely creates a symbolic template that can be used repeatedly.

The .STRUCT and .ENDSTRUCT directives have the following form:

[stag] .STRUCT [offset | : parent]

[name_1] DS count1

[name_2] DS count2

[tname] .TAG stagx [count]

...

[name_n] DS count3

[ssize] .ENDSTRUCT [stag]

The label stag defines a symbol to use to reference the structure; the expression offset, if
used, indicates a starting offset value to use for the first element encountered; otherwise,
the starting offset defaults to zero.

If parent is specified rather than offset, the parent must be the name of a previously
defined structure, and the offset is the size of the parent structure. In addition, each name
in the parent structure is inserted in the new structure.

Each element can have an optional label, such as name_1, which is assigned the value of
the element’s offset into the structure and which can be used as the symbolic offset. If stag
is missing, these element names become global symbols; otherwise, they are referenced
using the syntax stag.name. The directives following the optional label can be any space
reserving directive such as DS, or the .TAG directive (defined below), and the structure
offset is adjusted accordingly.

The label ssize, if provided, is a label in the global name space and is assigned the size of
the structure.

If a label stag is specified with the .ENDSTRUCT directive, it must match the label that is
used for the .STRUCT directive. The intent is to allow for code readability with some
checking by the assembler.

UM013034-1210 Directives

Zilog Developer Studio II – Z8 Encore!®

User Manual

297

An example structure definition is as follows:

DATE .STRUCT

MONTH DS 1

DAY DS 1

YEAR DS 2

DSIZE .ENDSTRUCT DATE

Directives allowed between .STRUCT and .ENDSTRUCT are directives that specify size,
principally DS, ALIGN, ORG, and .TAG and their aliases. Also, BLKB, BLKW, and BLKL
directives with one parameter are allowed because they indicate only size.

The following directives are not allowed within .STRUCT and .ENDSTRUCT:

• Initialization directives (DB, DW, DL, DF, and DD) and their aliases

• BLKB, BLKW, and BLKL with two parameters because they perform initialization

• Equates (EQU and SET)

• Macro definitions (MACRO)

• Segment directives (SEGMENT and FRAME)

• Nested .STRUCT and .UNION directives

• CPU instructions (for example, LD and NOP)

.TAG Directive

The .TAG assembler declares or assigns a label to have a structure type. This directive can
also be used to define a structure/union element within a structure. The .TAG directive
does not allocate memory.

The .TAG directive to define a structure/union element has the following form:

[stag] .STRUCT [offset | : parent]

[name_1] DS count1

[name_2] DS count2

...

 [tname] .TAG stagx [count]

...

[ssize] .ENDSTRUCT [stag]

Note:

Using the Macro Assembler UM013034-1210

298

Zilog Developer Studio II – Z8 Encore!®

User Manual

The .TAG directive to assign a label to have a structure type has the following form:

[tname] .TAG stag ; Apply stag to tname

[tname] DS ssize ; Allocate space for tname

Once applied to label tname, the individual structure elements are applied to tname to pro-
duce the desired offsets using tname as the structure base. For example, the label
tname.name_2 is created and assigned the value tname + stag.name_2. If there are
any alignment requirements with the structure, the .TAG directive attaches the required
alignment to the label. The optional count on the .TAG directive is meaningful only inside
a structure definition and implies an array of the .TAG structure.

Keeping the space allocation separate allows you to place the .TAG declarations that
assign structure to a label in the header file in a similar fashion to the .STRUCT and XREF
directives. You can then include the header file in multiple source files wherever the label
is used. Make sure to perform the space allocation for the label in only one source file.

Examples of the .TAG directive are as follows:

DATE .STRUCT
MONTH DS 1
DAYDS 1
YEAR DS 2
DSIZE .ENDSTRUCT DATE

NAMELEN EQU 30

EMPLOYEE .STRUCT
NAME DS NAMELEN
SOCIAL DS 10
START .TAG DATE
SALARY DS 1
ESIZE .ENDSTRUCT EMPLOYEE

NEWYEARS .TAG DATE
NEWYEARS DS DSIZE

The .TAG directive in the last example above creates the symbols NEWYEARS.MONTH,
NEWYEARS.DAY, and NEWYEARS.YEAR. The space for NEWYEARS is allocated by the DS
directive.

Note:

UM013034-1210 Directives

Zilog Developer Studio II – Z8 Encore!®

User Manual

299

.UNION Directive

The .UNION directive is similar to the .STRUCT directive, except that the offset is reset to
zero on each label. A .UNION directive cannot have an offset or parent union. The key-
word to terminate a .UNION definition is .ENDSTRUCT.

The .UNION directive has the following form:

[stag] .UNION

[name_1] DS count1

[name_2] DS count2

[tname] .TAG stagx [count]

...

[name_n] DS count3

[ssize] .ENDSTRUCT [stag]

An example of the .UNION directive usage is as follows:

BYTES .STRUCT
B0 DS 1
B1 DS 1
B2 DS 1
B3 DS 1
BSIZE .ENDSTRUCT BYTES

LONGBYTES .UNION
LDATA BLKL 1
BDATA .TAG BYTES
LSIZE .ENDSTRUCT LONGBYTES

.WITH and .ENDWITH Directives

Using the fully qualified names for fields within a structure can result in very long names.
The .WITH directive allows the initial part of the name to be dropped.

The .WITH and .ENDWITH directives have the following form:

 .WITH name

; directives

 .ENDWITH [name]

The identifier name may be the name of a previously defined .STRUCT or .UNION, or an
ordinary label to which a structure has been attached using a .TAG directive. It can also be
the name of an equate or label with no structure attached. Within the .WITH section, the
assembler attempts to prepend “name.” to each identifier encountered, and selects the

Using the Macro Assembler UM013034-1210

300

Zilog Developer Studio II – Z8 Encore!®

User Manual

modified name if the result matches a name created by the .STRUCT, .UNION, or .TAG
directives.

The .WITH directives can be nested, in which case the search is from the deepest level of
nesting outward. In the event that multiple names are found, a warning is generated and
the first such name is used.

If name is specified with the .ENDWITH directive, the name must match that used for the
.WITH directive. The intent is to allow for code readability with some checking by the
assembler.

To provide an example, examine the COMPUTE_PAY routine below.

COMPUTE_PAY:
; Enter with pointer to an EMPLOYEE in R2, days in R1
; Return with pay in R0,R1

LD R0,EMPLOYEE.SALARY(R2)
MULT RR0
RET

The above routine could be rewritten using the .WITH directive as:

COMPUTE_PAY:
; Enter with pointer to an EMPLOYEE in R2, days in R1
; Return with pay in R0,R1

.WITH EMPLOYEE
LD R0, SALARY(R2)
MULT RR0
RET
.ENDWITH EMPLOYEE

Structured Assembly

Structured assembly supports execution-time selection of sequences of source statements
based on execution-time conditions. The structured assembly directives test for a specified
condition and execute a block of statements only if the condition is true.

The structured assembly directives, when used in conjunction with the ability to assembly
and link modules independently, facilitate structured programming in assembly language.
It can be difficult to assimilate the logical structure of a traditional, nonstructured assem-
bly language program. Structured assembly language programs are generally easier to read
and understand than nonstructured programs. They might also be easier to debug and
change. The following sections describe structured assembly:

UM013034-1210 Structured Assembly

Zilog Developer Studio II – Z8 Encore!®

User Manual

301

• Structured Assembly Inputs on page 302

• Structured Assembly Processing on page 306

The assembler directives associated with structured assembly are summarized in the fol-
lowing table.

The assembler directives shown in the table are known collectively as structured assembly
test directives and are always used together to form a homogeneous structured assembly
block. The assembler supports one decision structure (.$IF) and two looping structures
(.$WHILE and .$REPEAT).

The assembler supports a decision structure with the .$IF, .$ELSEIF, .$ELSE, and
.$ENDIF directives. These directives generate code to test one or more execution-time
conditions and execute a block of statements based on the result of the tests.

For example, in the following decision structure:

.$if (r0 == #0)
ld r0,r1

.$else
ld r0,r2

.$endif

the assembler generates the following code:

000000 A6E000 A 2 .$if (r0 == #0)
000003 EB 05
000005 E4E1E0 A 3 ld r0,r1
000008 8B 03 A 4 .$else
00000A E4E2E0 A 5 ld r0,r2
00000D A 6 .$endif

The assembler supports two types of looping structures with the .$WHILE, .$WEND, and
.$REPEAT, .$UNTIL directive pairs. The .$WHILE directive generates code to test an
execution-time condition and executes a block of statements while the condition is true.
Since the test is performed before executing the block, the block might not be executed.

Table 9. Assembler Directives for Structured Assembly

Assembler Directive Description

.$IF, .$REPEAT, .$WHILE Structured assembly test primary

$ELSEIF Structured assembly test alternate

.$ELSE Structured assembly test default

.$BREAK, .$CONTINUE Structured assembly test control

.$ENDIF, .$UNTIL, .$WEND Structured assembly test end

Using the Macro Assembler UM013034-1210

302

Zilog Developer Studio II – Z8 Encore!®

User Manual

For example, in the following looping structure:

.$while (r0 != #0)
ld r2,@r0
dec r0

.$wend

the assembler generates the following code:

00000D A6E000 A 10 .$while (r0 == #0)
000010 6B 06
000012 E320 A 11 ld r2,@r0
000014 30E0 A 12 dec r0
000016 8B F5 A 13 .$wend
000018 A 14

The .$REPEAT directive generates code to test an execution-time condition after execut-
ing a block of statements and repeatedly executes the block until the condition is true.
Because the test is performed after executing the block, the block is executed at least once.

For example, in the following looping structure:

.$repeat
ld r1,@r0
dec r0

.$until (eq)

the assembler generates the following code:

000018 A6E000 A 17 .$repeat
000018 6B 06 A 18 ld r1,@r0
00001A E320 A 19 dec r0
00001C 30E0 A 20 .$until (eq)
00001E 8B F5 A 21

Structured Assembly Inputs
The following sections describe the structured assembly input requirements:

• IF Structured Assembly Block Inputs on page 302

• REPEAT Structured Assembly Block Inputs on page 304

• WHILE Structured Assembly Block Inputs on page 305

IF Structured Assembly Block Inputs

The .$IF, .$ELSEIF, .$ELSE, and .$ENDIF assembler directives are used to test execu-
tion-time conditions and conditionally execute object code based on the results of the test.

UM013034-1210 Structured Assembly

Zilog Developer Studio II – Z8 Encore!®

User Manual

303

Syntax

.$IF condition1 [; comment]
statements

[.$ELSEIF condition2 [; comment]]
[statements]

.

.

.
[.$ELSE [; comment]]

[statements]
.$ENDIF [; comment]

The following qualifications elaborate the syntax and semantics of the structured assembly
test directives. Unless otherwise specified, violations of these qualifications cause the
assembly to fail.

• The .$IF, .$ELSEIF, .$ELSE, and .$ENDIF assembler directives must be specified
in that order.

• The .$ELSEIF assembler directive is optional. It can be specified an arbitrary number
of times between the .$IF and .$ENDIF assembler directives.

• The .$ELSE assembler directive is optional. It can be specified at most once between
the .$IF and .$ENDIF directives.

• If used, the .$ELSE assembler directive must be coded after any .$ELSEIF direc-
tives.

• Any valid assembler statement can appear in the statements sections of the structured
assembly test directives. This means, among other things, that structured assembly test
directives can be nested. The structured assembly test directives can be nested up to
255 levels.

• Nested .$ELSEIF and .$ELSE directives are associated with the most recent .$IF
directive.

• There is no preset limit on the number of statements that can appear in the statements
sections; there can be any number of assembler statements in each statements section,
including zero. The operating system file system might impose limitations on file
sizes, and the user must consult the appropriate operating system users guide for such
limitations.

• Each expression must be a conditional expression. See Expressions on page 271.

• The .$IF and .$ENDIF directives must be coded in matching pairs. That is, it is not
legal to code an .$IF directive without a matching .$ENDIF directive appearing later
in the source module; nor is it legal to code an .$ENDIF directive without a matching
.$IF directive appearing earlier in the source module.

Using the Macro Assembler UM013034-1210

304

Zilog Developer Studio II – Z8 Encore!®

User Manual

• The .$ELSEIF and .$ELSE assembler directives can only appear between enclosing
.$IF and .$ENDIF directives. It is not valid for the .$ELSEIF and .$ELSE direc-
tives to appear in any other context.

• The .$ELSE directive does not have any parameters.

• The .$ENDIF directive does not have any parameters.

• None of the .$IF, .$ELSEIF, .$ELSE, and .$ENDIF assembler directives can be
labeled. If a label is specified, a warning message is issued, and the label is discarded.

REPEAT Structured Assembly Block Inputs

The .$REPEAT, .$BREAK, .$CONTINUE, and .$UNTIL assembler directives are used to
test execution-time conditions and conditionally execute object code based on the results
of the test.

Syntax

.$REPEAT [; comment]
statements

[.$BREAK [.$IF condition2] [; comment]]
[statements]

[.$CONTINUE [.$IF condition3] [; comment]]
[statements]

.$UNTIL condition1 [; comment]

The following qualifications elaborate the syntax and semantics of the structured assembly
test directives. Unless otherwise specified, violations of these qualifications cause the
assembly to fail.

• The .$REPEAT and .$UNTIL assembler directives must be specified in that order.

• The .$BREAK assembler directive is optional. It can be specified an arbitrary number
of times between the .$REPEAT and .$UNTIL assembler directives.

• The .$CONTINUE assembler directive is optional. It can be specified an arbitrary
number of times between the .$REPEAT and .$UNTIL directives.

• Any valid assembler statement can appear in the statements sections of the structured
assembly test directives. This means, among other things, that structured assembly test
directives can be nested. The structured assembly test directives can be nested up to
255 levels.

• Nested .$BREAK and .$CONTINUE directives are associated with the most recent
.$REPEAT directive.

• There is no preset limit on the number of statements that can appear in the statements
sections; there can be any number of assembler statements in each statements section,
including zero. The operating system file system might impose limitations on file

UM013034-1210 Structured Assembly

Zilog Developer Studio II – Z8 Encore!®

User Manual

305

sizes, and the user must consult the appropriate operating system users guide for such
limitations.

• The .$REPEAT and .$UNTIL directives must be coded in matching pairs. That is, it is
not legal to code a .$REPEAT directive without a matching .$UNTIL directive
appearing later in the source module nor is it legal to code an .$UNTIL directive with-
out a matching .$REPEAT directive appearing earlier in the source module.

• The .$BREAK and .$CONTINUE assembler directives can only appear between
enclosing .$REPEAT and .$UNTIL directives (or between .$WHILE and .$WEND
directives). It is not valid for the .$BREAK and .$CONTINUE directives to appear in
any other context.

• The .$BREAK directive has an optional .$IF conditional parameter.

• The .$CONTINUE directive has an optional .$IF conditional parameter.

• None of the .$REPEAT, .$BREAK, .$CONTINUE, and .$UNTIL assembler directives
can be labeled. If a label is specified, a warning message is issued, and the label is dis-
carded.

WHILE Structured Assembly Block Inputs

The .$WHILE, .$BREAK, .$CONTINUE, and .$WEND assembler directives are used to test
execution-time conditions and conditionally execute object code based on the results of
the test.

Syntax

.$WHILE condition1 [; comment]

statements

[.$BREAK [.$IF condition2] [; comment]]

[statements]

[.$CONTINUE [.$IF condition3] [; comment]]

[statements]

.$WEND [; comment]

The following qualifications elaborate the syntax and semantics of the structured assembly
test directives. Unless otherwise specified, violations of these qualifications cause the
assembly to fail.

• The .$WHILE and .$WEND assembler directives must be specified in that order.

• The .$BREAK assembler directive is optional. It can be specified an arbitrary number
of times between the .$WHILE and .$WEND assembler directives.

Using the Macro Assembler UM013034-1210

306

Zilog Developer Studio II – Z8 Encore!®

User Manual

• The .$CONTINUE assembler directive is optional. It can be specified an arbitrary
number of times between the .$WHILE and .$WEND directives.

• Any valid assembler statement can appear in the statements sections of the structured
assembly test directives. This means, among other things, that structured assembly test
directives can be nested. The structured assembly test directives can be nested up to
255 levels.

• Nested .$BREAK and .$CONTINUE directives are associated with the most recent
.$WHILE directive.

• There is no preset limit on the number of statements that can appear in the statements
sections; there can be any number of assembler statements in each statements section,
including zero. The operating system file system might impose limitations on file
sizes, and the user must consult the appropriate operating system users guide for such
limitations.

• The .$WHILE and .$WEND directives must be coded in matching pairs. That is, it is
not legal to code a .$WHILE directive without a matching .$WEND directive appearing
later in the source module nor is it legal to code an .$WEND directive without a match-
ing .$WHILE directive appearing earlier in the source module.

• The .$BREAK and .$CONTINUE assembler directives can only appear between
enclosing .$WHILE and .$WEND directives (or between .$REPEAT and .$UNTIL
directives). It is not valid for the .$BREAK and .$CONTINUE directives to appear in
any other context.

• The .$BREAK directive has an optional .$IF conditional parameter.

• The .$CONTINUE directive has an optional .$IF conditional parameter.

• None of the .$WHILE, .$BREAK, .$CONTINUE, and .$WEND assembler directives can
be labeled. If a label is specified, a warning message is issued, and the label is dis-
carded.

Structured Assembly Processing
The following sections describe the assembly-time processing of structured assembly
directives:

• Validity Checks on page 306

• Sequence of Operations on page 307

Validity Checks

The following validity checks are performed on the structured assembly block input data.
Unless otherwise specified, violations cause the assembly to fail.

• The syntax of the structured assembly block must conform to the requirements speci-
fied in Structured Assembly Inputs on page 302.

UM013034-1210 Structured Assembly

Zilog Developer Studio II – Z8 Encore!®

User Manual

307

• The .$IF and .$ENDIF directives must be properly balanced, that is, there must be
exactly one .$ENDIF directive for each .$IF directive, and the .$IF directive must
precede its corresponding .$ENDIF directive.

• The .$REPEAT and .$UNTIL directives must be properly balanced, that is, there must
be exactly one .$UNTIL directive for each .$REPEAT directive, and the .$REPEAT
directive must precede its corresponding .$UNTIL directive.

• The .$WHILE and .$WEND directives must be properly balanced, that is, there must be
exactly one .$WEND directive for each .$WHILE directive, and the .$WHILE directive
must precede its corresponding .$WEND directive.

• The structured assembly block must be completely specified with a single assembly
unit. An assembly unit is a single source file or a single macro definition.

Sequence of Operations

The following sequences of operations are performed in processing structured assembly
test directives:

• .$IF Sequence of Operations on page 307

• .$REPEAT Sequence of Operations on page 308

• .$WHILE Sequence of Operations on page 308

.$IF Sequence of Operations

The following sequence of operations is performed in processing the .$IF structured
assembly test directives:

1. The assembler generates object code to evaluate the conditions specified on the .$IF
directive and on any optional .$ELSEIF directives. If the condition is true at execu-
tion time, the object code generated from the statements associated with the .$IF
directive are executed.

2. If the condition specified on the .$IF directive is false at execution-time, the assem-
bler-generated object code successively evaluates the conditions specified on the
.$ELSEIF directives, if there are any, until a true condition is evaluated. On evaluat-
ing a true .$ELSEIF condition, the object code generated from the statements associ-
ated with the .$ELSEIF directive are executed.

3. If all conditions on the .$IF and .$ELSEIF directives are false at execution-time, and
an .$ELSE directive is present, the object code generated from the statements associ-
ated with the .$ELSE directive are executed.

4. If no tested condition is true, and if no .$ELSE directive is specified, no statements in
the structured assembly block are executed.

Using the Macro Assembler UM013034-1210

308

Zilog Developer Studio II – Z8 Encore!®

User Manual

.$REPEAT Sequence of Operations

The following sequence of operations is performed in processing the .$REPEAT struc-
tured assembly test directives:

1. The assembler generates object code to evaluate the conditions specified on the
.$UNTIL directive and on any optional .$BREAK and .$CONTINUE directives.

2. At execution-time, the object code generated from statements in the structured assem-
bly block are executed until the specified condition is true.

3. At execution time, object code generated from .$BREAK directives is executed at the
point where it appears in the block. If no condition is specified on the .$BREAK condi-
tion, or if the condition is true, the .$REPEAT loop is exited.

4. At execution time, object code generated from .$CONTINUE directives is executed at
the point where it appears in the block. If no condition is specified on the .$CON-
TINUE condition, or if the condition is true, execution of code generated from state-
ments in the block resumes at the beginning of the block.

.$WHILE Sequence of Operations

The following sequence of operations is performed in processing the .$WHILE structured
assembly test directives:

1. The assembler generates object code to evaluate the conditions specified on the
.$WHILE directive and on any optional .$BREAK and .$CONTINUE directives.

2. At execution time, the object code generated from statements in the structured assem-
bly block are executed while the specified condition is true.

3. At execution time, object code generated from .$BREAK directives is executed at the
point where it appears in the block. If no condition is specified on the .$BREAK condi-
tion or if the condition is true, the .$WHILE loop is exited.

4. At execution time, object code generated from .$CONTINUE directives is executed at
the point where it appears in the block. If no condition is specified on the .$CON-
TINUE condition or if the condition is true, execution of code generated from state-
ments in the block resumes at the beginning of the block.

Conditional Assembly

Conditional assembly is used to control the assembly of blocks of code. Entire blocks of
code can be enabled or disabled using conditional assembly directives.

The following conditional assembly directives are allowed:

• IF on page 309

• IFDEF on page 310

UM013034-1210 Conditional Assembly

Zilog Developer Studio II – Z8 Encore!®

User Manual

309

• IFSAME on page 311

• IFMA on page 311

Any symbol used in a conditional directive must be previously defined by an EQU or VAR
directive. Relational operators can be used in the expression. Relational expressions eval-
uate to 1 if true, and 0 if false.

If a condition is true, the code body is processed. Otherwise, the code body after an ELSE
is processed, if included.

The ELIF directive allows a case-like structure to be implemented.

Conditional assembly can be nested.

IF
Evaluates a Boolean expression. If the expression evaluates to 0, the result is false; other-
wise, the result is true.

Synonyms

.if, .IF, IFN, IFNZ, COND, IFTRUE, IFNFALSE, $.IF, .$if, .IFTRUE

Syntax

IF [<cond_expression> <code_body>]
[ELIF <cond_expression> <code_body>]
[ELSE <code_body>]
ENDIF

Example

IF XYZ ; process code body 0 if XYZ is not 0
.
.
.
<Code Body 0>
.
.
ENDIF

IF XYZ !=3 ; process code body 1 if XYZ is not 3
.
.
.
<Code Body 1>
.

Note:

Using the Macro Assembler UM013034-1210

310

Zilog Developer Studio II – Z8 Encore!®

User Manual

.

.

ELIF ABC ; process code body 2 if XYZ=3 and ABC is not 0
.
.
.
<Code Body 2>
.
.
.

ELSE ; otherwise process code body 3
.
.
.
<Code Body 3>
.
.
.
ENDIF

IFDEF
Checks for label definition. Only a single label can be used with this conditional. If the
label is defined, the result is true; otherwise, the result if false.

Syntax

IFDEF <label>
 <code_body>
[ELSE
 <code_body>]
ENDIF

Example

IFDEF XYZ ; process code body if XYZ is defined
.
.
.
<Code Body>
.
.
.
ENDIF

UM013034-1210 Macros

Zilog Developer Studio II – Z8 Encore!®

User Manual

311

IFSAME
Checks to see if two string constants are the same. If the strings are the same, the result is
true; otherwise, the result is false. If the strings are not enclosed by quotes, the comma is
used as the separator.

Syntax

IFSAME <string_const> , <string_const>
 <code_body>
[ELSE
 <code_body>]
ENDIF

IFMA
Used only within a macro, this directive checks to determine if a macro argument has been
defined. If the argument is defined, the result is true. Otherwise, the result is false. If
<arg_number> is 0, the result is TRUE if no arguments were provided; otherwise, the
result is FALSE.

Syntax

IFMA <arg_number>
 <code_body>
[ELSE
 <code_body>]
ENDIF

Macros

Macros allow a sequence of assembly source lines to be represented by a single assembler
symbol. In addition, arguments can be supplied to the macro in order to specify or alter the
assembler source lines generated once the macro is expanded. The following sections
describe how to define and invoke macros:

• Macro Definition on page 312

• Concatenation on page 312

• Macro Invocation on page 313

• Local Macro Labels on page 313

• Optional Macro Arguments on page 313

• Exiting a Macro on page 314

• Delimiting Macro Arguments on page 314

Using the Macro Assembler UM013034-1210

312

Zilog Developer Studio II – Z8 Encore!®

User Manual

Macro Definition
A macro definition must precede the use of the macro. The macro name must be the same
for both the definition and the ENDMACRO line. The argument list contains the formal argu-
ments that are substituted with actual arguments when the macro is expanded. The argu-
ments can be optionally prefixed with the substitution character (\) in the macro body.

During the invocation of the macro, a token substitution is performed, replacing the formal
arguments (including the substitution character, if present) with the actual arguments.

Syntax

<macroname>[:]MACRO[<arg>(,<arg>)...]
 <macro_body>
ENDMAC[RO]<macroname>

Example

store: MACRO reg1,reg2,reg3
ADD reg1,reg2
LD reg3,reg1
ENDMAC store

Concatenation
To facilitate unambiguous symbol substitution during macro expansion, the concatenation
character (&) can be suffixed to symbol names. The concatenation character is a syntactic
device for delimiting symbol names that are points of substitution and is devoid of seman-
tic content. The concatenation character, therefore, is discarded by the assembler, when
the character has delimited a symbol name.

For example:

val_part1 equ 55h
val_part2 equ 33h

The assembly is:

value macro par1, par2
DB par1&_&par2
macend

value val,part1
value val,part2

The generated list file is:

A 9 value val,part1
000000 55 A+ 9 DB val_part1

A+ 9 macend
A 10 value val,part2

UM013034-1210 Macros

Zilog Developer Studio II – Z8 Encore!®

User Manual

313

000001 33 A+ 10 DB val_part2
A+ 10 macend

Macro Invocation
A macro is invoked by specifying the macro name, and following the name with the
desired arguments. Use commas to separate the arguments.

Syntax

<macroname>[<arg>[(,<arg>)]...]

Example

store R1,R2,R3

This macro invocation, when used after the macro is defined as in Macro Definition on
page 312, causes registers R1 and R2 to be added and the result stored in register R3.

Local Macro Labels
Local macro labels allow labels to be used within multiple macro expansions without
duplication. When used within the body of a macro, symbols preceded by two dollar signs
($$) are considered local to the scope of the macro and therefore are guaranteed to be
unique. The two dollars signs are replaced by an underscore followed by a macro invoca-
tion number.

Syntax

$$ <label>

Example

LJMP: MACRO cc,label
JR cc,$$lab
JP label

$$lab: ENDMAC

Optional Macro Arguments
A macro can be defined to handle omitted arguments using the IFMA (if macro argument)
conditional directive within the macro. The conditional directive can be used to detect if
an argument was supplied with the invocation.

Example

MISSING_ARG: MACRO ARG0,ARG1,ARG2
IFMA 2
LD ARG0,ARG1
ELSE

Using the Macro Assembler UM013034-1210

314

Zilog Developer Studio II – Z8 Encore!®

User Manual

LD ARG0,ARG2
ENDIF
ENDMACRO MISSING_ARG

Invocation

MISSING_ARG R1, ,@R2 ; missing second arg

Result

LD R1,@R2

IFMA refers to argument numbers that are one based (that is, the first argument is num-
bered one).

Exiting a Macro
The MACEXIT directive is used to immediately exit a macro. No further processing is per-
formed. However, the assembler checks for proper if-then conditional directives. A
MACEXIT directive is normally used to terminate a recursive macro.

The following example is a recursive macro that demonstrates using MAXEXIT to termi-
nate the macro.

Example

RECURS_MAC: MACRO ARG1,ARG2
IF ARG1==0

MACEXIT
ELSE

RECURS_MAC ARG1-1, ARG2
DB ARG2

ENDIF
ENDMACRO RECURS_MAC

RECURS_MAC 1, ’a’

Delimiting Macro Arguments
Macro arguments can be delimited by using the current macro delimiter characters defined
using the MACDELIM directive. The delimiters can be used to include commas and spaces
that are not normally allowed as part of an argument. The default delimiters are brackets
{ }, but braces [] and parentheses () are also allowed.

Example 1

; Delimiter changed to [

MACDELIM [

Note:

UM013034-1210 Labels

Zilog Developer Studio II – Z8 Encore!®

User Manual

315

BRA: MACRO ARG1

JP ARG1
ENDMACRO

LAB: BRA [NE,LAB]

Example 2

; Using default delimiter
BRA: MACRO ARG1

JP ARG1
ENDMACRO

LAB: BRA {NE,LAB}

Labels

Labels are considered symbolic representations of memory locations and can be used to
reference that memory location within an expression. See Label Field on page 268 for the
form of a legal label.

The following sections describe labels:

• Anonymous Labels on page 315

• Local Labels on page 316

• Importing and Exporting Labels on page 316

• Label Spaces on page 316

• Label Checks on page 316

Anonymous Labels
The ZDS II assembler supports anonymous labels. The following table lists the reserved
symbols provided for this purpose.

Table 10. Anonymous Labels

Symbol Description

$$ Anonymous label. This symbol can be used as a label an arbitrary number of times.

$B Anonymous label backward reference. This symbol references the most recent anonymous
label defined before the reference.

$F Anonymous label forward reference. This symbol references the next anonymous label
defined after the reference.

Using the Macro Assembler UM013034-1210

316

Zilog Developer Studio II – Z8 Encore!®

User Manual

Local Labels
Any label beginning with a dollar sign ($) or ending with a question mark (?) is consid-
ered to be a local label. The scope of a local label ends when a SCOPE directive is encoun-
tered, thus allowing the label name to be reused. A local label cannot be imported or
exported.

Example

$LOOP: JP $LOOP ; Infinite branch to $LOOP
LAB?: JP LAB? ; Infinite branch to LAB?

SCOPE ; New local label scope
$LOOP: JP $LOOP ; Reuse $LOOP
LAB?: JP LAB? ; Reuse LAB?

Importing and Exporting Labels
Labels can be imported from other modules using the EXTERN or XREF directive. A space
can be provided in the directive to indicate the label’s location. Otherwise, the space of the
current segment is used as the location of the label.

Labels can be exported to other modules by use of the PUBLIC or XDEF directive.

Label Spaces
The assembler makes use of a label’s space when checking the validity of instruction oper-
ands. Certain instruction operands require that a label be located in a specific space
because that instruction can only operate on data located in that space. A label is assigned
to a space by one of the following methods:

• The space of the segment in which the label is defined.

• The space provided in the EXTERN or XREF directive.

• If no space is provided with the EXTERN or XREF directive, the space of the segment
where the EXTERN directive was encountered is used as the location of the label.

Label Checks
The assembler performs location checks when a label is used as an operand, including for-
ward referenced labels. Thus, when a label that is not located in the proper space is used as
an operand, the assembler flags a warning.

Example

EXTERN label1:ROM
JP label1 ; valid
ld r0, label1 ; invalid

UM013034-1210 Source Language Syntax

Zilog Developer Studio II – Z8 Encore!®

User Manual

317

Source Language Syntax

The syntax description that follows is given to outline the general assembler syntax. It
does not define assembly language instructions.

<source_line> =>
=>
=>
=>
=>

<if_statement>
[<Label_field>]<instruction_field><EOL>
[<Label_field>]<directive_field><EOL>
<Label_field><EOL>
<EOL>

<if_statement> =>
=>
=>

<if_section>
[<else_statement>]
ENDIF

<if_section> => <if_conditional>
<code-body>

<if_conditional> => IF<cond_expression>|
IFDEF<ident>|
IFSAME<string_const>,<string_const>|
IFMA<int_const>

<else_statement> => ELSE <code_body>|
ELIF<cond_expression>
<code_body>
[<else_statement>]

<cond_expression> => <expression>|
<expression><relop><expression>

<relop> => == | < | > | <= | => | !=

<code_body> => <source_line>@

<label_field> => <ident>:

<instruction_field> => <mnemonic>[<operand>]@

<directive_field> => <directive>

<mnemonic> => valid instruction mnemonic

<operand> =>
=>

<addressing_mode>
<expression>

<addressing_mode> => valid instruction addressing mode

Using the Macro Assembler UM013034-1210

318

Zilog Developer Studio II – Z8 Encore!®

User Manual

<directive> =>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>

ALIGN<int_const>
<array_definition>
CONDLIST(ON|OFF)
END[<expression>]
ENDWITH [<ident>]
ENDSTRUCT <ident>
<ident>EQU<expression>
ERROR<string_const>
EXIT<string_const>
.FCALL<ident>
FILE<string_const>
.FRAME<ident>,<ident>,<space>
GLOBALS (ON|OFF)
INCLUDE<string_const>
LIST (ON|OFF)
<macro_def>
<macro_invoc>
MACDELIM<char_const>
MACLIST (ON|OFF)
NEWPAGE
NOLIST
ORG<int_const>
<public_definition>
<scalar_definition>
SCOPE
<segment_definition>
SEGMENT<ident>
SUBTITLE<string_const>
SYNTAX=<target_microprocessor>
TAG <ident> [<int_const>]
TITLE<string_const>
UNION
<ident>VAR<expression>
WARNING<string_const>
WITH <ident>

<array_definition> =>
=>

<type>'['<elements>']'
[<initvalue>(,<initvalue>)@]

UM013034-1210 Source Language Syntax

Zilog Developer Studio II – Z8 Encore!®

User Manual

319

<type> =>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>

BFRACT
BLKB
BLKL
BLKW
DB
DD
DF
DL
DW
DW24
FRACT
UBFRACT
UFRACT

<elements> => [<int_const>]

<initvalue> => ['['<instances>']']<value>

<instances> => <int_const>

<value> => <expression>|<string_const>

<expression> =>
=>
=>
=>
=>
=>
=>
=>
=>

'('<expression>')'
<expression><binary_op><expression>
<unary_op><expression>
<int_const>
<float_const>
<label>
HIGH<expression>
LOW<expression>
OFFSET<expression>

<binary_op> =>
=>
=>
=>
=>
=>
=>
=>
=>

+
-
*
/
>>
<<
&
|
^

<unary_op> =>
=>
=>

-
~
!

<int_const> =>
=>
=>
=>

digit(digit|'_')@
hexdigit(hexdigit|'_')@H
bindigit(bindigit|'_')@B
<char_const>

<char_const> => 'any'

Using the Macro Assembler UM013034-1210

320

Zilog Developer Studio II – Z8 Encore!®

User Manual

Compatibility Issues

Compatibility between Z8 Encore! assembler directives and those of other assemblers
supported by the Z8 Encore! assembler are listed in Appendix E. Compatibility Issues on
page 497. If you are developing new code for the Z8 Encore!, Zilog recommends that you
use the Z8 Encore! directives described previously in this chapter because the behavior of
these directives is thoroughly validated with each release of the Z8 Encore! assembler.

<float_const> => <decfloat>

<decfloat> => <float_frac>|<float_power>

<float_frac> => <float_const>[<exp_part>]

<frac_const> => digit|'_') . (digit|'_')@

<exp_part> => E['+'|-]digit+

<float_power> => digit(digit|'_')@<exp_part>

<label> => <ident>

<string_const> => "('\"'|any)@"

<ident> => (letter|'_')(letter|'_'|digit|'.')@

<ident_list> => <ident>(,<ident>)@

<macro_def> => <ident>MACRO[<arg>(<arg>)]
<code_body>
ENDMAC[RO]<macname>

<macro_invoc> => <macname>[<arg>](,<arg>)]

<arg> => macro argument

<public_definition> => PUBLIC<ident list>
EXTERN<ident list>

<scalar_definition> => <type>[<value>]

<segment_definition> => DEFINE<ident>[<space_clause>]
[<align_clause>][<org_clause>]

<space_clause> => ,SPACE=<space>

<align_clause> => ,ALIGN=<int_const>

<org_clause> => ,ORG=<int_const>

<mayinit_clause> => ,MAYINIT

<space> => (RDATA|EDATA|ROM|PRAM)

UM013034-1210 Warning and Error Messages

Zilog Developer Studio II – Z8 Encore!®

User Manual

321

Warning and Error Messages

This section covers warning and error messages for the assembler.

400 Symbol already defined.

The symbol has been previously defined.

401 Syntax error.

General-purpose error when the assembler recognizes only part of a source line. The
assembler might generate multiple syntax errors per source line.

402 Symbol XREF'd and XDEF'd.

Label previously marked as externally defined or referenced. This error occurs when
an attempt is made to both XREF and XDEF a label.

403 Symbol not a segment.

The segment has not been previously defined or is defined as some other symbol type.

404 Illegal EQU.

The name used to define an equate has been previously defined or equates and label
symbols in an equate expression have not been previously defined.

405 Label not defined.

The label has not been defined, either by an XREF or a label definition.

406 Illegal use of XREF's symbol.

XDEF defines a list of labels in the current module as an external symbol that are to be
made publicly visible to other modules at link time; XREF specifies that a list of
labels in the operand field are defined in another module.

407 Illegal constant expression.

The constant expression is not valid in this particular context. This error normally
occurs when an expression requires a constant value that does not contain labels.

408 Memory allocation error.

Not enough memory is available in the specified memory range.

409 Illegal .elif directive.

There is no matching .if for the .elif directive.

410 Illegal .else directive.

There is no matching .if for the .else directive.

411 Illegal .endif directive.

There is no matching .if for the .endif directive.

Using the Macro Assembler UM013034-1210

322

Zilog Developer Studio II – Z8 Encore!®

User Manual

412 EOF encountered within an .if

End-of-file encountered within a conditional directive.

413 Illegal floating point expression.

An illegal value was found in a floating-point expression. This error is normally
caused by the use of labels in the expression.

414 Illegal floating point initializer in scalar directive.

You cannot use floating-point values in scalar storage directives.

415 Illegal relocatable initialization in float directive.

You cannot use relocatable labels in a float storage directive.

416 Unsupported/illegal directives.

General-purpose error when the assembler recognizes only part of a source line. The
assembler might generate multiple errors for the directive.

417 Unterminated quoted string.

You must terminate a string with a double quote.

418 Illegal symbol name.

There are illegal characters in a symbol name.

419 Unrecognized token.

The assembler has encountered illegal/unknown character(s).

420 Constant expression overflow.

A constant expression exceeded the range of –2147483648 to 2147483648.

421 Division by zero.

The divisor equals zero in an expression.

422 Address space not defined.

The address space is not one of the defined spaces.

423 File not found.

The file cannot be found in the specified path, or, if no path is specified, the file cannot
be located in the current directory.

424 XREF or XDEF label in const exp.

You cannot use an XREF or XDEF label in an EQU directive.

425 EOF found in macro definition

End of file encountered before ENDMAC(RO) reached.

UM013034-1210 Warning and Error Messages

Zilog Developer Studio II – Z8 Encore!®

User Manual

323

426 MACRO/ENDMACRO name mismatch.

The declared MACRO name does not match the ENDMAC(RO) name.

427 Invalid MACRO arguments.

The argument is not valid in this particular instance.

428 Nesting same segment.

You cannot nest a segment within a segment of the same name.

429 Macro call depth too deep.

You cannot exceed a macro call depth of 25.

430 Illegal ENDMACRO found.

No macro definition for the ENDMAC(RO) encountered.

431 Recursive macro call.

Macro calls cannot be recursive.

432 Recursive include file.

Include directives cannot be recursive.

433 ORG to bad address.

The ORG clause specifies an invalid address for the segment.

434 Symbol name too long.

The maximum symbol length (33 characters) has been exceeded.

435 Operand out-of-range error.

The assembler detects an expression operand that is out of range for the intended field
and generates appropriate error messages.

437 Invalid array index.

A negative number or zero has been used for an array instance index. You must use
positive numbers.

438 Label in improper space.

Instruction requires label argument to be located in certain address space. The most
common error is to have a code label when a data label is needed or vice versa.

439 Vector not recognized.

The vector name must be among those listed under the VECTOR directive.

442 Missing delay slot instruction.

Add a delay slot instruction such as BRANCH or LD.

Using the Macro Assembler UM013034-1210

324

Zilog Developer Studio II – Z8 Encore!®

User Manual

444 Too many initializers.

Initializers for array data allocation exceeds array element size.

445 Missing .$endif at EOF.

There is no matching .$endif for the .$if directive.

446 Missing .$wend at EOF.

There is no .$wend directive.

447 Missing .$repeat at EOF.

There is no matching .$repeat for the .$while directive.

448 Segment stack overflow.

Do not allocate returned structures on the stack.

450 Floating point precision error.

The floating-point value cannot be represented to the precision given. The value is
rounded to fit within the allowed precision.

451 Floating point over/under flow.

The floating-point value cannot be represented.

452 General floating point error.

The assembler detects an expression operand that is out of range for the intended field
and generates appropriate error messages.

453 Fractional number too big/small.

The fractional number cannot be represented.

461 Unexpected end-of-file in comment.

End-of-file encountered in a multi-line comment

462 Macro redefinition.

The macro has been redefined.

464 Obsolete feature encountered.

An obsolete feature was encountered.

470 Missing token error.

A token must be added.

475 User error.

General-purpose error.

UM013034-1210 Warning and Error Messages

Zilog Developer Studio II – Z8 Encore!®

User Manual

325

476 Reference to external label may not always fit in the offset field of that jump instruc-
tion.

You have used a jump instruction to jump to an external label, but the type of jump
instruction you have used might not provide a large enough displacement. If you want
to keep this type of jump instruction, you must check manually to make sure that the
desired jump is within the available range. Alternatively, you can either change to a
different type of jump instruction or enable jump optimization, which will automati-
cally change the type of jump instruction when the destination is an external label.

480 Relist map file error.

A map file will not be generated.

481 Relist file not found error.

The map file cannot be found in the specified path, or, if no path is specified, the map
file cannot be located in the current directory.

482 Relist symbol not found.

Any symbol used in a conditional directive must be previously defined by an EQU or
VAR directive.

483 Relist aborted.

A map file will not be generated.

490 Stall or hazard conflict found.

A stall or hazard conflict was encountered.

499 General purpose switch error.

There was an illegal or improperly formed command line option.

500 Instruction not supported.

The instruction is not supported on the specified CPU.

501 CPU not specified.

The CPU has not been specified.

502 Symbol not a struct/union.

The name of a structure of union is required.

503 STRUCT/ENDSTRUCT name mismatch.

The optional name on a ENDSTRUCT or ENDWITH directive does not match the
name on the opening STRUCT or WITH directive.

504 Directive not permitted in struct.

Attempt to use a directive not permitted inside a STRUCT or UNION definition.

Using the Macro Assembler UM013034-1210

326

Zilog Developer Studio II – Z8 Encore!®

User Manual

505 Nested STRUCT directive.

Attempt to nest STRUCT directives.

506 No active WITH statement.

ENDWITH directive does not have a matching WITH directive.

507 WITH symbol resolves ambiguously.

A symbol matches more than one name inside a nested WITH directive.

508 Unused COUNT on TAG directive.

Attempt to specify a repeat count on a TAG directive used outside of a STRUCT or
UNION directive.

509 Label previously declared in different space.

A label has been previously declared (on an XREF directive) in a different space than
it is being defined in.

UM013034-1210 Using the Linker/Locator

Zilog Developer Studio II – Z8 Encore!®

User Manual

327

Using the Linker/Locator

The linker/locator in the Z8 Encore! developer’s environment creates a single executable
file from a set of object modules and object libraries. It acts as a linker by linking together
object modules and resolving external references to public symbols. It also acts as a loca-
tor because it allows you to specify where code and data is stored in the target processor at
run time. The executable file generated by the linker can be loaded onto the target system
and debugged using the Zilog Developer Studio II.

This section describes the following topics:

• Linker Functions on page 327

• Invoking the Linker on page 328

• Linker Commands on page 329

• Linker Expressions on page 341

• Sample Linker Map File on page 347

• Warning and Error Messages on page 358

Linker Functions

The following five major types of objects are manipulated during the linking process:

• Libraries

Object libraries are collections of object modules created by the Librarian.

• Modules

Modules are created by assembling a file with the assembler or compiling a file with
the compiler.

• Address spaces

Each module consists of various address spaces. Address spaces correspond to either a
physical or logical block of memory on the target processor. For example, a Harvard
architecture that physically divides memory into program and data stores has two
physical blocks—each with its own set of addresses. Logical address spaces are often
used to divide a large contiguous block of memory in order to separate data and code.
In this case, the address spaces partition the physical memory into two logical address
spaces. The memory range for each address space depends on the particular Z8
Encore! family member. For more information about address spaces, see Address
Spaces on page 262.

Using the Linker/Locator UM013034-1210

328

Zilog Developer Studio II – Z8 Encore!®

User Manual

• Groups

A group is a collection of logical address spaces. They are typically used for conve-
nience of locating a set of address spaces.

• Segments

Each address space consists of various segments. Segments are named logical parti-
tions of data or code that form a continuous block of memory. Segments with the same
name residing in different modules are concatenated together at link time. Segments
are assigned to an address space and can be relocatable or absolute. Relocatable seg-
ments can be randomly allocated by the linker; absolute segments are assigned a phys-
ical address within its address space. See Segments on page 263 for more information
about using predefined segments, defining new segments, and attaching code and data
to segments.

The linker performs the following functions:

• Reads in relocatable object modules and library files and linker commands.

• Resolves external references.

• Assigns absolute addresses to relocatable segments of each address space and group.

• Generates a single executable module to download into the target system.

• Generates a map file.

Invoking the Linker

The linker is automatically invoked when your project is open and you click the Build but-
ton or Rebuild All button on the Build toolbar (see Build Toolbar on page 18). The linker
then links the corresponding object modules of the various source files in your project and
any additional object/library modules specified in the Objects and Libraries page of the
Project Settings dialog box (see Linker: Objects and Libraries Page on page 87).The
linker uses the linker command file to control how these object modules and libraries are
linked. The linker command file is automatically generated by ZDS II if the Always Gen-
erate from Settings button is selected (see Always Generate from Settings on page 84).
You can add additional linker commands by selecting the Additional Directives checkbox
and clicking Edit (see Additional Directives on page 85). If you want to override the auto-
matically generated linker command file, select the Use Existing button (see Use Existing
on page 86).

The linker can also be invoked from the DOS command line or through the ZDS II Com-
mand Processor. For more information about invoking the linker from the DOS command
line, see Appendix C. Running ZDS II from the Command Line on page 455. To invoke
the linker through the ZDS II Command Processor, see Appendix D. Using the Command
Processor on page 465.

UM013034-1210 Linker Commands

Zilog Developer Studio II – Z8 Encore!®

User Manual

329

Linker Commands

The following sections describe the commands of a linker command file:

• <outputfile>=<module list> on page 330

• CHANGE on page 330

• COPY on page 331

• DEBUG on page 333

• DEFINE on page 333

• FORMAT on page 333

• GROUP on page 334

• HEADING on page 334

• LOCATE on page 334

• MAP on page 335

• MAXHEXLEN on page 336

• MAXLENGTH on page 336

• NODEBUG on page 336

• NOMAP on page 336

• NOWARN on page 337

• ORDER on page 337

• RANGE on page 337

• SEARCHPATH on page 338

• SEQUENCE on page 338

• SORT on page 339

• SPLITTABLE on page 339

• UNRESOLVED IS FATAL on page 340

• WARN on page 340

• WARNING IS FATAL on page 340

• WARNOVERLAP on page 341

Using the Linker/Locator UM013034-1210

330

Zilog Developer Studio II – Z8 Encore!®

User Manual

Only the <outputfile>=<module list> and the FORMAT commands are required. All com-
mands and operators are not case sensitive.

<outputfile>=<module list>
This command defines the executable file, object modules, and libraries involved in the
linking process. The default extension is .lod as specified by the FORMAT command.

<module list> is a list of object module or library path names to be linked together to cre-
ate the output file.

Example

sample=c:\ZDSII_Z8 Encore!_4.11.0\lib\zilog\startups.obj, \
test.obj, \
c:\ZDSII_Z8 Encore!_4.11.0\lib\std\chelpd.lib, \
c:\ZDSII_Z8 Encore!_4.11.0\lib\std\crtsdd.lib, \
c:\ZDSII_Z8 Encore!_4.11.0\lib\std\fpsdd.lib

The preceding command links the two object modules and three library modules to gener-
ate the linked output file sample.lod in IEEE 695 format when the format=OMF695
command is present.

In the preceding example, the \ (backslash) at the end of the first line allows the <module
list> to extend over several lines in a linker command file.

The backslash to continue the <module list> over multiple lines is not supported when this
command is entered on the DOS command line.

CHANGE
The CHANGE command is used to rename a group, address space, or segment. The CHANGE
command can also be used to move an address space to another group or to move a seg-
ment to another address space.

Syntax

CHANGE <name> = <newname>

<name> can be a group, address space, or segment.

<newname> is the new name to be used in renaming a group, address space, or segment;
the name of the group where an address space is to be moved; or the name of the address
space where a segment is to be moved.

Note:

Notes:

UM013034-1210 Linker Commands

Zilog Developer Studio II – Z8 Encore!®

User Manual

331

The linker recognizes the special space NULL. NULL is not one of the spaces that an object
file or library can reside in. If a segment name is changed to NULL using the CHANGE
command to the linker, the segment is deleted from the linking process. This can be useful
if you must link only part of an executable or not write out a particular part of the execut-
able. The predefined space NULL can also be used to prevent initialization of data while
reserving the segment in the original space using the COPY command. See also the exam-
ples for the COPY command (COPY on page 331).

Examples

To change the name of a segment (for example, strseg) to another segment name (for
example, codeseg), use the following command:

CHANGE strseg=codeseg

To move a segment (for example, dataseg) to a different address space (for example,
EDATA), use the following command:

CHANGE dataseg=EDATA

To not allocate a segment (for example, dataseg), use the following command:

CHANGE dataseg=NULL

COPY
The COPY command is used to make a copy of a segment into a specified address space.
This is most often used to make a copy of initialized RAM (RDATA, EDATA) in ROM so
that it can be initialized at run time.

Syntax

COPY <segment> <name>[at<expression>]

<segment> can only be a segment.
<name> can only be an address space.

The linker recognizes the special space NULL. NULL is not one of the spaces that an object
file or library can reside in. If a segment name is changed to NULL using the CHANGE
command to the linker, the segment is deleted from the linking process. This can be useful
if you must link only part of an executable or not write out a particular part of the execut-
able. The predefined space NULL can also be used to prevent initialization of data while
reserving the segment in the original space using the COPY command.

Note:

Note:

Using the Linker/Locator UM013034-1210

332

Zilog Developer Studio II – Z8 Encore!®

User Manual

Examples

Example 1

To make a copy of a data segment in ROM, use the following procedure:

1. In the assembly code, define a data segment (for example, dataseg) to be a segment
located in RDATA. This is the run-time location of dataseg.

2. Use the following linker command:

COPY dataseg ROM

The linker places the actual contents associated with dataseg in ROM (the load time
location) and associates RDATA (the run-time location) addresses with labels in
dataseg.

You must copy the dataseg contents from ROM to RDATA at run time as part of the
start-up routine. You can use the COPY BASE OF and COPY TOP OF linker expressions to
get the base address and top address of the contents in ROM. You can use the BASE OF
and TOP OF linker expressions to get the base address and top address of dataseg.

Example 2

To copy multiple segments to ROM, use the following procedure:

1. In the assembly code, define the segments (for example, strseg, text, and
dataseg) to be segments located in RDATA. This is the run-time location of the seg-
ments.

2. Use the following linker commands:

CHANGE strseg=dataseg
CHANGE text=dataseg
COPY dataseg ROM

The linker renames strseg and text as dataseg and performs linking as described
in the previous example. You must write only one loop to perform the copy from
ROM to RDATA at run time, instead of three (one loop each for strseg, text, and
dataseg).

Example 3

To allocate a string segment in ROM but not generate the initialization:

1. In the assembly code, define the string segment (for example, strsect) to be a seg-
ment located in ROM.

2. Use the following linker command:

Note:

UM013034-1210 Linker Commands

Zilog Developer Studio II – Z8 Encore!®

User Manual

333

COPY strsect NULL

The linker associates all of the labels in strsect with an address in ROM and does
not generate any loadable data for strsect. This is useful when ROM is already pro-
grammed separately, and the address information is needed for linking and debugging.

Example 4

To generate debug information without generating code:

Use the COPY command in the linker to copy the segment to the predefined NULL space.
If you copy the segment to the NULL space, the region is still allocated but no data is writ-
ten for it.

COPY myseg NULL

DEBUG
The DEBUG command causes the linker to generate debug information for the debugger.
This option is applicable only if the executable file is IEEE 695.

Syntax

-DEBUG

DEFINE
The DEFINE command creates a user-defined public symbol at link time. This command is
used to resolve external references (XREF) used in assemble time.

Syntax

DEFINE <symbol name> = <expression>

<symbol name> is the name assigned to the public symbol.

<expression> is the value assigned to the public symbol.

Example

DEFINE copy_size = copy top of data_seg - copy base of data_seg

Refer to Linker Expressions on page 341 for the format to write an expression.

FORMAT
The FORMAT command sets the executable file of the linker according to the following
table.

Note:

Using the Linker/Locator UM013034-1210

334

Zilog Developer Studio II – Z8 Encore!®

User Manual

The default setting is IEEE 695.

Syntax

[-]FORMAT=<type>

Example

FORMAT = OMF695, INTEL32

GROUP
The GROUP command provides a method of collecting multiple address spaces into a
single manageable entity.

Syntax

GROUP <groupname> = <name>[,<name>]

<groupname> can only be a group.

<name> can only be an address space.

HEADING
The HEADING command enables or disables the form feed (\f) characters in the map file
output.

Syntax

-[NO]heading

LOCATE
The LOCATE command specifies the address where a group, address space, or segment is
to be located. If multiple locates are specified for the same space, the last specification
takes precedence. A warning is flagged on a LOCATE of an absolute segment.

The LOCATE of a segment overrides the LOCATE of an address space. A LOCATE does not
override an absolute segment.

File Type Option File Extension

IEEE 695 format OMF695 .lod

Intel 32-bit format INTEL32 .hex

Note:

UM013034-1210 Linker Commands

Zilog Developer Studio II – Z8 Encore!®

User Manual

335

Syntax

LOCATE <name> AT <expression>

<name> can be a group, address space, or segment.

<expression> is the address to begin loading.

Example

LOCATE ROM AT $10000

Refer to Linker Expressions on page 341 for the format to write an expression.

MAP
The MAP command causes the linker to create a link map file. The link map file contains
the location of address spaces, segments, and symbols. The default is to create a link map
file. NOMAP suppresses the generation of a link map file.

Syntax

[-]MAP [= <mapfile>]

mapfile has the same name as the executable file with the .map extension unless an
optional <mapfile> is specified.

Example

MAP = myfile.map

Link Map File

A sample map file is shown in Sample Linker Map File on page 347.

The link map file base name is the same as your executable file with the .map extension
and resides in the same directory as the executable file. The link map has a wealth of infor-
mation about the memory requirements of your program. Views of memory use from the
space, segment, and module perspective are given as are the names and locations of all
public symbols. For the Z8 Encore! link map file, the C prefix indicates ROM, the E prefix
indicates EDATA, the R prefix indicates RDATA, and the P prefix indicates PRAM. For
additional information, see also Generate Map File on page 97.

Note:

Note:

Using the Linker/Locator UM013034-1210

336

Zilog Developer Studio II – Z8 Encore!®

User Manual

MAXHEXLEN
The MAXHEXLEN command causes the linker to fix the maximum data record size for the
Intel hex output. The default is 64 bytes.

Syntax

[-]MAXHEXLEN < IS | = > < 16 | 32 | 64 | 128 | 255 >

Examples

-maxhexlen=16

or

MAXHEXLEN IS 16

MAXLENGTH
The MAXLENGTH command causes a warning message to be issued if a group, address
space, or segment is longer than the specified size. The RANGE command sets address
boundaries. The MAXLENGTH command allows further control of these boundaries.

Syntax

MAXLENGTH <name> <expression>

<name> can be a group, address space, or segment.

<expression> is the maximum size.

Example

MAXLENGTH CODE $FF

Refer to Linker Expressions on page 341 for the format to write an expression.

NODEBUG
The NODEBUG command suppresses the linker from generating debug information. This
option is applicable only if the executable file is IEEE 695.

Syntax

[-]NODEBUG

NOMAP
The NOMAP command suppresses generation of a link map file. The default is to generate a
link map file.

Note:

UM013034-1210 Linker Commands

Zilog Developer Studio II – Z8 Encore!®

User Manual

337

Syntax

[-]NOMAP

NOWARN
The NOWARN command suppresses warning messages. The default is to generate warning
messages.

Syntax

[-]NOWARN

ORDER
The ORDER command establishes a linking sequence and sets up a dynamic RANGE for
contiguously mapped address spaces. The base of the RANGE of each consecutive address
space is set to the top of its predecessor.

Syntax

ORDER <name>[,<name-list>]

<name> can be a group, address space, or segment. <name-list> is a comma-separated list
of other groups, address spaces, or segments. However, a RANGE is established only for an
address space.

Example
ORDER GDATA,GTEXT

where GDATA and GTEXT are groups.

In this example, all address spaces associated with GDATA are located before (that is, at
lower addresses than) address spaces associated with GTEXT.

RANGE
The RANGE command sets the lower and upper bounds of a group, address space, or seg-
ment. If an address falls outside of the specified RANGE, the system displays a message.

You must use white space to separate the colon from the RANGE command operands.

Syntax

RANGE <name><expression> : <expression>[,<expression> : <expression>...]

Note:

Using the Linker/Locator UM013034-1210

338

Zilog Developer Studio II – Z8 Encore!®

User Manual

<name> can be a group, address space, or segment. The first <expression> marks the
lower boundary for a specified address RANGE. The second <expression> marks the upper
boundary for a specified address RANGE.

Example

RANGE ROM $0000 : $0FFF,$4000 : $4FFF

If a RANGE is specified for a segment, this range must be within any RANGE specified by
that segment’s address space.

Refer to Linker Expressions on page 341 for the format to write an expression.

SEARCHPATH
The SEARCHPATH command establishes an additional search path to be specified in locat-
ing files. The search order is as follows:

1. Current directory

2. Environment path

3. Search path

Syntax

SEARCHPATH ="<path>"

Example

SEARCHPATH="C:\ZDSII_Z8Encore!_4.11.0\lib\std"

SEQUENCE
The SEQUENCE command forces the linker to allocate a group, address space, or segment
in the order specified.

Syntax

SEQUENCE <name>[,<name_list>]

<name> is either a group, address space, or segment.

<name_list> is a comma-separated list of group, address space, or segment names.

Example

SEQUENCE NEAR_DATA,NEAR_TEXT,NEAR_BSS

Note:

UM013034-1210 Linker Commands

Zilog Developer Studio II – Z8 Encore!®

User Manual

339

If the sequenced segments do not all receive space allocation in the first pass through the
available address ranges, then the sequence of segments is not maintained.

SORT
The SORT command sorts the external symbol listing in the map file by name or address
order. The default is to sort in ascending order by name.

Syntax
[-]SORT <ADDRESS | NAME> [IS | =] <ASCENDING | UP | DESCENDING |
DOWN>

NAME indicates sorting by symbol name.

ADDRESS indicates sorting by symbol address.

Examples

The following examples show how to sort the symbol listing by the address in ascending
order:

SORT ADDRESS ASCENDING

or

-SORT ADDRESS = UP

SPLITTABLE

The SPLITTABLE command allows (but does not force) the linker to split a segment into
noncontiguous pieces to fit into available memory slots. Splitting segments can be helpful
in reducing the overall memory requirements of the project. However, problems can arise
if a noncontiguous segment is copied from one space to another using the COPY command.
The linker issues a warning if it is asked to COPY any noncontiguous segment.

If SPLITTABLE is not specified for a given segment, the linker allocates the entire seg-
ment contiguously.

The SPLITTABLE command takes precedence over the ORDER and SEQUENCE com-
mands.

By default, ZDS II segments are nonsplittable. When multiple segments are made splitta-
ble, the linker might re-order segments regardless of what is specified in the ORDER (or
SEQUENCE) command. In this case, you must perform one of following actions:

• Modify the memory map of the system so there is only one discontinuity and only one
splittable segment in which case the ORDER command is followed.

Note:

Using the Linker/Locator UM013034-1210

340

Zilog Developer Studio II – Z8 Encore!®

User Manual

• Modify the project so a specific ordering of segments is not needed, in which case
multiple segments can be marked splittable.

Syntax

SPLITTABLE segment_list

Example

SPLITTABLE CODE, ROM_TEXT

UNRESOLVED IS FATAL
The UNRESOLVED IS FATAL command causes the linker to treat undefined external sym-
bol warnings as fatal errors. The linker quits generating output files immediately if the
linker cannot resolve any undefined symbol. By default, the linker proceeds with generat-
ing output files if there are any undefined symbols.

Syntax

[-] < UNRESOLVED > < IS | = > <FATAL>

Examples

-unresolved=fatal

or

UNRESOLVED IS FATAL

WARN
The WARN command specifies that warning messages are to be generated. An optional
warning file can be specified to redirect messages. The default setting is to generate warn-
ing messages on the screen and in the map file.

Syntax

[-]WARN = [<warn filename>]

Example

-WARN=warnfile.txt

WARNING IS FATAL
The WARNING IS FATAL command causes the linker to treat all warning messages as
fatal errors. The linker does not generate output file(s) if there are any warnings while
linking. By default, the linker proceeds with generating output files even if there are warn-
ings.

UM013034-1210 Linker Expressions

Zilog Developer Studio II – Z8 Encore!®

User Manual

341

Syntax

[-]< WARNING | WARN> < IS | = > <FATAL>

Examples

-warn=fatal

or

WARNING IS FATAL

WARNOVERLAP
The WARNOVERLAP command enables or disables the warnings when overlap occurs while
binding segments. The default is to display the warnings whenever a segment gets over-
lapped.

Syntax

-[NO]warnoverlap

Linker Expressions

This section describes the operators and their operands that form legal linker expressions:

• + (Add) on page 342

• & (And) on page 342

• BASE OF on page 342

• COPY BASE on page 343

• COPY TOP on page 344

• / (Divide) on page 344

• FREEMEM on page 344

• HIGHADDR on page 344

• LENGTH on page 344

• LOWADDR on page 345

• * (Multiply) on page 345

• Decimal Numeric Values on page 345

• Hexadecimal Numeric Values on page 345

• | (Or) on page 346

• << (Shift Left) on page 346

Using the Linker/Locator UM013034-1210

342

Zilog Developer Studio II – Z8 Encore!®

User Manual

• >> (Shift Right) on page 346

• - (Subtract) on page 346

• TOP OF on page 346

• ^ (Bitwise Exclusive Or) on page 347

• ~ (Not) on page 347

The following note applies to many of the <expression> commands discussed in this sec-
tion.

To use BASE, TOP, COPY BASE, COPY TOP, LOWADDR, HIGHADDR, LENGTH,
and FREEMEM <expression> commands, you must have completed the calculations on
the expression. This is done using the SEQUENCE and ORDER commands. Do not use
an expression of the segment or space itself to locate the object in question.

Examples

/* Correct example using segments */
SEQUENCE seg2, seg1 /* Calculate seg2 before seg1 */
LOCATE seg1 AT TOP OF seg2 + 1

/* Do not do this: cannot use expression of seg1 to locate seg1 */
LOCATE seg1 AT (TOP OF seg2 - LENGTH OF seg1)

+ (Add)
The + (Add) operator is used to perform addition of two expressions.

Syntax

<expression> + <expression>

& (And)
The & (And) operator is used to perform a bitwise & of two expressions.

Syntax

<expression> & <expression>

BASE OF
The BASE OF operator provides the lowest used address of a group, address space, or seg-
ment, excluding any segment copies when <name> is a segment. The value of BASE OF
is treated as an expression value.

Note:

UM013034-1210 Linker Expressions

Zilog Developer Studio II – Z8 Encore!®

User Manual

343

Syntax

BASE OF <name>

<name> can be a group, address space, or segment.

BASE OF Versus LOWADDR OF

By default, allocation for a given memory group, address space, or segment starts at the
lowest defined address for that memory group, address space, or segment. If you explicitly
define an assignment within that memory space, allocation for that space begins at that
defined point and then occupies subsequent memory locations; the explicit allocation
becomes the default BASE OF value. BASE OF <name> gives the lowest allocated
address in the space; LOWADDR OF <name> gives the lowest physical address in the
space.

For example:

RANGE ROM $0 : $7FFF
RANGE EDATA $800 : $BFF

/* RAM allocation */
LOCATE s_uninit_data at $800
LOCATE s_nvrblock at $900
DEFINE __low_data = BASE OF s_uninit_data

Using

LOCATE s_uninit_data at $800

or

LOCATE s_uninit_data at LOWADDR OF EDATA

gives the same address (the lowest possible address) when RANGE EDATA $800:$BFF.

If

LOCATE s_uninit_data at $800

is changed to

LOCATE s_uninit_data at BASE OF EDATA

the lowest used address is $900 (because LOCATE s_nvrblock at $900 and
s_nvrblock is in EDATA).

COPY BASE
The COPY BASE operator provides the lowest used address of a copy segment, group, or
address space. The value of COPY BASE is treated as an expression value.

Using the Linker/Locator UM013034-1210

344

Zilog Developer Studio II – Z8 Encore!®

User Manual

Syntax

COPY BASE OF <name>

<name> can be either a group, address space, or segment.

COPY TOP
The COPY TOP operator provides the highest used address of a copy segment, group, or
address space. The value of COPY TOP is treated as an expression value.

Syntax

COPY TOP OF <name>

<name> can be a group, address space, or segment.

/ (Divide)
The / (Divide) operator is used to perform division.

Syntax

<expression> / <expression>

FREEMEM
The FREEMEM operator provides the lowest address of unallocated memory of a group,
address space, or segment. The value of FREEMEM is treated as an expression value.

Syntax

FREEMEM OF <name>

<name> can be a group, address space, or segment.

HIGHADDR
The HIGHADDR operator provides the highest possible address of a group, address
space, or segment. The value of HIGHADDR is treated as an expression value.

Syntax

HIGHADDR OF <name>

<name> can be a group, address space, or segment.

LENGTH
The LENGTH operator provides the length of a group, address space, or segment. The
value of LENGTH is treated as an expression value.

UM013034-1210 Linker Expressions

Zilog Developer Studio II – Z8 Encore!®

User Manual

345

Syntax

LENGTH OF <name>

<name> can be a group, address space, or segment.

LOWADDR
The LOWADDR operator provides the lowest possible address of a group, address space,
or segment. The value of LOWADDR is treated as an expression value.

Syntax

LOWADDR OF <name>

<name> can be a group, address space, or segment.

See BASE OF Versus LOWADDR OF on page 343 for an explanation of the difference
between these two operators.

* (Multiply)
The * (Multiply) operator is used to multiply two expressions.

Syntax

<expression> * <expression>

Decimal Numeric Values
Decimal numeric constant values can be used as an expression or part of an expression.
Digits are collections of numeric digits from 0 to 9.

Syntax

<digits>

Hexadecimal Numeric Values
Hexadecimal numeric constant values can be used as an expression or part of an expres-
sion. Hex digits are collections of numeric digits from 0 to 9 or A to F.

Syntax

$<hexdigits>

Note:

Using the Linker/Locator UM013034-1210

346

Zilog Developer Studio II – Z8 Encore!®

User Manual

| (Or)
The | (Or) operator is used to perform a bitwise inclusive | (Or) of two expressions.

Syntax

<expression> | <expression>

<< (Shift Left)
The << (Shift Left) operator is used to perform a left shift. The first expression to the left
of << is the value to be shifted. The second expression is the number of bits to the left the
value is to be shifted.

Syntax

<expression> << <expression>

>> (Shift Right)
The >> (Shift Right) operator is used to perform a right shift. The first expression to the
left of >> is the value to be shifted. The second expression is the number of bits to the right
the value is to be shifted.

Syntax

<expression> >> <expression>

- (Subtract)
The - (Subtract) operator is used to subtract one expression from another.

Syntax

<expression> - <expression>

TOP OF
The TOP OF operator provides the highest allocated address of a group, address space, or
segment, excluding any segment copies when <name> is a segment. The value of TOP OF
is treated as an expression value.

Syntax

TOP OF <name>

<name> can be a group, address space, or segment.

UM013034-1210 Sample Linker Map File

Zilog Developer Studio II – Z8 Encore!®

User Manual

347

If you declare a segment to begin at TOP OF another segment, the two segments share one
memory location. TOP OF give the address of the last used memory location in a segment,
not the address of the next available memory location.

For example:

LOCATE segment2 at TOP OF segment1

The above example starts segment2 at the address of the most recently used location of
segment1. To avoid both segments sharing one memory location, use the following syn-
tax:

LOCATE segment2 at (TOP OF segment1) + 1

^ (Bitwise Exclusive Or)
The ^ operator is used to perform a bitwise exclusive OR on two expressions.

Syntax

<expression> ^ <expression>

~ (Not)
The ~ (Not) operator is used to perform a one’s complement of an expression.

Syntax

~ <expression>

Sample Linker Map File

IEEE 695 OMF Linker Version 6.21 (06050201_eng)
Copyright (C) 1999-2004 Zilog, Inc. All Rights Reserved

LINK MAP:

DATE: Wed May 03 10:58:46 2006
PROCESSOR: assembler
FILES: C:\PROGRA~1\Zilog\ZDSII_~3.0\lib\zilog\startupL.obj
 .\main.obj
 C:\PROGRA~1\Zilog\ZDSII_~3.0\lib\std\chelpD.lib
 C:\PROGRA~1\Zilog\ZDSII_~3.0\lib\std\crtLDD.lib
 C:\PROGRA~1\Zilog\ZDSII_~3.0\lib\std\fpLDD.lib
 C:\PROGRA~1\Zilog\ZDSII_~3.0\lib\zilog\csioLDD.lib
 C:\PROGRA~1\Zilog\ZDSII_~3.0\lib\zilog\zsldevinitdummy.obj

COMMAND LIST:

Using the Linker/Locator UM013034-1210

348

Zilog Developer Studio II – Z8 Encore!®

User Manual

=============
/* Linker Command File - sample Debug */

/* Generated by: */
/* ZDS II - Z8 Encore! Family 4.10.0 (Build 06050301_eng) */
/* IDE component: b:4.10:06050201_eng */

/* compiler options */
/* -const:RAM -define:_Z8F6423 -define:_Z8ENCORE_64K_SERIES */
/* -define:_Z8ENCORE_F642X -define:_SIMULATE -genprintf -NOkeepasm */
/* -NOkeeplst -NOlist -NOlistinc -model:L -NOoptlink -promote */
/* -regvar:8 -reduceopt */
/* -
stdinc:"C:\PROGRA~1\Zilog\ZDSII_~3.0\include\std;C:\PROGRA~1\Zilog\ZDSII_~3.0\
include\zilog;C:\PROGRA~1\Zilog\ZDSII_~3.0\include\zilog\Z8ENCO~2" */
/* -debug -NOrevaa -cpu:Z8F6423 */
/* -asmsw:" -cpu:Z8F6423 -define:_Z8F6423=1 -define:_Z8ENCORE_64K_SERIES=1 -
define:_Z8ENCORE_F642X=1 -define:_SIMULATE=1 -
include:C:\PROGRA~1\Zilog\ZDSII_~3.0\include\std;C:\PROGRA~1\Zilog\ZDSII_~3.0\
include\zilog;C:\PROGRA~1\Zilog\ZDSII_~3.0\include\zilog\Z8Encore_F642X -
NOrevaa" */

/* assembler options */
/* -define:_Z8F6423=1 -define:_Z8ENCORE_64K_SERIES=1 */
/* -define:_Z8ENCORE_F642X=1 -define:_SIMULATE=1 */
/* -
include:"C:\PROGRA~1\Zilog\ZDSII_~3.0\include\std;C:\PROGRA~1\Zilog\ZDSII_~3.0
\include\zilog;C:\PROGRA~1\Zilog\ZDSII_~3.0\include\zilog\Z8ENCO~2" */
/* -list -NOlistmac -name -pagelen:56 -pagewidth:80 -quiet -sdiopt */
/* -warn -debug -NOigcase -NOrevaa -cpu:Z8F6423 */

-FORMAT=OMF695,INTEL32
-map -maxhexlen=64 -NOquiet -sort name=ascending -unresolved=fatal
-NOwarnoverlap -NOxref -warn -debug -NOigcase

RANGE ROM $000000 : $00FFFF
RANGE RDATA $000020 : $0000FF
RANGE EDATA $000100 : $000EFF

CHANGE TEXT=EDATA
CHANGE TEXT=FAR_DATA
change NEAR_TXT=NEAR_DATA
change FAR_TXT=FAR_DATA
ORDER FAR_BSS, FAR_DATA
ORDER NEAR_BSS,NEAR_DATA
COPY NEAR_DATA ROM
COPY FAR_DATA ROM

UM013034-1210 Sample Linker Map File

Zilog Developer Studio II – Z8 Encore!®

User Manual

349

define _low_near_romdata = copy base of NEAR_DATA
define _low_neardata = base of NEAR_DATA
define _len_neardata = length of NEAR_DATA
define _low_far_romdata = copy base of FAR_DATA
define _low_fardata = base of FAR_DATA
define _len_fardata = length of FAR_DATA
define _low_nearbss = base of NEAR_BSS
define _len_nearbss = length of NEAR_BSS
define _low_farbss = base of FAR_BSS
define _len_farbss = length of FAR_BSS
define _far_heaptop = highaddr of EDATA
define _far_stack = highaddr of EDATA
define _near_stack = highaddr of RDATA
define _far_heapbot = top of EDATA
define _near_heaptop = highaddr of RDATA
define _near_heapbot = top of RDATA
define _low_pramseg = base of PRAMSEG
define _len_pramseg = length of PRAMSEG
define _low_pram_romdata = copy base of PRAMSEG
define _READ_NVDS=$1000
define _WRITE_NVDS=$10B3
define _READ_NVDS_GET_STATUS=$1000
define _WRITE_NVDS_GET_STATUS=$10B3
/* Set frequency to 18432000 Hz */
define __user_frequency = 18432000

"C:\sample\sample"= C:\PROGRA~1\Zilog\ZDSII_~3.0\lib\zilog\startupL.obj,
.\main.obj, C:\PROGRA~1\Zilog\ZDSII_~3.0\lib\std\chelpD.lib,
C:\PROGRA~1\Zilog\ZDSII_~3.0\lib\std\crtLDD.lib,
C:\PROGRA~1\Zilog\ZDSII_~3.0\lib\std\fpLDD.lib,
C:\PROGRA~1\Zilog\ZDSII_~3.0\lib\zilog\csioLDD.lib,
C:\PROGRA~1\Zilog\ZDSII_~3.0\lib\zilog\zsldevinitdummy.obj

SPACE ALLOCATION:
=================

Space Base Top Size
------------------ ----------- ----------- ---------
EDATA E:0100 E:0102 3h
RDATA R:E0 R:EF 10h
ROM C:0000 C:00E7 e8h

SEGMENTS WITHIN SPACE:
======================

Using the Linker/Locator UM013034-1210

350

Zilog Developer Studio II – Z8 Encore!®

User Manual

EDATA Type Base Top Size
------------------ ------------------- ----------- ----------- ---------
FAR_BSS normal data E:0100 E:0102 3h

RDATA Type Base Top Size
------------------ ------------------- ----------- ----------- ---------
workingreg absolute data R:E0 R:EF 10h

ROM Type Base Top Size
------------------ ------------------- ----------- ----------- ---------
___flash_option1_s absolute data C:0000 C:0000 1h
___flash_option2_s absolute data C:0001 C:0001 1h
__VECTORS_002 absolute data C:0002 C:0003 2h
__VECTORS_004 absolute data C:0004 C:0005 2h
__VECTORS_006 absolute data C:0006 C:0007 2h
__VECTORS_008 absolute data C:0008 C:0009 2h
__VECTORS_00A absolute data C:000A C:000B 2h
__VECTORS_00C absolute data C:000C C:000D 2h
__VECTORS_00E absolute data C:000E C:000F 2h
__VECTORS_010 absolute data C:0010 C:0011 2h
__VECTORS_012 absolute data C:0012 C:0013 2h
__VECTORS_014 absolute data C:0014 C:0015 2h
__VECTORS_016 absolute data C:0016 C:0017 2h
__VECTORS_018 absolute data C:0018 C:0019 2h
__VECTORS_01A absolute data C:001A C:001B 2h
__VECTORS_01C absolute data C:001C C:001D 2h
__VECTORS_01E absolute data C:001E C:001F 2h
__VECTORS_020 absolute data C:0020 C:0021 2h
__VECTORS_022 absolute data C:0022 C:0023 2h
__VECTORS_024 absolute data C:0024 C:0025 2h
__VECTORS_026 absolute data C:0026 C:0027 2h
__VECTORS_028 absolute data C:0028 C:0029 2h
__VECTORS_02A absolute data C:002A C:002B 2h
__VECTORS_02C absolute data C:002C C:002D 2h
__VECTORS_02E absolute data C:002E C:002F 2h
__VECTORS_030 absolute data C:0030 C:0031 2h
__VECTORS_032 absolute data C:0032 C:0033 2h
__VECTORS_034 absolute data C:0034 C:0035 2h
__VECTORS_036 absolute data C:0036 C:0037 2h
CODE normal data C:0038 C:006B 34h
main_TEXT normal data C:00E1 C:00E7 7h
startup normal data C:006C C:00E0 75h

SEGMENTS WITHIN MODULES:
========================

UM013034-1210 Sample Linker Map File

Zilog Developer Studio II – Z8 Encore!®

User Manual

351

Module: ..\..\src\boot\common\startupl.asm (File: startupL.obj) Version: 1:0
05/03/2006 09:11:37

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_002 C:0002 C:0003 2h
 Segment: FAR_BSS E:0100 E:0102 3h
 Segment: startup C:006C C:00E0 75h
 Segment: workingreg R:E0 R:EF 10h

Module: .\MAIN.C (File: main.obj) Version: 1:0 05/03/2006 10:58:46

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: main_TEXT C:00E1 C:00E7 7h

Module: COMMON\FLASH1.C (Library: chelpD.lib) Version: 1:0 05/03/2006 09:17:42

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: ___flash_option1_segment C:0000 C:0000 1h

Module: COMMON\FLASH2.C (Library: chelpD.lib) Version: 1:0 05/03/2006 09:17:42

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: ___flash_option2_segment C:0001 C:0001 1h

Module: common\frame.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:42

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0039 C:005C 24h

Module: common\framer.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:42

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:005D C:006B fh

Using the Linker/Locator UM013034-1210

352

Zilog Developer Studio II – Z8 Encore!®

User Manual

Module: common\vect04.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_004 C:0004 C:0005 2h

Module: common\vect06.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_006 C:0006 C:0007 2h

Module: common\vect08.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_008 C:0008 C:0009 2h

Module: common\vect0a.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_00A C:000A C:000B 2h

Module: common\vect0c.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_00C C:000C C:000D 2h

Module: common\vect0e.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_00E C:000E C:000F 2h

UM013034-1210 Sample Linker Map File

Zilog Developer Studio II – Z8 Encore!®

User Manual

353

Module: common\vect10.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_010 C:0010 C:0011 2h

Module: common\vect12.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_012 C:0012 C:0013 2h

Module: common\vect14.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_014 C:0014 C:0015 2h

Module: common\vect16.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_016 C:0016 C:0017 2h

Module: common\vect18.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_018 C:0018 C:0019 2h

Module: common\vect1a.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_01A C:001A C:001B 2h

Using the Linker/Locator UM013034-1210

354

Zilog Developer Studio II – Z8 Encore!®

User Manual

Module: common\vect1c.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_01C C:001C C:001D 2h

Module: common\vect1e.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_01E C:001E C:001F 2h

Module: common\vect20.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_020 C:0020 C:0021 2h

Module: common\vect22.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_022 C:0022 C:0023 2h

Module: common\vect24.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_024 C:0024 C:0025 2h

Module: common\vect26.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_026 C:0026 C:0027 2h

UM013034-1210 Sample Linker Map File

Zilog Developer Studio II – Z8 Encore!®

User Manual

355

Module: common\vect28.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_028 C:0028 C:0029 2h

Module: common\vect2a.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_02A C:002A C:002B 2h

Module: common\vect2c.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_02C C:002C C:002D 2h

Module: common\vect2e.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_02E C:002E C:002F 2h

Module: common\vect30.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_030 C:0030 C:0031 2h

Module: common\vect32.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_032 C:0032 C:0033 2h

Using the Linker/Locator UM013034-1210

356

Zilog Developer Studio II – Z8 Encore!®

User Manual

Module: common\vect34.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_034 C:0034 C:0035 2h

Module: common\vect36.asm (Library: chelpD.lib) Version: 1:0 05/03/2006
09:17:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_036 C:0036 C:0037 2h

Module: zsldevinitdummy.asm (File: zsldevinitdummy.obj) Version: 1:0 05/03/
2006 09:26:51

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:0038 C:0038 1h

EXTERNAL DEFINITIONS:
=====================

Symbol Address Module Segment
-------------------------------- ----------- --------------- -----------------

__close_periphdevice C:0038 zsldevinitdummy CODE
__framereset C:005D framer CODE
__frameset C:0045 frame CODE
__frameset0 C:0043 frame CODE
__frameset00 C:0041 frame CODE
__iframeset00 C:0039 frame CODE
__intrp E:0102 startupl FAR_BSS
__open_periphdevice C:0038 zsldevinitdummy CODE
__user_frequency 01194000 (User Defined)
__VECTOR_002 C:0000 startupl __VECTORS_002
__VECTOR_004 C:0004 vect04 __VECTORS_004
__VECTOR_006 C:0006 vect06 __VECTORS_006
__VECTOR_008 C:0008 vect08 __VECTORS_008
__VECTOR_00A C:000A vect0a __VECTORS_00A
__VECTOR_00C C:000C vect0c __VECTORS_00C
__VECTOR_00E C:000E vect0e __VECTORS_00E
__VECTOR_010 C:0010 vect10 __VECTORS_010
__VECTOR_012 C:0012 vect12 __VECTORS_012

UM013034-1210 Sample Linker Map File

Zilog Developer Studio II – Z8 Encore!®

User Manual

357

__VECTOR_014 C:0014 vect14 __VECTORS_014
__VECTOR_016 C:0016 vect16 __VECTORS_016
__VECTOR_018 C:0018 vect18 __VECTORS_018
__VECTOR_01A C:001A vect1a __VECTORS_01A
__VECTOR_01C C:001C vect1c __VECTORS_01C
__VECTOR_01E C:001E vect1e __VECTORS_01E
__VECTOR_020 C:0020 vect20 __VECTORS_020
__VECTOR_022 C:0022 vect22 __VECTORS_022
__VECTOR_024 C:0024 vect24 __VECTORS_024
__VECTOR_026 C:0026 vect26 __VECTORS_026
__VECTOR_028 C:0028 vect28 __VECTORS_028
__VECTOR_02A C:002A vect2a __VECTORS_02A
__VECTOR_02C C:002C vect2c __VECTORS_02C
__VECTOR_02E C:002E vect2e __VECTORS_02E
__VECTOR_030 C:0030 vect30 __VECTORS_030
__VECTOR_032 C:0032 vect32 __VECTORS_032
__VECTOR_034 C:0034 vect34 __VECTORS_034
__VECTOR_036 C:0036 vect36 __VECTORS_036
__VECTOR_reset C:0000 startupl __VECTORS_002
_c_startup C:006C startupl startup
_close_periphdevice C:0038 zsldevinitdummy CODE
_errno E:0100 startupl FAR_BSS
_exit C:00DF startupl startup
_far_heapbot 00000102 (User Defined)
_far_heaptop 00000EFF (User Defined)
_far_stack 00000EFF (User Defined)
_flash_option1 C:0000 FLASH1 flash_option1_segment
_flash_option2 C:0001 FLASH2 flash_option2_segment
_len_farbss 00000003 (User Defined)
_len_fardata 00000000 (User Defined)
_len_nearbss 00000000 (User Defined)
_len_neardata 00000000 (User Defined)
_len_pramseg 00000000 (User Defined)
_low_far_romdata 00000000 (User Defined)
_low_farbss 00000100 (User Defined)
_low_fardata 00000000 (User Defined)
_low_near_romdata 00000000 (User Defined)
_low_nearbss 00000000 (User Defined)
_low_neardata 00000000 (User Defined)
_low_pram_romdata 00000000 (User Defined)
_low_pramseg 00000000 (User Defined)
_main C:00E1 MAIN main_TEXT
_near_heapbot 000000EF (User Defined)
_near_heaptop 000000FF (User Defined)
_near_stack 000000FF (User Defined)
_open_periphdevice C:0038 zsldevinitdummy CODE
_READ_NVDS 00001000 (User Defined)
_READ_NVDS_GET_STATUS 00001000 (User Defined)

Using the Linker/Locator UM013034-1210

358

Zilog Developer Studio II – Z8 Encore!®

User Manual

_WRITE_NVDS 000010B3 (User Defined)
_WRITE_NVDS_GET_STATUS 000010B3 (User Defined)

68 external symbol(s).

START ADDRESS:
==============
(C:006C) set in module ..\..\src\boot\common\startupl.asm.

END OF LINK MAP:
================
0 Errors
0 Warnings

Warning and Error Messages

If you see an internal error message, please report it to Technical Support at http://
support.zilog.com. Zilog staff will use the information to diagnose or log the prob-
lem.

This section covers warning and error messages for the linker/locator.

700 Absolute segment "<name>" is not on a MAU boundary.

The named segment is not aligned on a minimum addressable unit (MAU) of memory
boundary. Padding or a correctly aligned absolute location must be supplied.

701 <address range error message>.

A group, section, or address space is larger than is specified maximum length.

704 Locate of a type is invalid. Type "<typename>".

It is not permitted to specify an absolute location for a type.

708 "<name>" is not a valid group, space, or segment.

An invalid record type was encountered. Most likely, the object or library file is cor-
rupted.

710 Merging two located spaces "<space1> <space2>" is not allowed.

When merging two or more address spaces, at most one of them can be located abso-
lutely.

Note:

UM013034-1210 Warning and Error Messages

Zilog Developer Studio II – Z8 Encore!®

User Manual

359

711 Merging two located groups "<group1> <group2>".

When merging two or more groups, at most one can be located absolutely.

712 Space "<space>" is not located on a segment base.

The address space is not aligned with a segment boundary.

713 Space "<space>" is not defined.

The named address space is not defined.

714 Multiple locates for "<name>" have been specified.

Multiple absolute locations have been specified for the named group, section, or
address space.

715 Module "<name>" contains errors or warnings.

Compilation of the named module produced a nonzero exit code.

717 Invalid expression.

An expression specifying a symbol value could not be parsed.

718 "<segment>" is not in the specified range.

The named segment is not within the allowed address range.

719 "<segment>" is an absolute or located segment. Relocation was ignored.

An attempt was made to relocate an absolutely located segment.

720 "<name> calls <name>" graph node which is not defined.

This message provides detailed information about how an undefined function name is
called.

721 Help file "<name>" not found.

The named help file could not be found. You may need to reinstall the development
system software.

723 "<name>" has not been ordered.

The named group, section, or address space does not have an order assigned to it.

724 Symbol <name> (<file>) is not defined.

The named symbol is referenced in the given file, but not defined. Only the name of
the file containing the first reference is listed within the parentheses; it can also be ref-
erenced in other files.

726 Expression structure could not be stored. Out of memory.

Memory to store an expression structure could not be allocated.

Using the Linker/Locator UM013034-1210

360

Zilog Developer Studio II – Z8 Encore!®

User Manual

727 Group structure could not be stored. Out of memory.

Memory to store a group structure could not be allocated.

730 Range structure could not be stored. Out of memory.

Memory to store a range structure could not be allocated.

731 File "<file>" is not found.

The named input file or a library file name or the structure containing a library file
name was not found.

732 Error encountered opening file "<file>".

The named file could not be opened.

736 Recursion is present in call graph.

A loop has been found in the call graph, indicating recursion.

738 Segment "<segment>" is not defined.

The referenced segment name has not been defined.

739 Invalid space "<space>" is defined.

The named address space is not valid. It must be either a group or an address space.

740 Space "<space>" is not defined.

The referenced space name is not defined.

742 <error message>

A general-purpose error message.

743 Vector "<vector>" not defined.

The named interrupt vector could not be found in the symbol table.

745 Configuration bits mismatch in file <file>.

The mode bit in the current input file differs from previous input files.

746 Symbol <name> not attached to a valid segment.

The named symbol is not assigned to a valid segment.

747 <message>

General-purpose error message for reporting out-of-range errors. An address does not
fit within the valid range.

748 <message>

General-purpose error message for OMF695 to OMF251 conversion. The requested
translation could not proceed.

UM013034-1210 Warning and Error Messages

Zilog Developer Studio II – Z8 Encore!®

User Manual

361

749 Could not allocate global register.

A global register was requested, but no register of the desired size remains available.

751 Error opening output file "<outfile>".

The named load module file could not be opened.

753 Segment '<segment>' being copied is splittable.

A segment, which is to be copied, is being marked as splittable, but start-up code
might assume that it is contiguous.

754 Some variables may not be directly accessible because of escaped mode addressing.

In your memory map, some variables near (RData) memory have been allocated at
addresses in the range E0h–EFh, in which the ability to use normal addressing modes
is compromised by the Z8Encore! escaped addressing mode. The best response to this
warning is to modify your memory model, your memory map, or your allocation of
variables to near and far memory to remove the potential problem.

Using the Linker/Locator UM013034-1210

362

Zilog Developer Studio II – Z8 Encore!®

User Manual

UM013034-1210 Using the Debugger

Zilog Developer Studio II – Z8 Encore!®

User Manual

363

Using the Debugger

The source-level debugger is a program that allows you to find problems in your code at
the C or assembly level. You can also write batch files to automate debugger tasks (see
Appendix D. Using the Command Processor on page 465). The following topics are cov-
ered in this section:

• Status Bar on page 364

• Code Line Indicators on page 365

• Debug Windows on page 366

• Using Breakpoints on page 382

From the Debug menu, select Reset (or any other execution command) to enter Debug
mode.

You are now in Debug mode as shown in the Output window (Debugger tab). The
Debug toolbar and Debug Windows toolbar are displayed as shown in Figure 141.

Using the Debugger UM013034-1210

364

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 141. Debug and Debug Window Toolbars

Project code cannot be rebuilt while in Debug mode. The Development Environment will
prompt you if you request a build during a debug session. If you edit code during a debug
session and then attempt to execute the code, the Development Environment will stop the
current debug session, rebuild the project, and then attempt to start a new debug session if
you elect to do so when prompted.

Status Bar

The status bar displays the current status of your program’s execution. The status can be
STOP, STEP, or RUN. The STOP mode indicates that your program is not executing. The
STEP mode indicates that a Step operation (using the Step Into, Step Over, or Step Out

Note:

UM013034-1210 Code Line Indicators

Zilog Developer Studio II – Z8 Encore!®

User Manual

365

command) is in progress. The RUN mode indicates that the program is executing after a
Go command has been issued. In RUN mode, the following debug operations are avail-
able: Reset, Stop Debugging, and Break.

When the program is in RUN mode, disabling a breakpoint temporarily stops and resumes
program execution. If a breakpoint is reached before it is disabled, program execution
does not resume. When the program is in RUN mode, enabling the breakpoint also tempo-
rarily stops and resumes program execution but, if the program reaches a breakpoint after
you enable it, the program stops or breaks. You must press the Go button again to continue
the program execution. See Using Breakpoints on page 382 for more information about
breakpoints.

View/read memory, Step Into, Step Over, Step Out, and Go are disabled in RUN mode.

The status bar is either a box displayed in the upper right corner under the title bar or a
horizontal bar under the buttons, depending on your screen resolution.

Code Line Indicators

The Edit window displays your source code with line numbers and code line indicators.
The debugger indicates the status of each line visually with the following code line indica-
tors:

• A red octagon indicates an active breakpoint at the code line; a white octagon indi-
cates a disabled breakpoint.

• Blue dots are displayed to the left of all valid code lines; these are lines where break-
points can be set, the program can be run to, and so on.

Some source lines do not have blue dots because the code has been optimized out of the
executable (and the corresponding debug information).

• A program counter code line indicator (yellow arrow) indicates a code line at which
the program counter is located.

• A program counter code line indicator on a breakpoint (yellow arrow on a red octa-
gon) indicates the program counter has stopped on a breakpoint.

If the program counter steps into another file in your program, the Edit window switches
to the new file automatically.

Note:

Note:

Note:

Using the Debugger UM013034-1210

366

Zilog Developer Studio II – Z8 Encore!®

User Manual

Debug Windows

The Debug Windows toolbar allows you to display the following debug windows:

• Registers Window on page 366

• Special Function Registers Window on page 368

• Clock Window on page 368

• Memory Window on page 369

• Watch Window on page 375

• Locals Window on page 377

• Call Stack Window on page 378

• Symbols Window on page 379

• Disassembly Window on page 380

• Simulated UART Output Window on page 381

Figure 142. Debug Windows Toolbar

Registers Window

You cannot modify the registers or memory while in run mode.

Click the Registers Window button to show or hide the Registers window, which dis-
plays all of the registers in the standard Z8 Encore! architecture.

Note:

UM013034-1210 Debug Windows

Zilog Developer Studio II – Z8 Encore!®

User Manual

367

Figure 143. Registers Window

To change register values, perform the following tasks:

1. In the Registers window, highlight the value you want to change.

2. Enter the new value and press the Enter key. The changed value is displayed in red.

Using the Debugger UM013034-1210

368

Zilog Developer Studio II – Z8 Encore!®

User Manual

Special Function Registers Window
Click the Special Function Registers Window button to open one of ten Special Func-
tion Registers windows. The Special Function Registers window displays all of the spe-
cial function registers in the standard Z8 Encore! architecture. Addresses F00 through FFF
are reserved for special function registers (SFRs).

Use the Group drop-down list to view a particular group of SFRs.

Figure 144. Special Function Registers Window

There are several SFRs that when read are cleared or clear an associated register. To pre-
vent the debugger from changing the behavior of the code, a special group of SFRs was
created that groups these state changing registers. The group is called SPECIAL_CASE. If
this group is selected, the behavior of the code changes, and the program must be reset.

To use the FLASH_OPTIONBITS group, you need to reset the device for the changes to
take effect. Use the FLASH_OPTIONBITS group to view the values of all of the Flash
option bit registers, with the exception of:

• Temperature sensor trim registers

• Precision oscillator trim registers

• Flash capacity configuration registers

To change special function register values, perform the following tasks:

1. In the Special Function Registers window, highlight the value you want to change.

2. Enter the new value and press the Enter key. The changed value is displayed in red.

Clock Window
Click the Clock Window button to show or hide the Clock window, which displays the
number of states executed since the last reset. You can reset the contents of the Clock win-
dow at any time by selecting the number of cycles (3172251 in Figure 145), type 0, and
press the Enter key. Updated values are displayed in red.

UM013034-1210 Debug Windows

Zilog Developer Studio II – Z8 Encore!®

User Manual

369

The Clock window will only display clock data when the Simulator is the active debug
tool.

Figure 145. Clock Window

Memory Window
Click the Memory Window button to open one of ten memory windows.

Figure 146. Memory Window

Each memory window displays data located in the target’s memory. The ASCII text for
memory values is shown in the last column. The address is displayed in the far left column
with a C# to denote the code address space, with an R# to denote the RData address space,
or with an N# to denote the NVDS address space.

For RData, the Memory window shows the internal data memory in its entirety.

The Z8 Encore! XP F082A Series and non-24K F1680 devices contain a Non-Volatile
Data Storage (NVDS) element with a size of up to 128 bytes. This memory features an

Note:

Notes:

Using the Debugger UM013034-1210

370

Zilog Developer Studio II – Z8 Encore!®

User Manual

endurance of 100,000 write cycles. For more information about NVDS, see the Non-Vola-
tile Data Storage chapter of the Z8 Encore! XP 8K and 4K Series Product Specification
(PS0228).

The Z8 Encore! XP F1680 Series devices feature an area of Program RAM that can be
used for storing some code in RAM. This area can be used to help keep device operating
power low by, for example, storing interrupt service routines here that would activate the
code in Flash memory when some external event has occurred. PRAM, when available, is
an optional feature. If you want to use this memory as Program RAM, set the desired
address range in the PRAM field in the Address Spaces page of the Project Settings
dialog box. PRAM begins at data address E000 and can have a maximum size of 512 or
1024 bytes, depending on your device. If you deselect the PRAM checkbox, this memory
is not available to the compiler. Also, the compiler does not know if this memory is recon-
figured as additional Register RAM memory without the user expanding the Linker
Address EData range as described below.

The PRAM can be used as additional on-chip Register RAM by setting the PRAM_M
option bit low in the device option bits. When the PRAM_M option bit is set the low, the
PRAM at 0xE000 is no longer available and the memory is used as additional Register
RAM. If you want to map PRAM to Register RAM, you must increase the range for
EData (in the Address Spaces page) to include the appropriate amount of PRAM and set
the option bit low.

For example:

FLASH_OPTION1 = 0xFD;

Then, if your device supports 0x800 bytes of Register RAM and 0x400 bytes of PRAM,
the EData range can be extended to 0xBFF by mapping the PRAM to Register RAM. In
this example, the new address range for Rdata is 0x0-0xFF, and the new address range
for Edata is 0x100-0xBFF. When the address range is extended, the complier takes full
advantage of the extra memory.

The following sections describe how to use the Memory window:

• Changing Values on page 371

• Viewing Addresses on page 371

• Filling Memory on page 372

• Saving to a File on page 373

• Loading from a File on page 374

• Performing a Cyclic Redundancy Check on page 374

http://www.zilog.com/docs/z8encorexp/ps0228.pdf
http://www.zilog.com/docs/z8encorexp/ps0228.pdf

UM013034-1210 Debug Windows

Zilog Developer Studio II – Z8 Encore!®

User Manual

371

The Page Up and Page Down keys (on your keyboard) are not functional in the Memory
window. Instead, use the up and down arrow buttons to the right of the Space and Address
fields.

Changing Values

To change the values in the Memory window, perform the following tasks:

1. In the window, highlight the value you want to change. The values begin in the second
column after the Address column.

2. Enter the new value and press the Enter key. The changed value is displayed in red.

The ASCII text for the value is shown in the last column.

Viewing Addresses

To quickly view or search for an address in the Memory window, perform the following
tasks:

1. In the Memory window, highlight the address in the Address field, as shown in
Figure 147.

Figure 147. Memory Window—Starting Address

To view the values for other memory spaces, replace the C with a different valid memory
prefix. You can also change the current memory space by selecting the space name in the
Space drop-down list box.

Note:

Note:

Note:

Using the Debugger UM013034-1210

372

Zilog Developer Studio II – Z8 Encore!®

User Manual

2. Enter the address you want to find and press the Enter key. For example: find 0395.
The system moves the selected address to the top of the Memory window, as shown in
Figure 148.

Figure 148. Memory Window—Requested Address

Filling Memory

Use this procedure to write a common value in all of the memory spaces in the specified
address range, for example, to clear memory for the specified address range.

To fill a specified address range of memory, perform the following tasks:

1. Select the memory space in the Space drop-down list.

2. Right-click in the Memory window list box to display the context menu.

3. Select Fill Memory. The Fill Memory dialog box is displayed.

Figure 149. Fill Memory Dialog Box

4. In the Fill Value area, select the characters to fill memory with or select the Other but-
ton. If you select the Other button, type the fill characters in the Other field.

UM013034-1210 Debug Windows

Zilog Developer Studio II – Z8 Encore!®

User Manual

373

5. Enter the start address in hexadecimal format in the Start Address (Hex) field and
enter the end address in hexadecimal format in the End Address (Hex) field. This
address range is used to fill memory with the specified value.

6. Click OK to fill the selected memory.

Saving to a File

Use this procedure to save memory specified by an address range to a binary, hexadeci-
mal, or text file.

Perform the following steps to save memory to a file:

1. Select the memory space in the Space drop-down list.

2. Right-click in the Memory window list box to display the context menu.

3. Select Save to File. The Save to File dialog box is displayed.

Figure 150. Save to File Dialog Box

4. In the File Name field, enter the path and name of the file you want to save the mem-
ory to or click the Browse button () to search for a file or directory.

5. To specify the address range of memory to save to the specified file, enter the start
address in hexadecimal format in the Start Address (Hex) field and enter the end
address in hexadecimal format in the End Address (Hex) field.

6. Select whether to save the file as text, hex (hexadecimal), or binary.

7. If the file format is text, select the number of bytes per line or enter a number in the
Other field.

8. Click OK to save the memory to the specified file.

Using the Debugger UM013034-1210

374

Zilog Developer Studio II – Z8 Encore!®

User Manual

Loading from a File

Use this procedure to load or to initialize memory from an existing binary, hexadecimal,
or text file.

Perform the following steps to load a file into the code’s memory:

1. Select the memory space in the Space drop-down list.

2. Right-click in the Memory window list box to display the context menu.

3. Select Load from File. The Load from File dialog box is displayed.

Figure 151. Load from File Dialog Box

4. In the File Name field, enter the path and name of the file to load or click the Browse
button () to search for the file.

5. In the Start Address (Hex) field, enter the start address.

6. Select whether to load the file as text, hex (hexadecimal), or binary.

7. Click OK to load the file's contents into the selected memory.

Performing a Cyclic Redundancy Check

The Show CRC command is not available if the active debug tool is the Simulator.

Use the following procedure to perform a cyclic redundancy check (CRC) for the whole
internal Flash memory:

1. Select the Rom space in the Space drop-down list.

2. Right-click in the Memory window list box to display the context menu.

3. Select Show CRC. The Show CRC dialog box is displayed with the result.

Note:

UM013034-1210 Debug Windows

Zilog Developer Studio II – Z8 Encore!®

User Manual

375

Figure 152. Show CRC Dialog Box

Watch Window
Click the Watch Window button to show or hide the Watch window.

Figure 153. Watch Window

The Watch window displays all of the variables and their values defined using the
WATCH command. If the variable is not in scope, the variable is not displayed. The values
in the Watch window change as the program executes. Updated values appear in red.

Using the Debugger UM013034-1210

376

Zilog Developer Studio II – Z8 Encore!®

User Manual

The 0x prefix indicates that the values are displayed in hexadecimal format. If you want
the values to be displayed in decimal format, select Hexadecimal Display from the con-
text menu.

If the Watch window displays unexpected values, deselect the Use Register Variables
checkbox on the Advanced page of the Project Settings dialog box. See Use Register
Variables on page 72.

The following sections describe how to use the Watch window:

• Adding New Variables on page 376

• Changing Values on page 376

• Removing an Expression on page 376

• Viewing a Hexadecimal Value on page 377

• Viewing a Decimal Value on page 377

• Viewing an ASCII Value on page 377

• Viewing a NULL-Terminated ASCII (ASCIZ) String on page 377

Adding New Variables

To add new variables in the Watch window, select the variable in the source file, drag, and
drop it into the window. Another way to add new variables is to use the following proce-
dure:

1. Click once on <new watch> in the Expression column to activate the column so that
you can enter the expression accurately.

2. Enter the expression and press the Enter key. The value is displayed in the Value col-
umn.

Changing Values

To change values in the Watch window, perform the following tasks:

1. In the window, highlight the value you want to change.

2. Enter the new value and press the Enter key. The changed value is displayed in red.

Removing an Expression

To remove an expression from the Watch window, perform the following tasks:

1. In the Expression column, click once on the expression you want to remove.

2. Press the Delete key to clear both columns.

Note:

UM013034-1210 Debug Windows

Zilog Developer Studio II – Z8 Encore!®

User Manual

377

Viewing a Hexadecimal Value

To view the hexadecimal values of an expression, type hex expression in the Expression
column and press the Enter key. For example, enter hex tens. The hexadecimal value
displays in the Value column.

To view the hexadecimal values for all expressions, select Hexadecimal Display from the
context menu.

You can also enter just the expression (for example, enter tens) to view the hexadecimal
value of any expression. Hexadecimal format is the default.

Viewing a Decimal Value

To view the decimal values of an expression, enter dec expression in the Expression col-
umn and press the Enter key. For example, enter dec huns. The decimal value displays
in the Value column.

To view the decimal values for all expressions, select Hexadecimal Display from the con-
text menu.

Viewing an ASCII Value

To view the ASCII values of an expression, enter ascii expression in the Expression col-
umn and press the Enter key. For example, enter ascii ones. The ASCII value displays
in the Value column.

Viewing a NULL-Terminated ASCII (ASCIZ) String

To view the NULL-terminated ASCII (ASCIZ) values of an expression, enter asciz
expression in the Expression column and press the Enter key. For example, enter asciz
ones. The ASCIZ value displays in the Value column.

Locals Window
Click the Locals Window button to show or hide the Locals window, which displays all
local variables that are currently in scope. Updated values appear in red.

The 0x prefix indicates that the values are displayed in hexadecimal format. If you want
the values to be displayed in decimal format, select Hexadecimal Display from the con-
text menu.

If the Locals window displays unexpected values, deselect the Use Register Variables
checkbox on the Advanced page of the Project Settings dialog box. See Use Register
Variables on page 72.

Note:

Note:

Using the Debugger UM013034-1210

378

Zilog Developer Studio II – Z8 Encore!®

User Manual

Figure 154. Locals Window

Call Stack Window
Click the Call Stack Window button to show or hide the Call Stack window. If you want
to copy text from the Call Stack window, select the text and then select Copy from the
context menu.

Figure 155. Call Stack Window

The Call Stack window allows you to view function frames that have been pushed onto
the stack. Information in the Call Stack window is updated every time a debug operation
is processed.

UM013034-1210 Debug Windows

Zilog Developer Studio II – Z8 Encore!®

User Manual

379

Symbols Window
Click the Symbols Window button to show or hide the Symbols window.

Figure 156. Symbols Window

Close the Symbols window before running a command script.

The Symbols window displays the address for each symbol in the program.

Note:

Using the Debugger UM013034-1210

380

Zilog Developer Studio II – Z8 Encore!®

User Manual

Disassembly Window
Click the Disassembly Window button to show or hide the Disassembly window.

Figure 157. Disassembly Window

The Disassembly window displays the assembly code associated with the code shown in
the code window. For each line in this window, the address location, the machine code, the
assembly instruction, and its operands are displayed.

After performing a reset, the Disassembly window is sometimes displayed for one of the
following reasons:

• The project was not built with debug information enabled. You can enable the debug
information with the Generate Debug Information checkbox on the General page of
the Project Settings dialog box.

• An Assembly Only project includes VECTOR RESET = xxx, which has no associated
debug information.

When you right-click in the Disassembly window, the context menu allows you to per-
form the following tasks:

• Copy text

• Go to the source code

• Insert, edit, enable, disable, or remove breakpoints

For more information about breakpoints, see Using Breakpoints on page 382.

• Reset the debugger

Note:

UM013034-1210 Debug Windows

Zilog Developer Studio II – Z8 Encore!®

User Manual

381

• Stop debugging

• Start or continue running the program (Go)

• Run to the cursor

• Pause the debugging (Break)

• Step into, over, or out of program instructions

• Set the next instruction at the current line

• Enable and disable source annotation and source line numbers

Simulated UART Output Window
Click the Simulated UART Output Window button to show or hide the Simulated UART
Output window, shown in Figure 158.

The Simulated UART Output window displays the simulated output of the selected
UART. Use the drop-down list to view the output for a particular UART.

Right-clicking in the Simulated UART Output window displays a context menu that pro-
vides access to the following features:

• Clear the buffered output for the selected UART.

• Copy selected text to the Windows clipboard.

The Simulated UART Output window is available only when the Simulator is the active
debug tool.

Figure 158. Simulated UART Output Window

Note:

Using the Debugger UM013034-1210

382

Zilog Developer Studio II – Z8 Encore!®

User Manual

Using Breakpoints

This section to describes how to work with breakpoints while you are debugging. The fol-
lowing topics are covered:

• Inserting Breakpoints on page 382

• Viewing Breakpoints on page 383

• Moving to a Breakpoint on page 384

• Enabling Breakpoints on page 384

• Disabling Breakpoints on page 384

• Removing Breakpoints on page 385

Inserting Breakpoints
There are three ways to place a breakpoint in your file:

• Click the line of code where you want to insert an active breakpoint. You can set an
active breakpoint in any line with a blue dot displayed to the left of the line (the blue
dots are displayed after clicking the Reset button to enter Debug mode). Click the
Insert/Remove Breakpoint button () on the Build or Debug toolbar.

• Click the line where you want to add an active breakpoint, right-click to display the
context menu, and select Insert Breakpoint. You can set an active breakpoint in any
line with a blue dot displayed to the left of the line (the blue dots are displayed after
clicking the Reset button to enter Debug mode).

• Double-click in the gutter to the left of the line where you want to add an active break-
point. You can set an active breakpoint in any line with a blue dot displayed to the left
of the line (the blue dots are displayed after clicking the Reset button to enter Debug
mode). Inactive breakpoints can be placed on any line but cannot be made active.

A red octagon shows that you have set a breakpoint at that location.

UM013034-1210 Using Breakpoints

Zilog Developer Studio II – Z8 Encore!®

User Manual

383

Figure 159. Setting a Breakpoint

Viewing Breakpoints
There are two ways to view breakpoints in your project:

• Select Manage Breakpoints from the Edit menu to display the Breakpoints dialog
box.

• Right-click in the Edit window to display the context menu; select Edit Breakpoints
to display the Breakpoints dialog box.

You can use the Breakpoints dialog box to view, go to, enable, disable, or remove break-
points in an active project when in or out of Debug mode.

Figure 160. Viewing Breakpoints

Using the Debugger UM013034-1210

384

Zilog Developer Studio II – Z8 Encore!®

User Manual

Moving to a Breakpoint
To quickly move the cursor to a breakpoint you have previously set in your project, per-
form the following tasks:

1. Select Manage Breakpoints from the Edit menu. The Breakpoints dialog box is dis-
played.

2. Highlight the breakpoint you want.

3. Click Go to Code.

Your cursor moves to the line where the breakpoint is set.

Enabling Breakpoints
To make all breakpoints in a project active, perform the following tasks:

1. Select Manage Breakpoints from the Edit menu. The Breakpoints dialog box is dis-
played.

2. Click Enable All.

Check marks are displayed to the left of all enabled breakpoints.

3. Click OK.

There are three ways to enable one breakpoint:

• Double-click the white octagon to remove the breakpoint and then double-click where
the octagon was to enable the breakpoint.

• Place your cursor in the line in the file where you want to activate a disabled break-
point and click the Enable/Disable Breakpoint button on the Build or Debug toolbar.

• Place your cursor in the line in the file where you want to activate a disabled break-
point, right-click to display the context menu, and select Enable Breakpoint.

The white octagon becomes a red octagon to indicate that the breakpoint is enabled.

Disabling Breakpoints
There are two ways to make all breakpoints in a project inactive:

• Select Manage Breakpoints from the Edit menu to display the Breakpoints dialog
box. Click Disable All. Disabled breakpoints are still listed in the Breakpoints dialog
box. Click OK.

• Click the Disable All Breakpoints button on the Debug toolbar.

There are two ways to disable one breakpoint:

• Place your cursor in the line in the file where you want to deactivate an active break-
point and click the Enable/Disable Breakpoint button on the Build or Debug toolbar.

UM013034-1210 Using Breakpoints

Zilog Developer Studio II – Z8 Encore!®

User Manual

385

• Place your cursor in the line in the file where you want to deactivate an active break-
point, right-click to display the context menu, and select Disable Breakpoint.

The red octagon becomes a white octagon to indicate that the breakpoint is disabled.

Removing Breakpoints
There are two ways to delete all breakpoints in a project:

• Select Manage Breakpoints from the Edit menu to display the Breakpoints dialog
box. Click Remove All and then click OK. All breakpoints are removed from the
Breakpoints dialog box and all project files.

• Click the Remove All Breakpoints button on the Build or Debug toolbar.

There are four ways to delete a single breakpoint:

• Double-click the red octagon to remove the breakpoint.

• Select Manage Breakpoints from the Edit menu to display the Breakpoints dialog
box. Click Remove and then click OK. The breakpoint is removed from the Break-
points dialog box and the file.

• Place your cursor in the line in the file where there is a breakpoint and click the Insert/
Remove Breakpoint button on the Build or Debug toolbar.

• Place your cursor in the line in the file where there is a breakpoint, right-click to dis-
play the context menu, and select Remove Breakpoint.

Using the Debugger UM013034-1210

386

Zilog Developer Studio II – Z8 Encore!®

User Manual

UM013034-1210 Appendix A. Zilog Standard Library Notes and Tips

Zilog Developer Studio II – Z8 Encore!®

User Manual

387

Appendix A. Zilog Standard Library Notes and
Tips

To learn more about the Zilog Standard Library (ZSL), review the answers to the follow-
ing questions.

• What is ZSL? on page 388

• Which on-chip peripherals are supported? on page 388

• Where can I find the header files related to Zilog Standard Libraries? on page 388

• What is the zsldevinit.asm file? on page 388

• What initializations are performed in the zsldevinit.asm file? on page 388

• What calls the open_periphdevice() function? on page 388

• When I use Zilog Standard Libraries in my application and build from the command
line, why do I see unresolved errors? on page 388

• I do not use the standard boot-up module, but I have manually included Zilog Stan-
dard Libraries. When I link my code with the library, why do I get an unresolved sym-
bols error? on page 389

• Where can I get the ZSL source files? on page 389

• I need to change the ZSL source code. How can I generate a new library with these
changes included? on page 389

• How can I use standard I/O calls such as printf() and getch()? on page 390

• What is the difference between the Interrupt mode and the Poll mode in the UARTs?
on page 390

• What are the default settings for the UART device? on page 390

• How can I change the default UART settings for my application? on page 391

• I am using the UART in the interrupt mode. Why do I seem to lose some of the data
when I try to print or try to receive a large amount of data? on page 391

• When I call open_UARTx() function by configuring it in INTERRUPT mode, the
control never comes back to my program and my program behaves indifferently. Why
is this? on page 391

• Where can I find sample applications that demonstrate the use of ZSL? on page 391

• I have used init_uart() and other functions provided in the RTL. Do I need to change
my source code because of ZSL? on page 391

Appendix A. Zilog Standard Library Notes and Tips UM013034-1210

388

Zilog Developer Studio II – Z8 Encore!®

User Manual

What is ZSL?

The Zilog Standard Library (ZSL) is a set of library files that provides an interface
between the user application and the on-chip peripherals of the ZDS II microprocessors/
controllers.

Which on-chip peripherals are supported?

Version 1.0 of ZSL supports UARTs and GPIO peripherals.

Where can I find the header files related to Zilog Standard Libraries?

The header files related to Zilog Standard Libraries can be found under the following file-
path:

ZILOGINSTALL\ZDSII_product_version\include\zilog

In the above filepath, note the following elements:

• ZILOGINSTALL is the ZDS II installation directory. For example, the default installa-
tion filepath is C:\Program Files\Zilog

• product is the specific Zilog product. For example, product can be Z8Encore!, ZNEO,
eZ80Acclaim!, Crimzon, or Z8GP

• version is the ZDS II version number. For example, version might be 4.11.0 or
5.0.0

What is the zsldevinit.asm file?

zsldevinit.asm is a device initialization file. It contains routines to initialize the
devices you have selected in the ZSL page of the Project Settings dialog box.

What initializations are performed in the zsldevinit.asm file?

The open_periphdevice() routine in zsldevinit.asm initializes the GPIO ports
and UART devices. The functions in the file also initialize other dependent parameters
such as the clock speeds and UART FIFO sizes.

What calls the open_periphdevice() function?

If the standard start-up files are used, the open_periphdevice() function is called by
the start-up routine just before calling the main function.

When I use Zilog Standard Libraries in my application and build from
the command line, why do I see unresolved errors?

Include zsldevinit.asm in your project.

The open_periphdevice() function has some external definitions (for example, clock
speed) that are used to calculate the baud rate for the UARTs.

UM013034-1210 Appendix A. Zilog Standard Library Notes and Tips

Zilog Developer Studio II – Z8 Encore!®

User Manual

389

I do not use the standard boot-up module, but I have manually
included Zilog Standard Libraries. When I link my code with the
library, why do I get an unresolved symbols error?

Include zsldevinit.asm in your project.

The open_periphdevice() function has some external definitions (for example, clock
speed) that are used to calculate the baud rate for the UARTs.

Where can I get the ZSL source files?

The source files for ZSL can be found under the following filepath.

ZILOGINSTALL\ZDSII_product_version\src

In the above filepath, note the following elements:

• ZILOGINSTALL is the ZDS II installation directory. For example, the default installa-
tion directory is C:\Program Files\Zilog

• product is the specific Zilog product. For example, product can be Z8Encore!, ZNEO,
eZ80Acclaim!, Crimzon, or Z8GP

• version is the ZDS II version number. For example, version might be 4.11.0 or
5.0.0

I need to change the ZSL source code. How can I generate a new
library with these changes included?

The installation contains the batch file buildallzsl.bat under the following filepath:

ZILOGINSTALL\ZDSII_product_version\src

In the above filepath, note the following elements:

• ZILOGINSTALL is the ZDS II installation directory. For example, the default installa-
tion filepath is C:\Program Files\Zilog

• product is the specific Zilog product. For example, product can be Z8Encore!, ZNEO,
eZ80Acclaim!, Crimzon, or Z8GP

• version is the ZDS II version number. For example, version might be 4.11.0 or
5.0.0

Generate a new set of libraries by building the project using ZDS II and copy the library
files generated under the project directory to the following filepath:

ZILOGINSTALL\ZDSII_product_version\lib\zilog

Alternatively, you can run the batch file buildallzsl.bat to generate the libraries
directly into the following directory:

ZILOGINSTALL\ZDSII_product_version\lib\zilog

Appendix A. Zilog Standard Library Notes and Tips UM013034-1210

390

Zilog Developer Studio II – Z8 Encore!®

User Manual

Refer to the Zilog Standard Library API Reference Manual (RM0038) for more details.

How can I use standard I/O calls such as printf() and getch()?

The standard I/O calls—such as printf(), getch(), and putch()—are routed to
UART0 by default. You can route them to UART1 by setting the UART1 as the default
device.

To do so, open the uartcontrol.h file and change the macro value for
DEFAULT_UART from UART0 to UART1 and rebuild the library. The uartcontrol.h
file is in the following filepath:

ZILOGINSTALL\ZDSII_product_version\include\zilog

In the above filepath, note the following elements:

• ZILOGINSTALL is the ZDS II installation directory. For example, the default installa-
tion filepath is C:\Program Files\Zilog

• product is the specific Zilog product. For example, product can be Z8Encore!, ZNEO,
eZ80Acclaim!, Crimzon, or Z8GP

• version is the ZDS II version number. For example, version might be 4.11.0 or
4.11.0

You can run the buildallzsl.bat batch file to generate the libraries directly into the
following directory:

ZILOGINSTALL\ZDSII_product_version\lib\zilog

The buildallzsl.bat batch file is in the following directory:

ZILOGINSTALL\ZDSII_product_version\src

Refer to the Zilog Standard Library API Reference Manual (RM0038) for more details.

What is the difference between the Interrupt mode and the Poll mode
in the UARTs?

In INTERRUPT mode, the API uses UART interrupts to transmit and receive characters to
and from the UARTs, so the operation is asynchronous. In POLL mode, the API polls the
UART device for the transmission and reception of data, so the operation is synchronous
(blocking) in nature.

What are the default settings for the UART device?

UART devices are initialized with 38400 baud, 8 data bits, 1 stop bit and no parity. Also,
the UART by default is configured to work in poll mode.

http://www.zilog.com/docs/z8encore/devtools/rm0038.pdf
http://www.zilog.com/docs/z8encore/devtools/rm0038.pdf

UM013034-1210 Appendix A. Zilog Standard Library Notes and Tips

Zilog Developer Studio II – Z8 Encore!®

User Manual

391

How can I change the default UART settings for my application?

UARTs can be initialized to the required settings by passing the appropriate parameters in
the control_UARTx() API. Refer to the Zilog Standard Library API Reference Manual
(RM0038) for more details.

I am using the UART in the interrupt mode. Why do I seem to lose
some of the data when I try to print or try to receive a large amount of
data?

One of the reasons could be that the software FIFO buffer size is small. Try increasing the
size to a bigger value. The default size of the software FIFO is 64. The software FIFO size
is defined in the zsldevinit.asm file as the BUFF_SIZE macro.

When I call open_UARTx() function by configuring it in INTERRUPT
mode, the control never comes back to my program and my program
behaves indifferently. Why is this?

The open_UARTx() function calls the control_UARTx() function, which enables the
UART interrupt. As a result of this, the UARTx transmit empty interrupt is generated
immediately. If the ISR for UART is not installed, the control on the program might be
lost. So install the ISR before calling open_UARTx() in the INTERRUPT mode. This is
not a problem when the standard boot module is used.

Where can I find sample applications that demonstrate the use of
ZSL?

The ZDS II installation includes two different directories called Applications and Samples.
In both of these directories, all projects using devices supported by ZSL are configured to
use it. The main difference between the directories is that the applications demonstrate the
use of direct ZSL APIs, and the samples demonstrate the indirect use of ZSL using RTL
calls.

I have used init_uart() and other functions provided in the RTL. Do I
need to change my source code because of ZSL?

No. The sio.c file of RTL has been modified to call ZSL APIs, so you can continue to
use the run-time library (RTL) without changing your source code. But Zilog advises you
to change your source code to make direct calls to ZSL. This is recommended for the fol-
lowing reasons:

• The calls in RTL support only one UART (UART0 or UART1) at any given time in
the library. You cannot switch between the UARTs dynamically.

• There is a small code size increase in the RTL due to the additional overhead of call-
ing ZSL APIs from sio.c.

• Future releases of RTL might or might not continue to support this method of indi-
rectly accessing the UARTs via ZSL.

http://www.zilog.com/docs/z8encore/devtools/rm0038.pdf
http://www.zilog.com/docs/z8encore/devtools/rm0038.pdf

Appendix A. Zilog Standard Library Notes and Tips UM013034-1210

392

Zilog Developer Studio II – Z8 Encore!®

User Manual

UM013034-1210 Appendix B. C Standard Library

Zilog Developer Studio II – Z8 Encore!®

User Manual

393

Appendix B. C Standard Library

The ANSI C-Compiler provides a collection of run-time libraries for use with your C pro-
grams. The largest section of these libraries consists of an implementation of much of the
C Standard Library.

The Z8 Encore! C-Compiler is a conforming freestanding 1989 ANSI C implementation
with some exceptions. In accordance with the definition of a freestanding implementation,
the compiler supports the required standard header files <float.h>, <limits.h>,
<stdarg.h>, and <stddef.h>. It also supports additional standard header files and
Zilog-specific nonstandard header files. The latter are described in Run-Time Library on
page 212.

The standard header files and functions are, with minor exceptions, fully compliant with
the ANSI C Standard. The deviations from the ANSI Standard in these files are summa-
rized in Library Files Not Required for Freestanding Implementation on page 244. The
standard header files provided with the compiler are listed in the following table and
described in detail in Standard Header Files on page 394. The following sections describe
the use and format of the standard portions of the run-time libraries:

• Standard Header Files on page 394

• Standard Functions on page 407

Table 11. Standard Headers

Header Description

<assert.h> Diagnostics

<ctype.h> Character-handling functions

<errno.h> Error numbers

<float.h> Floating-point limits

<limits.h> Integer limits

<math.h> Math functions

<setjmp.h> Nonlocal jump functions

<stdarg.h> Variable arguments functions

<stddef.h> Standard defines

<stdio.h> Standard input/output functions

<stdlib.h> General utilities functions

<string.h> String-handling functions

Appendix B. C Standard Library UM013034-1210

394

Zilog Developer Studio II – Z8 Encore!®

User Manual

The standard include header files are located in the following directory:

<ZDS Installation Directory>\include\std

where <ZDS Installation Directory> is the directory in which Zilog Developer Studio
was installed. By default, this would be C:\Program
Files\Zilog\ZDSII_Z8Encore!_<version>, where <version> might be
4.11.0 or 5.0.0.

Standard Header Files

The following sections describe the standard header files:

• Diagnostics <assert.h> on page 394

• Character Handling <ctype.h> on page 395

• Errors <errno.h> on page 396

• Floating Point <float.h> on page 396

• Limits <limits.h> on page 398

• Mathematics <math.h> on page 399

• Nonlocal Jumps <setjmp.h> on page 401

• Variable Arguments <stdarg.h> on page 401

• Standard Definitions <stddef.h> on page 402

• Input/Output <stdio.h> on page 402

• General Utilities <stdlib.h> on page 403

• String Handling <string.h> on page 405

Diagnostics <assert.h>
The <assert.h> header declares one macro and refers to another macro.

Macro

void assert(int expression);

The behavior of the assert() macro depends on whether the NDEBUG macro has been
defined or not. On Debug builds (those for which NDEBUG is not defined), the assert
macro puts diagnostics into programs. When it is executed, if expression is false (that
is, evaluates to zero), the assert macro writes information about the particular call that
failed (including the text of the argument, the name of the source file, and the source line

Note:

UM013034-1210 Standard Header Files

Zilog Developer Studio II – Z8 Encore!®

User Manual

395

number—the latter are respectively the values of the preprocessing macros __FILE__ and
__LINE__) on the serial port. It then calls abort(), which calls exit(). If expression
is true (that is, evaluates to nonzero), the assert macro returns no value.

On Release builds (strictly speaking, when NDEBUG is defined on the compile line), the
assert macro has no effect.

Example

#include <assert.h>
char str[] = "COMPASS";
int main(void)
{

assert(str[0] == 'C'); // OK, nothing happens
assert(str[0] == 'B'); // Oops, something wrong here
return 0;

}

Character Handling <ctype.h>
The <ctype.h> header declares several macros and functions useful for testing and map-
ping characters. In all cases, the argument is an int, the value of which is represented as
an unsigned char or equals the value of the EOF macro. If the argument has any other
value, the behavior is undefined.

Macros

Functions

The functions in this section return nonzero (true) if, and only if, the value of the argument
c conforms to that in the description of the function. The term printing character refers to
a member of a set of characters, each of which occupies one printing position on a display
device. The term control character refers to a member of a set of characters that are not
printing characters.

Character Testing

TRUE Expands to a constant 1.

FALSE Expands to a constant 0.

int isalnum(int c); Tests for alphanumeric character.

int isalpha(int c); Tests for alphabetic character.

int iscntrl(int c); Tests for control character.

int isdigit(int c); Tests for decimal digit.

int isgraph(int c); Tests for printable character except space.

int islower(int c); Tests for lowercase character.

Appendix B. C Standard Library UM013034-1210

396

Zilog Developer Studio II – Z8 Encore!®

User Manual

Character Case Mapping

Errors <errno.h>
The <errno.h> header defines macros relating to the reporting of error conditions.

Macros

Additional macro definitions, beginning with E and an uppercase letter, can also be speci-
fied by the implementation.

Floating Point <float.h>
The <float.h> header defines macros that expand to various limits and parameters.

Macros

int isprint(int c); Tests for printable character.

int ispunct(int c); Tests for punctuation character.

int isspace(int c); Tests for white-space character.

int isupper(int c); Tests for uppercase character.

int isxdigit(int c); Tests for hexadecimal digit.

int tolower(int c); Tests character and converts to lowercase if upper-
case.

int toupper(int c); Tests character and converts to uppercase if lower-
case.

EDOM Expands to a distinct nonzero integral constant expression.

ERANGE Expands to a distinct nonzero integral constant expression.

errno A modifiable value that has type int. Several libraries set errno to a positive
value to indicate an error. errno is initialized to zero at program startup, but it
is never set to zero by any library function. The value of errno can be set to
nonzero by a library function even if there is no error, depending on the
behavior specified for the library function in the ANSI Standard.

DBL_DIG Number of decimal digits of precision.

DBL_MANT_DIG Number of base-FLT_RADIX digits in the floating-point mantissa.

DBL_MAX Maximum represented floating-point numbers.

DBL_MAX_EXP Maximum integer such that FLT_RADIX raised to that power
approximates a floating-point number in the range of represented
numbers.

UM013034-1210 Standard Header Files

Zilog Developer Studio II – Z8 Encore!®

User Manual

397

DBL_MAX_10_EXP Maximum integer such that 10 raised to that power approximates a
floating-point number in the range of represented value
((int)log10(DBL_MAX), and so on).

DBL_MIN Minimum represented positive floating-point numbers.

DBL_MIN_EXP Minimum negative integer such that FLT_RADIX raised to that
power approximates a positive floating-point number in the range
of represented numbers.

DBL_MIN_10_EXP Minimum negative integer such that 10 raised to that power
approximates a positive floating-point number in the range of repre-
sented values ((int)log10(DBL_MIN), and so on).

FLT_DIG Number of decimal digits of precision.

FLT_MANT_DIG Number of base-FLT_RADIX digits in the floating-point mantissa.

FLT_MAX Maximum represented floating-point numbers.

FLT_MAX_EXP Maximum integer such that FLT_RADIX raised to that power
approximates a floating-point number in the range of represented
numbers.

FLT_MAX_10_EXP Maximum integer such that 10 raised to that power approximates a
floating-point number in the range of represented value
((int)log10(FLT_MAX), and so on).

FLT_MIN Minimum represented positive floating-point numbers.

FLT_MIN_EXP Minimum negative integer such that FLT_RADIX raised to that
power approximates a positive floating-point number in the range
of represented numbers

FLT_MIN_10_EXP Minimum negative integer such that 10 raised to that power
approximates a positive floating-point number in the range of repre-
sented values ((int)log10(FLT_MIN), and so on).

FLT_RADIX Radix of exponent representation.

FLT_ROUND Rounding mode for floating-point addition.
-1 indeterminable
0 toward zero
1 to nearest
2 toward positive infinity
3 toward negative infinity

LDBL_DIG Number of decimal digits of precision.

LDBL_MANT_DIG Number of base-FLT_RADIX digits in the floating-point mantissa.

LDBL_MAX Maximum represented floating-point numbers.

LDBL_MAX_EXP Maximum integer such that FLT_RADIX raised to that power
approximates a floating-point number in the range of represented
numbers.

Appendix B. C Standard Library UM013034-1210

398

Zilog Developer Studio II – Z8 Encore!®

User Manual

The limits for the double and long double data types are the same as that for the
float data type for the Z8 Encore! C-Compiler.

Limits <limits.h>
The <limits.h> header defines macros that expand to various limits and parameters.

Macros

LDBL_MAX_10_EX
P

Maximum integer such that 10 raised to that power approximates a
floating-point number in the range of represented value
((int)log10(LDBL_MAX), and so on).

LDBL_MIN Minimum represented positive floating-point numbers.

LDBL_MIN_EXP Minimum negative integer such that FLT_RADIX raised to that
power approximates a positive floating-point number in the range
of represented numbers.

LDBL_MIN_10_EXP Minimum negative integer such that 10 raised to that power
approximates a positive floating-point number in the range of repre-
sented values ((int)log10(LDBL_MIN), and so on).

CHAR_BIT Maximum number of bits for smallest object that is not a bit-field
(byte).

CHAR_MAX Maximum value for an object of type char.

CHAR_MIN Minimum value for an object of type char.

INT_MAX Maximum value for an object of type int.

INT_MIN Minimum value for an object of type int.

LONG_MAX Maximum value for an object of type long int.

LONG_MIN Minimum value for an object of type long int.

SCHAR_MAX Maximum value for an object of type signed char.

SCHAR_MIN Minimum value for an object of type signed char.

SHRT_MAX Maximum value for an object of type short int.

SHRT_MIN Minimum value for an object of type short int.

UCHAR_MAX Maximum value for an object of type unsigned char.

UINT_MAX Maximum value for an object of type unsigned int.

ULONG_MAX Maximum value for an object of type unsigned long int.

USHRT_MAX Maximum value for an object of type unsigned short int.

MB_LEN_MAX Maximum number of bytes in a multibyte character.

Note:

UM013034-1210 Standard Header Files

Zilog Developer Studio II – Z8 Encore!®

User Manual

399

If the value of an object of type char sign-extends when used in an expression, the value
of CHAR_MIN is the same as that of SCHAR_MIN, and the value of CHAR_MAX is the
same as that of SCHAR_MAX. If the value of an object of type char does not sign-extend
when used in an expression, the value of CHAR_MIN is 0, and the value of CHAR_MAX
is the same as that of UCHAR_MAX.

Mathematics <math.h>
The <math.h> header declares several mathematical functions and defines one macro.
The functions take double-precision arguments and return double-precision values. Integer
arithmetic functions and conversion functions are discussed later.

The double data type is implemented as float in the Z8 Encore! C-Compiler.

Macro

Treatment of Error Conditions

The behavior of each of these functions is defined for all values of its arguments. Each
function must return as if it were a single operation, without generating any externally vis-
ible exceptions.

For all functions, a domain error occurs if an input argument to the function is outside the
domain over which the function is defined. On a domain error, the function returns a spec-
ified value; the integer expression errno acquires the value of the EDOM macro.

Similarly, a range error occurs if the result of the function cannot be represented as a dou-
ble value. If the result overflows (the magnitude of the result is so large that it cannot be
represented in an object of the specified type), the function returns the value of the
HUGE_VAL macro, with the same sign as the correct value of the function; the integer
expression errno acquires the value of the ERANGE macro. If the result underflows (the
magnitude of the result is so small that it cannot be represented in an object of the speci-
fied type), the function returns zero.

Functions

The following sections list and briefly describe the mathematics functions:

• Trigonometric on page 400

• Hyperbolic on page 400

• Exponential and Logarithmic on page 400

HUGE_VAL Expands to a positive double expression, not necessarily represented as
a float.

Note:

Appendix B. C Standard Library UM013034-1210

400

Zilog Developer Studio II – Z8 Encore!®

User Manual

• Power on page 401

• Nearest Integer on page 401

Trigonometric

Hyperbolic

Exponential and Logarithmic

double acos(double x); Calculates arc cosine of x.

double asin(double x) Calculates arc sine of x.

double atan(double x); Calculates arc tangent of x.

double atan2(double y, double x); Calculates arc tangent of y/x.

double cos(double x); Calculates cosine of x.

double sin(double x); Calculates sine of x.

double tan(double x); Calculates tangent of x.

double cosh(double x); Calculates hyperbolic cosine of x.

double sinh(double x); Calculates hyperbolic sine of x.

double tanh(double x); Calculates hyperbolic tangent of x.

double exp(double x); Calculates exponential function of x.

double frexp(double value, int
*exp);

Shows x as product of mantissa (the value returned
by frexp) and 2 to the n.

double ldexp(double x, int exp); Calculates x times 2 to the exp.

double log(double x); Calculates natural logarithm of x.

double log10(double x); Calculates base 10 logarithm of x.

double modf(double value,
double *iptr);

Breaks down x into integer (the value returned by
modf) and fractional (n) parts.

UM013034-1210 Standard Header Files

Zilog Developer Studio II – Z8 Encore!®

User Manual

401

Power

Nearest Integer

Nonlocal Jumps <setjmp.h>
The <setjmp.h> header declares two functions and one type for bypassing the normal
function call and return discipline.

Type

Functions

Variable Arguments <stdarg.h>
The <stdarg.h> header declares a type and a function and defines two macros for
advancing through a list of arguments whose number and types are not known to the called
function when it is translated.

A function can be called with a variable number of arguments of varying types. The Func-
tion Definitions parameter list contains one or more parameters. The rightmost parameter
plays a special role in the access mechanism and is designated parmN in this description.

Type

double pow(double x, double y); Calculates x to the y.

double sqrt(double x); Finds square root of x.

double ceil(double x); Finds integer ceiling of x.

double fabs(double x); Finds absolute value of x.

double floor(double x); Finds largest integer less than or equal to x.

double fmod(double x,double y); Finds floating-point remainder of x/y.

jmp_buf An array type suitable for holding the information required to restore a calling
environment.

int setjmp(jmp_buf env); Saves a stack environment.

void longjmp(jmp_buf env, int val); Restores a saved stack environ-
ment.

va_list An array type suitable for holding information needed by the macro va_arg
and the va_end function. The called function declares a variable (referred to
as ap in this section) having type va_list. The variable ap can be passed as
an argument to another function.

Appendix B. C Standard Library UM013034-1210

402

Zilog Developer Studio II – Z8 Encore!®

User Manual

Variable Argument List Access Macros and Function

The va_start and va_arg macros described in this section are implemented as macros, not
as real functions. If #undef is used to remove a macro definition and obtain access to a
real function, the behavior is undefined.

Functions

Standard Definitions <stddef.h>
The following types and macros are defined in several headers referred to in the descrip-
tions of the functions declared in that header, as well as the common <stddef.h> stan-
dard header.

Macros

Types

Input/Output <stdio.h>
The <stdio.h> header declares input and output functions.

Macro

void va_start(va_list ap, parmN); Sets ap to the beginning of argument list.

type va_arg (va_list ap, type); Returns the next argument from list.

void va_end(va_list ap); Should mark the end of usage of ap (but has no
effect in Zilog implementation).

NULL Expands to a null pointer constant.

offsetof (type, identi-
fier)

Expands to an integral constant expression that has type size_t
and provides the offset in bytes, from the beginning of a structure
designated by type to the member designated by identifier.

ptrdiff_t Signed integral type of the result of subtracting two pointers.

size_t Unsigned integral type of the result of the sizeof operator.

wchar_t Integral type whose range of values can represent distinct codes for all mem-
bers of the largest extended character set specified among the supported
locales.

EOF Expands to a negative integral constant. Returned by functions to indicate
end of file.

UM013034-1210 Standard Header Files

Zilog Developer Studio II – Z8 Encore!®

User Manual

403

Functions

Formatted Input/Output

Character Input/Output

General Utilities <stdlib.h>
The <stdlib.h> header declares several types, functions of general utility, and macros.

Types

int printf(char *format, ...); Writes formatted data to stdout.

int scanf(char *format, ...); Reads formatted data from stdin.

int sprintf(char *s, char *format, ...); Writes formatted data to string.

int sscanf(char *s, char *format, ...); Reads formatted data from string.

int vprintf(char *format, va_list arg); Writes formatted data to stdout.

int vsprintf(char *s, char *format, va_list arg); Writes formatted data to a string.

int getchar(void); Reads a character from stdin.

char *gets(char *s); Reads a line from stdin.

int putchar(int c); Writes a character to stdout.

int puts(char *s); Writes a line to stdout.

div_t Structure type that is the type of the value returned by the div function.

ldiv_t Structure type that is the type of the value returned by the ldiv function.

size_t Unsigned integral type of the result of the sizeof operator.

wchar_t Integral type whose range of values can represent distinct codes for all
members of the largest extended character set specified among the sup-
ported locales.

Appendix B. C Standard Library UM013034-1210

404

Zilog Developer Studio II – Z8 Encore!®

User Manual

Macros

Functions

The general utilities are listed and briefly described in the following sections:

• String Conversion on page 404

• Pseudorandom Sequence Generation on page 405

• Memory Management on page 405

• Searching and Sorting Utilities on page 405

• Integer Arithmetic on page 405

• Miscellaneous on page 405

String Conversion

The atof, atoi, and atol functions do not affect the value of the errno macro on an
error. If the result cannot be represented, the behavior is undefined.

EDOM Expands to distinct nonzero integral constant expressions.

ERANGE Expands to distinct nonzero integral constant expressions.

EXIT_SUCCESS Expands to integral expression that indicates successful termination
status.

EXIT_FAILURE Expands to integral expression that indicates unsuccessful termination
status.

HUGE_VAL Expands to a positive double expression, not necessarily represented
as a float.

NULL Expands to a null pointer constant.

RAND_MAX Expands to an integral constant expression, the value of which is the
maximum value returned by the rand function.

double atof(char *nptr); Converts string to double.

int atoi(char *nptr); Converts string to int.

long int atol(char *nptr); Converts string to long.

double strtod(char *nptr, char **endptr); Converts string pointed to by nptr to a
double.

long int strtol(char *nptr, char **endptr, int base); Converts string to a long decimal inte-
ger that is equal to a number with the
specified radix.

UM013034-1210 Standard Header Files

Zilog Developer Studio II – Z8 Encore!®

User Manual

405

Pseudorandom Sequence Generation

Memory Management

The order and contiguity of storage allocated by successive calls to the calloc, malloc,
and realloc functions are unspecified. The pointer returned if the allocation succeeds is
suitably aligned so that it can be assigned to a pointer to any type of object and then used
to access such an object in the space allocated (until the space is explicitly freed or reallo-
cated).

Searching and Sorting Utilities

Integer Arithmetic

Miscellaneous

String Handling <string.h>
The <string.h> header declares several functions useful for manipulating character
arrays and other objects treated as character arrays. Various methods are used for deter-
mining the lengths of arrays, but in all cases a char* or void* argument points to the initial

int rand(void) Gets a pseudorandom number.

void srand(unsigned int seed); Initializes pseudorandom series.

void *calloc(size_t nmemb, size_t
size);

Allocates storage for array.

void free(void *ptr); Frees a block allocated with calloc, malloc, or real-
loc.

void *malloc(size_t size); Allocates a block.

void *realloc(void *ptr, size_t size); Reallocates a block.

void *bsearch(void *key, void *base, size_t nmemb, size_t size,
int (*compar)(void *, void *));

Performs binary
search.

void qsort(void *base, size_t nmemb, size_t size, int (*com-
par)(void *, void *));

Performs a quick sort.

int abs(int j); Finds absolute value of integer value.

div_t div(int numer, int denom); Computes integer quotient and remainder.

long int labs(long int j); Finds absolute value of long integer value.

ldiv_t ldiv(long int numer, long int denom); Computes long quotient and remainder.

void abort(void) Abnormal program termination.

Appendix B. C Standard Library UM013034-1210

406

Zilog Developer Studio II – Z8 Encore!®

User Manual

(lowest addressed) character of the array. If an array is written beyond the end of an object,
the behavior is undefined.

Type

Macro

Functions

The string-handling functions are listed and briefly described in the following sections:

• Copying on page 406

• Concatenation on page 406

• Comparison on page 406

• Search on page 407

• Miscellaneous on page 407

Copying

Concatenation

Comparison

The sign of the value returned by the comparison functions is determined by the sign of
the difference between the values of the first pair of characters that differ in the objects
being compared.

size_t Unsigned integral type of the result of the sizeof
operator.

NULL Expands to a null pointer constant.

void *memcpy(void *s1, void *s2, size_t n); Copies a specified number of characters
from one buffer to another.

void *memmove(void *s1, void *s2, size_t n); Moves a specified number of characters
from one buffer to another.

char *strcpy(char *s1, char *s2); Copies one string to another.

char *strncpy(char *s1, char *s2, size_t n); Copies n characters of one string to
another.

char *strcat(char *s1, char *s2); Appends a string.

char *strncat(char *s1, char *s2, size_t n); Appends n characters of string.

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

407

Search

Miscellaneous

Standard Functions

The following functions are standard functions:

int memcmp(void *s1, void *s2, size_t n); Compares the first n characters.

int strcmp(char *s1, char *s2); Compares two strings.

int strncmp(char *s1, char *s2, size_t n); Compares n characters of two
strings.

void *memchr(void *s, int c, size_t n); Returns a pointer to the first occurrence,
within a specified number of characters, of a
given character in the buffer.

char *strchr(char *s, int c); Finds first occurrence of a given character in
string.

size_t strcspn(char *s1, char *s2); Finds first occurrence of a character from a
given character in string.

char *strpbrk(char *s1, char *s2); Finds first occurrence of a character from
one string to another.

char *strrchr(char *s, int c); Finds last occurrence of a given character in
string.

size_t strspn(char *s1, char *s2); Finds first substring from a given character
set in string.

char *strstr(char *s1, char *s2); Finds first occurrence of a given string in
another string.

char *strtok(char *s1, char *s2); Finds next token in string.

void *memset(void *s, int c, size_t
n);

Uses a given character to initialize a specified num-
ber of bytes in the buffer.

size_t strlen(char *s); Finds length of string.

abort abs acos asin atan

atan2 atof atoi atol bsearch

calloc ceil cos cosh div

exp fabs floor fmod free

frexp getchar gets isalnum isalpha

Appendix B. C Standard Library UM013034-1210

408

Zilog Developer Studio II – Z8 Encore!®

User Manual

abort
Causes an abnormal termination of the program.

Synopsis

#include <stdlib.h>
void abort(void);

The abort function is usually called by the assert macro. If you use asserts in your
application, you might want to permanently place a breakpoint in abort() to simplify
debugging when asserts fail.

abs
Computes the absolute value of an integer j. If the result cannot be represented, the behav-
ior is undefined.

Synopsis

#include <stdlib.h>
int abs(int j);

iscntrl isdigit isgraph islower isprint

ispunct isspace isupper isxdigit labs

ldexp ldiv log log10 longjmp

malloc memchr memcmp memcpy memmove

memset modf pow printf putchar

puts qsort rand realloc scanf

setjmp sin sinh sprintf sqrt

srand sscanf strcat strchr strcmp

strcpy strcspn strlen strncat strncmp

strncpy strpbrk strrchr strspn strstr

strtod strtok strtol tan tanh

tolower toupper va_arg va_end va_start

vprintf vsprintf

Note:

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

409

Returns

The absolute value.

Example

int I=-5632;
int j;
j=abs(I);

acos
Computes the principal value of the arc cosine of x. A domain error occurs for arguments
not in the range [-1,+1].

Synopsis

#include <math.h>
double acos(double x);

Returns

The arc cosine in the range [0, pi].

Example

double y=0.5635;
double x;
x=acos(y)

asin
Computes the principal value of the arc sine of x. A domain error occurs for arguments not
in the range [-1,+1].

Synopsis

#include <math.h>
double asin(double x);

Returns

The arc sine in the range [-pi/2,+pi/2].

Example

double y=.1234;
double x;
x = asin(y);

Appendix B. C Standard Library UM013034-1210

410

Zilog Developer Studio II – Z8 Encore!®

User Manual

atan
Computes the principal value of the arc tangent of x.

Synopsis

#include <math.h>
double atan(double x);

Returns

The arc tangent in the range (-pi/2, +pi/2).

Example

double y=.1234;
double x;
x=atan(y);

atan2
Computes the principal value of the arc tangent of y/x, using the signs of both arguments
to determine the quadrant of the return value. A domain error occurs if both arguments are
zero.

Synopsis

#include <math.h>
double atan2(double y, double x);

Returns

The arc tangent of y/x, in the range [-pi, +pi].

Example

double y=.1234;
double x=.4321;
double z;
z=atan2(y,x);

atof
Converts the string pointed to by nptr to double representation. Except for the behavior on
error, atof is equivalent to strtod (nptr, (char **)NULL).

Synopsis

#include <stdlib.h>
double atof(char *nptr);

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

411

Returns

The converted value.

Example

char str []="1.234";
double x;
x= atof(str);

atoi
Converts the string pointed to by nptr to int representation. Except for the behavior on
error, it is equivalent to (int)strtol(nptr, (char **)NULL, 10).

Synopsis

#include <stdlib.h>
int atoi(char *nptr);

Returns

The converted value.

Example

char str []="50";
int x;
x=atoi(str);

atol
Converts the string pointed to by nptr to long int representation. Except for the behav-
ior on error, it is equivalent to strtol(nptr, (char **)NULL, 10).

Synopsis

#include <stdlib.h>
long int atol(char *nptr);

Returns

The converted value.

Example

char str[]="1234567";
long int x;
x=atol(str);

Appendix B. C Standard Library UM013034-1210

412

Zilog Developer Studio II – Z8 Encore!®

User Manual

bsearch
Searches an array of nmemb objects, the initial member of which is pointed to by base, for
a member that matches the object pointed to by key. The size of each object is specified by
size.

The array has been previously sorted in ascending order according to a comparison func-
tion pointed to by compar, which is called with two arguments that point to the objects
being compared. The compar function returns an integer less than, equal to, or greater
than zero if the first argument is considered to be respectively less than, equal to, or
greater than the second.

Synopsis

#include <stdlib.h>
void *bsearch(void *key, void *base,

size_t nmemb, size_t size,
int (*compar)(void *, void *));

Returns

A pointer to the matching member of the array or a null pointer, if no match is found.

Example

#include <stdlib.h>
int list[]={2,5,8,9};
int k=8;

int compare (void * x, void * y);
int main(void)
{

int *result;
result = bsearch(&k, list, 4, sizeof(int), compare);

}

int compare (void * x, void * y)
{

int a = *(int *) x;
int b = *(int *) y;
if (a < b) return -1;
if (a == b)return 0;
return 1;

}

The compare function prototype is, as shown in the preceding example:

int compare (void * x, void * y);

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

413

calloc
Allocates space for an array of nmemb objects, each of whose size is size. The space is
initialized to all bits zero.

Synopsis

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Returns

A pointer to the start (lowest byte address) of the allocated space. If the space cannot be
allocated, or if nmemb or size is zero, the calloc function returns a null pointer.

Example

char *buf;
buf = (char*)calloc(40, sizeof(char));
if (buf != NULL)
 /*success*/
else
 /*fail*/

ceil
Computes the smallest integer not less than x.

Synopsis

#include <math.h>
double ceil(double x);

Returns

The smallest integer not less than x, expressed as a double.

Example

double y=1.45;
double x;
x=ceil(y);

cos
Computes the cosine of x (measured in radians). A large magnitude argument can yield a
result with little or no significance.

Appendix B. C Standard Library UM013034-1210

414

Zilog Developer Studio II – Z8 Encore!®

User Manual

Synopsis

#include <math.h>
double cos(double x);

Returns

The cosine value.

Example

double y=.1234;
double x;
x=cos(y)

cosh
Computes the hyperbolic cosine of x. A range error occurs if the magnitude of x is too
large.

Synopsis

#include <math.h>
double cosh(double x);

Returns

The hyperbolic cosine value.

Example

double y=.1234;
double x
x=cosh(y);

div
Computes the quotient and remainder of the division of the numerator numer by the
denominator denom. If the division is inexact, the sign of the quotient is that of the mathe-
matical quotient, and the magnitude of the quotient is the largest integer less than the mag-
nitude of the mathematical quotient.

Synopsis

#include <stdlib.h>
div_t div(int numer, int denom);

Returns

A structure of type div_t, comprising both the quotient and the remainder. The structure
contains the following members, in either order:

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

415

int quot; /* quotient */
int rem; /* remainder */

Example

int x=25;
int y=3;
div_t t;
int q;
int r;
t=div (x,y);
q=t.quot;
r=t.rem;

exp
Computes the exponential function of x. A range error occurs if the magnitude of x is too
large.

Synopsis

#include <math.h>
double exp(double x);

Returns

The exponential value.

Example

double y=.1234;
double x;
x=exp(y)

fabs
Computes the absolute value of a floating-point number x.

Synopsis

#include <math.h>
double fabs(double x);

Returns

The absolute value of x.

Appendix B. C Standard Library UM013034-1210

416

Zilog Developer Studio II – Z8 Encore!®

User Manual

Example

double y=6.23;
double x;
x=fabs(y);

floor
Computes the largest integer not greater than x.

Synopsis

#include <math.h>
double floor(double x);

Returns

The largest integer not greater than x, expressed as a double.

Example

double y=6.23;
double x;
x=floor(y);

fmod
Computes the floating-point remainder of x/y. If the quotient of x/y cannot be represented,
the behavior is undefined.

Synopsis

#include <math.h>
double fmod(double x, double y);

Returns

The value of x if y is zero. Otherwise, it returns the value f, which has the same sign as x,
such that x - i * y + f for some integer i, where the magnitude of f is less than the magni-
tude of y.

Example

double y=7.23;
double x=2.31;
double z;
z=fmod(y,x);

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

417

free
Causes the space pointed to by ptr to be deallocated, that is, made available for further
allocation. If ptr is a null pointer, no action occurs. Otherwise, if the argument does not
match a pointer earlier returned by the calloc, malloc, or realloc function, or if the
space has been deallocated by a call to free or realloc, the behavior is undefined. If
freed space is referenced, the behavior is undefined.

Synopsis

#include <stdlib.h>
void free(void *ptr);

Example

char *buf;
buf=(char*) calloc(40, sizeof(char));
free(buf);

frexp
Breaks a floating-point number into a normalized fraction and an integral power of 2. It
stores the integer in the int object pointed to by exp.

Synopsis

#include <math.h>*
double frexp(double value, int *exp);

Returns

The value x, such that x is a double with magnitude in the interval [1/2, 1] or zero, and
value equals x times 2 raised to the power *exp. If value is zero, both parts of the result are
zero.

Example

double y, x=16.4;
int n;
y=frexp(x,&n);

getchar
Waits for the next character to appear at the serial port and return its value.

Synopsis

#include <stdio.h>
int getchar(void);

Appendix B. C Standard Library UM013034-1210

418

Zilog Developer Studio II – Z8 Encore!®

User Manual

Returns

The next character from the input stream pointed to by stdin. If the stream is at end-of-file,
the end-of-file indicator for the stream is set and getchar returns EOF. If a read error
occurs, the error indicator for the stream is set, and getchar returns EOF.

Example

int i;
i=getchar();

The UART must be initialized using the Zilog init_uart() function. See init_uart on
page 218.

gets
Reads characters from a UART into the array pointed to by s, until end-of-file is encoun-
tered or a new-line character is read. The new-line character is discarded and a null char-
acter is written immediately after the last character read into the array.

Synopsis

#include <stdio.h>
char *gets(char *s);

Returns

The value of s if successful. If a read error occurs during the operation, the array contents
are indeterminate, and a null pointer is returned.

Example

char *r;
char buf [80];
r=gets(buf);
if (r==NULL)
 /*No input*/

The UART must be initialized using the Zilog init_uart() function. See init_uart on
page 218.

isalnum
Tests for any character for which isalpha or isdigit is true.

Note:

Note:

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

419

Synopsis

include <ctype.h>
int isalnum(int c);

Example

int r;
char c='a';
r=isalnum(c)

isalpha
Tests for any character for which isupper or islower is true.

Synopsis

#include <ctype.h>
int isalpha(int c);

Example

int r;
char c='a';
r=isalpha(c)

iscntrl
Tests for any control character.

Synopsis

#include <ctype.h>
int iscntrl(int c);

Example

int r;
char c=NULL;
r=iscntrl(c);

isdigit
Tests for any decimal digit.

Synopsis

#include <ctype.h>
int isdigit(int c);

Appendix B. C Standard Library UM013034-1210

420

Zilog Developer Studio II – Z8 Encore!®

User Manual

Example

int r;
char c='4';
r=isdigit(c);

isgraph
Tests for any printing character except space (' ').

Synopsis

#include <ctype.h>
int isgraph(int c);

Example

int r;
char c='';
r=isgraph(c);

islower
Tests for any lowercase letter 'a' to 'z'.

Synopsis

#include <ctype.h>
int islower(int c);

Example

int r;
char c='a';
r=islower(c);

isprint
Tests for any printing character including space (' ').

Synopsis

#include <ctype.h>
int isprint(int c);

Example

int r;
char c='1';
r=isprint(c);

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

421

ispunct
Tests for any printing character except space (' ') or a character for which isalnum is true.

Synopsis

#include <ctype.h>
int ispunct(int c);

Example

int r;
char c='a';
r=ispunct(c);

isspace
Tests for the following white-space characters: space (' '), form feed ('\f'), new line ('\n'),
carriage return ('\r'), horizontal tab ('\t'), or vertical tab ('\v').

Synopsis

#include <ctype.h>
int isspace(int c);

Example

int r;
char c='';
r=isspace(c);

isupper
Tests for any uppercase letter 'A' to 'Z'.

Synopsis

#include <ctype.h>
int isupper(int c);

Example

int r;
char c='a';
r=isupper(c);

Appendix B. C Standard Library UM013034-1210

422

Zilog Developer Studio II – Z8 Encore!®

User Manual

isxdigit
Tests for any hexadecimal digit '0' to '9' and 'A' to 'F'.

Synopsis

#include <ctype.h>
int isxdigit(int c);

Example

int r;
char c='f';
r=isxdigit(c)

labs
Computes the absolute value of a long j.

Synopsis

#include <stdlib.h>
long labs(long j);

Example

long i=-193250;
long j
j=labs(i);

ldexp
Multiplies a floating-point number by an integral power of 2. A range error can occur.

Synopsis

#include <math.h>
double ldexp(double x, int exp);

Returns

The value of x times 2 raised to the power of exp.

Example

double x=1.235
int exp=2;
double y;
y=ldexp(x,exp);

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

423

ldiv
Computes the quotient and remainder of the division of the numerator numer by the
denominator denom. If the division is inexact, the sign of the quotient is that of the mathe-
matical quotient, and the magnitude of the quotient is the largest integer less than the mag-
nitude of the mathematical quotient.

Synopsis

#include <stdlib.h>
ldiv_t ldiv(long numer, long denom);

Example

long x=25000;
long y=300;
div_t t;
int q;
int r;
t=ldiv(x,y);
q=t.quot;
r=t.rem;

log
Computes the natural logarithm of x. A domain error occurs if the argument is negative. A
range error occurs if the argument is zero.

Synopsis

#include <math.h>
double log(double x);

Returns

The natural logarithm.

Example

double x=2.56;
double y;
y=log(x);

Appendix B. C Standard Library UM013034-1210

424

Zilog Developer Studio II – Z8 Encore!®

User Manual

log10
Computes the base-ten logarithm of x. A domain error occurs if the argument is negative.
A range error occurs if the argument is zero.

Synopsis

#include <math.h>
double log10(double x);

Returns

The base-ten logarithm.

Example

double x=2.56;
double y;
y=log10(x);

longjmp
Restores the environment saved by the most recent call to setjmp in the same invocation
of the program, with the corresponding jmp_buf argument. If there has been no such call,
or if the function containing the call to setjmp has executed a return statement in the
interim, the behavior is undefined.

All accessible objects have values as of the time longjmp was called, except that the val-
ues of objects of automatic storage class that do not have volatile type and have been
changed between the setjmp and longjmp call are indeterminate.

As it bypasses the usual function call and returns mechanisms, the longjmp function exe-
cutes correctly in contexts of interrupts, signals, and any of their associated functions.
However, if the longjmp function is invoked from a nested signal handler (that is, from a
function invoked as a result of a signal raised during the handling of another signal), the
behavior is undefined.

Synopsis

#include <setjmp.h>
void longjmp(jmp_buf env, int val);

Returns

After longjmp is completed, program execution continues as if the corresponding call to
setjmp had just returned the value specified by val. The longjmp function cannot cause
setjmp to return the value 0; if val is 0, setjmp returns the value 1.

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

425

Example

int i;
jmp_buf (env)
i=setjmp(env)
longjmp(env,i);

malloc
Allocates space for an object whose size is specified by size.

The existing implementation of malloc() depends on the heap area being located from
the bottom of the heap (referred to by the symbol __heapbot) to the top of the stack (SP).
Care must be taken to avoid holes in this memory range. Otherwise, the malloc() func-
tion might not be able to allocate a valid memory object.

Synopsis

#include <stdlib.h>
void *malloc(size_t size);

Returns

A pointer to the start (lowest byte address) of the allocated space. If the space cannot be
allocated, or if size is zero, the malloc function returns a null pointer.

Example

char *buf;
buf=(char *) malloc(40*sizeof(char));
if(buf !=NULL)

/*success*/
else

/*fail*/

memchr
Locates the first occurrence of c (converted to an unsigned char) in the initial n charac-
ters of the object pointed to by s.

Synopsis

#include <string.h>
void *memchr(void *s, int c, size_t n);

Note:

Appendix B. C Standard Library UM013034-1210

426

Zilog Developer Studio II – Z8 Encore!®

User Manual

Returns

A pointer to the located character or a null pointer if the character does not occur in the
object.

Example

char *p1;
char str[]="COMPASS";
c='p';
p1=memchr(str,c,sizeof(char));

memcmp
Compares the first n characters of the object pointed to by s2 to the object pointed to by s1.

Synopsis

#include <string.h>
int memcmp(void *s1, void *s2, size_t n);

Returns

An integer greater than, equal to, or less than zero, according as the object pointed to by s1
is greater than, equal to, or less than the object pointed to by s2.

Example

char s1[]="COMPASS";
char s2[]="IDE";
int res;
res=memcmp(s1, s2, sizeof (char));

memcpy
Copies n characters from the object pointed to by s2 into the object pointed to by s1. If the
two regions overlap, the behavior is undefined.

Synopsis

#include <string.h>
void *memcpy(void *s1, void *s2, size_t n);

Returns

The value of s1.

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

427

Example

char s1[10];
char s2[10] = "COMPASS";
memcpy(s1, s2, 8);

memmove
Moves n characters from the object pointed to by s2 into the object pointed to by s1.
Copying between objects that overlap takes place correctly.

Synopsis

#include <string.h>
void *memmove(void *s1, void *s2, size_t n);

Returns

The value of s1.

Example

char s1[10];
char s2[]="COMPASS";
memmove(s1, s2, 8*sizeof(char));

memset
Copies the value of c (converted to an unsigned char) into each of the first n characters
of the object pointed to by s.

Synopsis

#include <string.h>
void *memset(void *s, int c, size_t n);

Returns

The value of s.

Example

char str[20];
char c='a';
memset(str, c, 10*sizeof(char));

modf
Breaks the argument value into integral and fractional parts, each of which has the same
sign as the argument. It stores the integral part as a double in the object pointed to by iptr.

Appendix B. C Standard Library UM013034-1210

428

Zilog Developer Studio II – Z8 Encore!®

User Manual

Synopsis

#include <math.h>
double modf(double value, double *iptr);

Returns

The signed fractional part of value.

Example

double x=1.235;
double f;
double I;
i=modf(x, &f);

pow
Computes the x raised to the power of y. A domain error occurs if x is zero and y is less
than or equal to zero, or if x is negative and y is not an integer. A range error can occur.

Synopsis

#include <math.h>
double pow(double x, double y);

Returns

The value of x raised to the power y.

Example

double x=2.0;
double y=3.0;
double=res;
res=pow(x,y);

printf
Writes output to the stream pointed to by stdout, under control of the string pointed to by
format that specifies how subsequent arguments are converted for output.

A format string contains two types of objects: plain characters, which are copied
unchanged to stdout, and conversion specifications, each of which fetch zero or more sub-
sequent arguments. The results are undefined if there are insufficient arguments for the
format. If the format is exhausted while arguments remain, the excess arguments are eval-
uated but otherwise ignored. The printf function returns when the end of the format
string is encountered.

Each conversion specification is introduced by the character %. After the %, the following
appear in sequence:

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

429

• Zero or more flags that modify the meaning of the conversion specification.

• An optional decimal integer specifying a minimum field width. If the converted value
has fewer characters than the field width, it is padded on the left (or right, if the left
adjustment flag, described later, has been given) to the field width. The padding is
with spaces unless the field width integer starts with a zero, in which case the padding
is with zeros.

• An optional precision that gives the minimum number of digits to appear for the d, i,
o, u, x, and X conversions, the number of digits to appear after the decimal point for e,
E, and f conversions, the maximum number of significant digits for the g and G con-
versions, or the maximum number of characters to be written from a string in s con-
version. The precision takes the form of a period (.) followed by an optional decimal
integer; if the integer is omitted, it is treated as zero. The amount of padding specified
by the precision overrides that specified by the field width.

• An optional h specifies that a following d, i, o, u, x, or X conversion character applies
to a short_int or unsigned_short_int argument (the argument has been promoted
according to the integral promotions, and its value is converted to short_int or
unsigned_short_int before printing). An optional l (ell) specifies that a following d, i,
o, u, x or X conversion character applies to a long_int or unsigned_long_int argument.
An optional L specifies that a following e, E, f, g, or G conversion character applies to
a long_double argument. If an h, l, or L appears with any other conversion character, it
is ignored.

• A character that specifies the type of conversion to be applied.

• A field width or precision, or both, can be indicated by an asterisk * instead of a digit
string. In this case, an int argument supplies the files width or precision. The argu-
ments specifying field width or precision displays before the argument (if any) to be
converted. A negative field width argument is taken as a - flag followed by a positive
field width. A negative precision argument is taken as if it were missing.

For more specific information about the flag characters and conversion characters for the
printf function, see printf Flag Characters on page 430 and printf Conversion Charac-
ters on page 430.

Synopsis

#include <stdio.h>
int printf(char *format, ...);

Returns

The number of characters transmitted or a negative value if an output error occurred.

Note:

Appendix B. C Standard Library UM013034-1210

430

Zilog Developer Studio II – Z8 Encore!®

User Manual

Example

int i=10;
printf("This is %d",i);

By default, Zilog compilers parse printf and sprintf format strings and generate calls
to lower level support routines instead of generating calls to printf and sprintf. For
more information, see the description of the -genprintf option in Generate Printfs
Inline on page 73.

The UART must be initialized using the Zilog init_uart() function. See init_uart on
page 218.

printf Flag Characters

printf Conversion Characters

- The result of the conversion is left-justified within the field.

+ The result of a signed conversion always begins with a plus or a minus sign.

space If the first character of a signed conversion is not a sign, a space is added before
the result. If the space and + flags both appear, the space flag is ignored

The result is to be converted to an ''alternate form''. For c, d, i, s, and u conver-
sions, the flag has no effect. For o conversion, it increases the precision to force
the first digit of the result to be a zero. For x (or X) conversion, a nonzero result
always contains a decimal point, even if no digits follow the point (normally, a dec-
imal point appears in the result of these conversions only if a digit follows it). For
g and G conversions, trailing zeros are not removed from the result, as they nor-
mally are.

d,i,o,u,x,X The int argument is converted to signed decimal (d or i), unsigned octal
(o), unsigned decimal (u), or unsigned hexadecimal notation (x or X); the
letters abcdef are used for x conversion and the letters ABCDEF for X con-
version. The precision specifies the minimum number of digits to appear; if
the value being converted can be represented in fewer digits, it is
expanded with leading zeros. The default precision is 1. The result of con-
verting a zero value with a precision of zero is no characters.

f The double argument is converted to decimal notation in the style [-
]ddd.ddd, where the number of digits after the decimal point is equal to the
precision specification. If the precision is missing, it is taken as 6; if the
precision is explicitly zero, no decimal point appears. If a decimal point
appears, at least one digit appears before it. The value is rounded to the
appropriate number of digits.

Note:

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

431

In no case does a nonexistent or small field width cause truncation of a field. If the result
of a conversion is wider than the field width, the field is expanded to contain the conver-
sion result.

putchar
Writes a character to the serial port.

Synopsis

#include <stdio.h>
int putchar(int c);

e,E The double argument is converted in the style [-]d.ddde+dd, where there is
one digit before the decimal point and the number of digits after it is equal
to the precision; when the precision is missing, six digits are produced; if
the precision is zero, no decimal point appears. The value is rounded to
the appropriate number of digits. The E conversion character produces a
number with E instead of e introducing the exponent. The exponent
always contains at least two digits. However, if the magnitude to be con-
verted is greater than or equal to lE+100, additional exponent digits are
written as necessary.

g,G The double argument is converted in style f or e (or in style E in the case of
a G conversion character), with the precision specifying the number of sig-
nificant digits. The style used depends on the value converted; style e is
used only if the exponent resulting from the conversion is less than -4 or
greater than the precision. Trailing zeros are removed from the result; a
decimal point appears only if it is followed by a digit.

c The int argument is converted to an unsigned char, and the resulting char-
acter is written.

s The argument is taken to be a (const char *) pointer to a string. Characters
from the string are written up to, but not including, the terminating null
character, or until the number of characters indicated by the precision are
written. If the precision is missing it is taken to be arbitrarily large, so all
characters before the first null character are written.

p The argument is taken to be a (const void) pointer to an object. The value
of the pointer is converted to a sequence of hex digits.

n The argument is taken to be an (int) pointer to an integer into which is writ-
ten the number of characters written to the output stream so far by this call
to printf. No argument is converted.

% A % is written. No argument is converted.

Appendix B. C Standard Library UM013034-1210

432

Zilog Developer Studio II – Z8 Encore!®

User Manual

Returns

The character written. If a write error occurs, putchar returns EOF.

Example

int i;
charc='a';
i=putchar(c);

The UART must be initialized using the Zilog init_uart() function. See init_uart on
page 218.

puts
Writes the string pointed to by s to the serial port and appends a new-line character to the
output. The terminating null character is not written.

Synopsis

#include <stdio.h>
int puts(char *s);

Returns

EOF if an error occurs; otherwise, it is a nonnegative value.

Example

int i;
char strp[]="COMPASS";
i=puts(str);

The UART must be initialized using the Zilog init_uart() function. See init_uart on
page 218.

qsort
Sorts an array of nmemb objects, the initial member of which is pointed to by any base.
The size of each object is specified by size.

The array is sorted in ascending order according to a comparison function pointed to by
compar, which is called with two arguments that point to the objects being compared. The
compar function returns an integer less than, equal to, or greater than zero if the first argu-
ment is considered to be respectively less than, equal to, or greater than the second.

Note:

Note:

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

433

If two members in the array compare as equal, their order in the sorted array is unspeci-
fied.

Synopsis

#include <stdlib.h>
void qsort(void *base, size_t nmemb, size_t size,

int (*compar)(void *, void *));

Example

int lst[]={5,8,2,9};
int compare (void * x, void * y);
qsort (lst, sizeof(int), 4, compare);

int compare (void * x, void * y)
{

int a = *(int *) x;
int b = *(int *) y;
if (a < b) return -1;
if (a == b)return 0;
return 1;

}

The compare function prototype is, as shown in the preceding example:

int compare (void * x, void * y);

rand
Computes a sequence of pseudorandom integers in the range 0 to RAND_MAX.

Synopsis

#include <stdlib.h>
int rand(void)

Returns

A pseudorandom integer.

Example

int i;
srand(1001);
i=rand();

realloc
Changes the size of the object pointed to by ptr to the size specified by size. The contents
of the object are unchanged up to the lesser of the new and old sizes. If ptr is a null pointer,

Appendix B. C Standard Library UM013034-1210

434

Zilog Developer Studio II – Z8 Encore!®

User Manual

the realloc function behaves similarly to the malloc function for the specified size.
Otherwise, if ptr does not match a pointer earlier returned by the calloc, malloc, or
realloc function, or if the space has been deallocated by a call to the free or realloc
function, the behavior is undefined. If the space cannot be allocated, the realloc func-
tion returns a null pointer and the object pointed to by ptr is unchanged. If size is zero, the
realloc function returns a null pointer and, if ptr is not a null pointer, the object it points
to is freed.

Synopsis

#include <stdlib.h>
void *realloc(void *ptr, size_t size);

Returns

Returns a pointer to the start (lowest byte address) of the possibly moved object.

Example

char *buf;
buf=(char *) malloc(40*sizeof(char));
buf=(char *) realloc(buf, 80*sizeof(char));
if(buf !=NULL)

/*success*/
else

/*fail*/

scanf
Reads input from the stream pointed to by stdin, under control of the string pointed to by
format that specifies the admissible input sequences and how they are to be converted for
assignment, using subsequent arguments as pointers to the object to receive the converted
input. If there are insufficient arguments for the format, the behavior is undefined. If the
format is exhausted while arguments remain, the excess arguments are evaluated but oth-
erwise ignored.

The format is composed of zero or more directives from the following list:

• one or more white-space characters

• an ordinary character (not %)

• a conversion specification

Each conversion specification is introduced by the character %. After the %, the following
appear in sequence:

• An optional assignment-suppressing character *.

• An optional decimal integer that specifies the maximum field width.

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

435

• An optional h, l or L indicating the size of the receiving object. The conversion char-
acters d, l, n, o, and x can be preceded by h to indicate that the corresponding argu-
ment is a pointer to short_int rather than a pointer to int, or by l to indicate that it is a
pointer to long_int. Similarly, the conversion character u can be preceded by h to indi-
cate that the corresponding argument is a pointer to unsigned_short_int rather than a
pointer to unsigned_int, or by l to indicate that it is a pointer to unsigned_long_int.
Finally, the conversion character e, f, and g can be preceded by l to indicate that the
corresponding argument is a pointer to double rather than a pointer to float, or by L to
indicate a pointer to long_double. If an h, l, or L appears with any other conversion
character, it is ignored.

• A character that specifies the type of conversion to be applied. The valid conversion
characters are described in the following paragraphs.

The scanf function executes each directive of the format in turn. If a directive fails, as
detailed below, the scanf function returns. Failures are described as input failures (due to
the unavailability of input characters), or matching failures (due to inappropriate input).

A directive composed of white space is executed by reading input up to the first non-
white-space character (which remains unread), or until no more characters can be read. A
white-space directive fails if no white-space character can be found.

A directive that is an ordinary character is executed by reading the next character of the
stream. If the character differs from the one comprising the directive, the directive fails,
and the character remains unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each character. A conversion specification is executed in the follow-
ing steps:

• Input white-space characters (as specified by the isspace function) are skipped,
unless the specification includes a ’[’, ’c,’ or ’n’ character.

• An input item is read from the stream, unless the specification includes an n character.
An input item is defined as the longest sequence of input characters (up to any speci-
fied maximum field width) which is an initial subsequence of a matching sequence.
The first character, if any, after the input item remains unread. If the length of the input
item is zero, the execution of the directive fails: this condition is a matching failure,
unless an error prevented input from the stream, in which case it is an input failure.

• Except in the case of a % character, the input item (or, in the case of a %n directive, the
count of input characters) is converted to a type appropriate to the conversion charac-
ter. If the input item is not a matching sequence, the execution of the directive fails:
this condition is a matching failure. Unless assignment suppression was indicated by a
*, the result of the conversion is placed in the object pointed to by the first argument
following the format argument that has not already received a conversion result. If this
object does not have an appropriate type, or if the result of the conversion cannot be
represented in the space provided, the behavior is undefined.

Appendix B. C Standard Library UM013034-1210

436

Zilog Developer Studio II – Z8 Encore!®

User Manual

See the next section, scanf Conversion Characters, for valid input information.

Synopsis

#include <stdio.h>
int scanf(char *format, ...);

Returns

The value of the macro EOF if an input failure occurs before any conversion. Otherwise,
the scanf function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early conflict between an input character and
the format.

Examples

int i
scanf("%d", &i);

The following example reads in two values. var1 is an unsigned char with two decimal
digits, and var2 is a float with three decimal place precision.

scanf("%2d,%f",&var1,&var2);

scanf Conversion Characters

d Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of the strtol function with the value 10 for the
base argument. The corresponding argument is a pointer to integer.

i Matches an optionally signed integer, whose format is the same as expected for
the subject sequence of the strtol function with the value 0 for the base argument.
The corresponding argument is a pointer to integer.

o Matches an optionally signed octal integer, whose format is the same as
expected for the subject sequence of the strtol function with the value 8 for the
base argument. The corresponding argument is a pointer to integer.

u Matches an unsigned decimal integer, whose format is the same as expected for
the subject sequence of the strtol function with the value 10 for the base argu-
ment. The corresponding argument is a pointer to unsigned integer.

x Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of the strtol function with the value of 16 for
the base argument. The corresponding argument is a pointer to integer.

e,f,g Matches an optionally signed floating-point number, whose format is the same as
expected for the subject string of the strtod function. The corresponding argument
is a pointer to floating.

Note:

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

437

If a conversion specification is invalid, the behavior is undefined.

The conversion characters e, g, and x can be capitalized. However, the use of upper case is
ignored.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any characters matching the current directive have been read (other than leading
white space, where permitted), execution of the current directive terminates with an input
failure; otherwise, unless execution of the current directive is terminated with a matching
failure, execution of the following directive (if any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is
left unread in the input stream. Trailing white space (including new-line characters) is left
unread unless matched by a directive. The success of literal matches and suppressed
assignments is not directly determinable other than using the %n directive.

s Matches a sequence of non-white-space characters. The corresponding argu-
ment is a pointer to the initial character of an array large enough to accept the
sequence and a terminating null character, which is added automatically.

[Matches a sequence of expected characters (the scanset). The corresponding
argument is a pointer to the initial character of an array large enough to accept
the sequence and a terminating null character, which is added automatically. The
conversion character includes all subsequent characters is the format string, up
to and including the matching right bracket (]). The characters between the
brackets (the scanlist) comprise the scanset, unless the character after the left
bracket is a circumflex (^), in which case the scanset contains all characters that
do not appear in the scanlist between the circumflex and the right bracket. As a
special case, if the conversion character begins with [] or [^], the right bracket
character is in the scanlist and next right bracket character is the matching right
bracket that ends the specification. If a - character is in the scanlist and is neither
the first nor the last character, the behavior is indeterminate.

c Matches a sequence of characters of the number specified by the field width (1 if
no field width is present in the directive). The corresponding argument is a pointer
to the initial character of an array large enough to accept the sequence. No null
character is added.

p Matches a hexadecimal number. The corresponding argument is a pointer to a
pointer to void.

n No input is consumed. The corresponding argument is a pointer to integer into
which is to be written the number of characters read from the input stream so far
by this call to the scanf function. Execution of a %n directive does not increment
the assignment count returned at the completion of execution of the scanf func-
tion.

% Matches a single %; no conversion or assignment occurs.

Appendix B. C Standard Library UM013034-1210

438

Zilog Developer Studio II – Z8 Encore!®

User Manual

setjmp
Saves its calling environment in its jmp_buf argument, for later use by the longjmp func-
tion.

Synopsis

#include<setjmp.h>
int setjmp(jmp_buf env);

Returns

If the return is from a direct invocation, the setjmp function returns the value zero. If the
return is from a call to the longjmp function, the setjmp function returns a nonzero
value.

Example

int i;
jmp_buf(env);
i=setjmp(env);
longjmp(env, i);

sin
Computes the sine of x (measured in radians). A large magnitude argument can yield a
result with little or no significance.

Synopsis

#include <math.h>
double sin(double x);

Returns

The sine value.

Example

double x=1.24;
double y;
y=sin[x];

sinh
Computes the hyperbolic sine of x. A range error occurs if the magnitude of x is too large.

Synopsis

#include <math.h>
double sinh(double x);

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

439

Returns

The hyperbolic sine value.

Example

double x=1.24;
double y;
y=sinh(x);

sprintf
The sprintf function is equivalent to printf, except that the argument s specifies
an array into which the generated output is to be written, rather than to a stream. A null
character is written at the end of the characters written; it is not counted as part of the
returned sum.

Synopsis

#include <stdio.h>
int sprintf(char *s, char *format, ...);

Returns

The number of characters written in the array, not counting the terminating null character.

Example

int d=51;
char buf [40];
sprint(buf,"COMPASS/%d",d);

sqrt
Computes the nonnegative square root of x. A domain error occurs if the argument is neg-
ative.

Synopsis

#include <math.h>
double sqrt(double x);

Returns

The value of the square root.

Example

double x=25.0;
double y;
y=sqrt(x);

Appendix B. C Standard Library UM013034-1210

440

Zilog Developer Studio II – Z8 Encore!®

User Manual

srand
Uses the argument as a seed for a new sequence of pseudorandom numbers to be returned
by subsequent calls to rand. If srand is then called with the same seed value, the
sequence of pseudorandom numbers is repeated. If rand is called before any calls to
srand have been made, the same sequence is generated as when srand is first called with
a seed value of 1.

Synopsis

#include <stdlib.h>
void srand(unsigned int seed);

Example

int i;
srand(1001);
i=rand();

sscanf
Reads formatted data from a string.

Synopsis

#include <stdio.h>
int sscanf(char *s, char *format, ...);

Returns

The value of the macro EOF if an input failure occurs before any conversion. Otherwise,
the sscanf function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early conflict between an input character and
the format.

Example

char buf [80];
int i;
sscanf(buf,"&d",&i);

strcat
Appends a copy of the string pointed to by s2 (including the terminating null character) to
the end of the string pointed to by s1. The initial character of s2 overwrites the null charac-
ter at the end of s1.

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

441

Synopsis

#include <string.h>
char *strcat(char *s1, char *s2);

Returns

The value of s1.

Example

char *ptr;
char s1[80]="Production";
char s2[]="Languages";
ptr=strcat(s1,s2);

strchr
Locates the first occurrence of c (converted to a char) in the string pointed to by s. The
terminating null character is considered to be part of the string.

Synopsis

#include <string.h>
char *strchr(char *s, int c);

Returns

A pointer to the located character, or a null pointer if the character does not occur in the
string.

Example

char *ptr;
char str[]="COMPASS";
ptr=strchr(str,'p');

strcmp
Compares the string pointed to by s1 to the string pointed to by s2.

Synopsis

#include <string.h>
int strcmp(char *s1, char *s2);

Returns

An integer greater than, equal to, or less than zero, according as the string pointed to by s1
is greater than, equal to, or less than the string pointed to by s2.

Appendix B. C Standard Library UM013034-1210

442

Zilog Developer Studio II – Z8 Encore!®

User Manual

Example

char s1[]="Production";
char s2[]="Programming";
int res;
res=strcmp(s1,s2);

strcpy
Copies the string pointed to by s2 (including the terminating null character) into the array
pointed to by s1. If copying takes place between objects that overlap, the behavior is unde-
fined.

Synopsis

#include <string.h>
char *strcpy(char *s1, char *s2);

Returns

The value of s1.

Example

char s1[80], *s2;
s2=strcpy(s1,"Production");

strcspn
Computes the length of the initial segment of the string pointed to by s1 that consists
entirely of characters not from the string pointed to by s2. The terminating null character is
not considered part of s2.

Synopsis

#include <string.h>
size_t strcspn(char *s1, char *s2);

Returns

The length of the segment.

Example

int pos;
char s1[]="xyzabc";
char s2[]="abc";
pos=strcspn(s1,s2);

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

443

strlen
Computes the length of the string pointed to by s.

Synopsis

#include <string.h>
size_t strlen(char *s);

Returns

The number of characters that precede the terminating null character.

Example

char s1[]="COMPASS";
int i;
i=strlen(s1);

strncat
Appends no more than n characters of the string pointed to by s2 (not including the termi-
nating null character) to the end of the string pointed to by s1. The initial character of s2
overwrites the null character at the end of s1. A terminating null character is always
appended to the result.

Synopsis

#include <string.h>
char *strncat(char *s1, char *s2, size_t n);

Returns

The value of s1.

Example

char *ptr;
char strl[80]="Production";
char str2[]="Languages";
ptr=strncat(str1,str2,4);

strncmp
Compares no more than n characters from the string pointed to by s1 to the string pointed
to by s2.

Synopsis

#include <string.h>
int strncmp(char *s1, char *s2, size_t n);

Appendix B. C Standard Library UM013034-1210

444

Zilog Developer Studio II – Z8 Encore!®

User Manual

Returns

An integer greater than, equal to, or less than zero, according as the string pointed to by s1
is greater than, equal to, or less than the string pointed to by s2.

Example

char s1[]="Production";
char s2[]="Programming";
int res;
res=strncmp(s1,s2,3);

strncpy
Copies not more than n characters from the string pointed to by s2 to the array pointed to
by s1. If copying takes place between objects that overlap, the behavior is undefined.

If the string pointed to by s2 is shorter than n characters, null characters are appended to
the copy in the array pointed to by s1, until n characters in all have been written.

Synopsis

#include <string.h>
char *strncpy(char *s1, char *s2, size_t n);

Returns

The value of s1.

Example

char *ptr;
char s1[40]="Production";
char s2[]="Languages";
ptr=strncpy(s1,s2,4);

strpbrk
Locates the first occurrence in the string pointed to by s1 of any character from the string
pointed to by s2.

Synopsis

#include <string.h>
char *strpbrk(char *s1, char *s2);

Returns

A pointer to the character, or a null pointer if no character from s2 occurs in s1.

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

445

Example

char *ptr;
char s1[]="COMPASS";
char s2[]="PASS";
ptr=strpbrk(s1,s2);

Appendix B. C Standard Library UM013034-1210

446

Zilog Developer Studio II – Z8 Encore!®

User Manual

strrchr
Locates the last occurrence of c (converted to a char) in the string pointed to by s. The
terminating null character is considered to be part of the string.

Synopsis

#include <string.h>
char *strrchr(char *s, int c);

Returns

A pointer to the character, or a null pointer if c does not occur in the string.

Example

char *ptr;
char s1[]="COMPASS";
ptr=strrchr(s1,'p');

strspn
Finds the first substring from a given character set in a string.

Synopsis

#include <string.h>
size_t strspn(char *s1, char *s2);

Returns

The length of the segment.

Example

char s1[]="cabbage";
char s2[]="abc";
size_t res;
res=strspn(s1,s2);

strstr
Locates the first occurrence of the string pointed to by s2 in the string pointed to by s1.

Synopsis

#include <string.h>
char *strstr(char *s1, char *s2);

Returns

A pointer to the located string or a null pointer if the string is not found.

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

447

Example

char *ptr;
char s1[]="Production Languages";
char s2[]="Lang";
ptr=strstr(s1,s2);

strtod
Converts the string pointed to by nptr to double representation. The function recognizes
an optional leading sequence of white-space characters (as specified by the isspace
function), then an optional plus or minus sign, then a sequence of digits optionally con-
taining a decimal point, then an optional letter e or E followed by an optionally signed
integer, then an optional floating suffix. If an inappropriate character occurs before the
first digit following the e or E, the exponent is taken to be zero.

The first inappropriate character ends the conversion. If endptr is not a null pointer, a
pointer to that character is stored in the object endptr points to; if an inappropriate charac-
ter occurs before any digit, the value of nptr is stored.

The sequence of characters from the first digit or the decimal point (whichever occurs
first) to the character before the first inappropriate character is interpreted as a floating
constant according to the rules of this section, except that if neither an exponent part or a
decimal point appears, a decimal point is assumed to follow the last digit in the string. If a
minus sign appears immediately before the first digit, the value resulting from the conver-
sion is negated.

Synopsis

#include <stdlib.h>
double strtod(char *nptr, char **endptr);

Returns

The converted value, or zero if an inappropriate character occurs before any digit. If the
correct value would cause overflow, plus or minus HUGE_VAL is returned (according to
the sign of the value), and the macro errno acquires the value ERANGE. If the correct
value causes underflow, zero is returned and the macro errno acquires the value
ERANGE.

Example

char *ptr;
char s[]="0.1456";
double res;
res=strtod(s,&ptr);

Appendix B. C Standard Library UM013034-1210

448

Zilog Developer Studio II – Z8 Encore!®

User Manual

strtok
A sequence of calls to the strtok function breaks the string pointed to by s1 into a
sequence of tokens, each of which is delimited by a character from the string pointed to by
s2. The first call in the sequence has s1 as its first argument, and is followed by calls with
a null pointer as their first argument. The separator string pointed to by s2 can be different
from call to call.

The first call in the sequence searches s1 for the first character that is not contained in the
current separator string s2. If no such character is found, there are no tokens in s1, and the
strtok function returns a null pointer. If such a character is found, it is the start of the
first token.

The strtok function then searches from there for a character that is contained in the cur-
rent separator string. If no such character is found, the current token extends to the end of
the string pointed to by s1, and subsequent searches for a token fail. If such a character is
found, it is overwritten by a null character, which terminates the current token. The
strtok function saves a pointer to the following character, from which the next search for
a token starts.

Each subsequent call, with a null pointer as the value of the first argument, starts searching
from the saved pointer and behaves as described in the preceding paragraphs.

Synopsis

#include <string.h>
char *strtok(char *s1, char *s2);

Returns

A pointer to the first character of a token or a null pointer if there is no token.

Example

#include <string.h>
static char str[] = "?a???b, , ,#c";
char *t;
t = strtok(str,"?"); /* t points to the token "a" */
t = strtok(NULL,","); /* t points to the token "??b " */
t = strtok(NULL,"#,"); /* t points to the token "c" */
t = strtok(NULL,"?"); /* t is a null pointer */

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

449

strtol
Converts the string pointed to by nptr to long int representation. The function recognizes
an optional leading sequence of white-space characters (as specified by the isspace func-
tion), then an optional plus or minus sign, then a sequence of digits and letters, then an
optional integer suffix.

The first inappropriate character ends the conversion. If endptr is not a null pointer, a
pointer to that character is stored in the object endptr points to; if an inappropriate charac-
ter occurs before the first digit or recognized letter, the value of nptr is stored.

If the value of base is 0, the sequence of characters from the first digit to the character
before the first inappropriate character is interpreted as an integer constant according to
the rules of this section. If a minus sign appears immediately before the first digit, the
value resulting from the conversion is negated.

If the value of base is between 2 and 36, it is used as the base for conversion. Letters from
a (or A) through z (or Z) are ascribed the values 10 to 35; a letter whose value is greater
than or equal to the value of base ends the conversion. Leading zeros after the optional
sign are ignored, and leading 0x or 0X is ignored if the value of base is 16. If a minus sign
appears immediately before the first digit or letter, the value resulting from the conversion
is negated.

Synopsis

#include <stdlib.h>
long strtol(char *nptr, char **endptr, int base);

Returns

The converted value, or zero if an inappropriate character occurs before the first digit or
recognized letter. If the correct value would cause overflow, LONG_MAX or
LONG_MIN is returned (according to the sign of the value), and the macro errno
acquires the value ERANGE.

Example

char *ptr;
char s[]="12345";
long res;
res=strtol(s,&ptr,10);

Appendix B. C Standard Library UM013034-1210

450

Zilog Developer Studio II – Z8 Encore!®

User Manual

tan
The tangent of x (measured in radians). A large magnitude argument can yield a result
with little or no significance.

Synopsis

#include <math.h>
double tan(double x);

Returns

The tangent value.

Example

double x=2.22;
double y;
y=tan(x);

tanh
Computes the hyperbolic tangent of x.

Synopsis

#include <math.h>
double tanh(double x);

Returns

The hyperbolic tangent of x.

Example

double x=2.22;
double y;
y=tanh(x);

tolower
Converts an uppercase letter to the corresponding lowercase letter.

Synopsis

#include <ctype.h>
int tolower(int c);

Returns

If the argument is an uppercase letter, the tolower function returns the corresponding
lowercase letter, if any; otherwise, the argument is returned unchanged.

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

451

Example

char c='A';
int i;
i=tolower(c);

toupper
Converts a lowercase letter to the corresponding uppercase letter.

Synopsis

#include <ctype.h>
int toupper(int c);

Returns

If the argument is a lowercase letter, the toupper function returns the corresponding
uppercase letter, if any; otherwise, the argument is returned unchanged.

Example

char c='a';
int i;
i=toupper(c);

va_arg
Expands to an expression that has the type and value of the next argument in the call. The
parameter ap is the same as the va_list ap initialized by va_start. Each invocation of
va_arg modifies ap so that successive arguments are returned in turn. The parameter type
is a type name such that the type of a pointer to an object that has the specified type can be
obtained simply by fixing a * to type. If type disagrees with the type of the actual next
argument (as promoted, according to the default argument conversions, into int, unsigned
int, or double), the behavior is undefined.

Synopsis

#include <stdarg.h>
type va_arg(va_list ap, type);

Returns

The first invocation of the va_arg macro after that of the va_start macro returns the
value of the argument after that specified by parmN. Successive invocations return the val-
ues of the remaining arguments in succession.

Appendix B. C Standard Library UM013034-1210

452

Zilog Developer Studio II – Z8 Encore!®

User Manual

Example

The function f1 gathers into an array a list of arguments that are pointers to strings (but not
more than MAXARGS arguments), then passes the array as a single argument to function
f2. The number of pointers is specified by the first argument to f1.

#include <stdarg.h>
extern void f2(int n, char *array[]);
#define MAXARGS 31
void f1(int n_ptrs,...) {

va_list ap;
char *array[MAXARGS];
int ptr_no = 0;
if (n_ptrs > MAXARGS)

n_ptrs = MAXARGS;
va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char *);
va_end(ap);
f2(n_ptrs, array);

}

Each call to f1 has in scope the definition of the function of a declaration such as void
f1(int, ...);

va_end
Facilitates a normal return from the function whose variable argument list was referenced
by the expansion of va_start that initialized the va_list ap. The va_end function
can modify ap so that it is no longer usable (without an intervening invocation of
va_start). If the va_end function is not invoked before the return, the behavior is unde-
fined.

Synopsis

#include <stdarg.h>
void va_end(va_list ap);

Example

The function f1 gathers into an array a list of arguments that are pointers to strings (but not
more than MAXARGS arguments), then passes the array as a single argument to function
f2. The number of pointers is specified by the first argument to f1.

#include <stdarg.h>
extern void f2(int n, char *array[]);
#define MAXARGS 31
void f1(int n_ptrs,...) {

va_list ap;
char *array[MAXARGS];

UM013034-1210 Standard Functions

Zilog Developer Studio II – Z8 Encore!®

User Manual

453

int ptr_no = 0;
if (n_ptrs > MAXARGS)

n_ptrs = MAXARGS;
va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char *);
va_end(ap);
f2(n_ptrs, array);

}

Each call to f1 has in scope the definition of the function of a declaration such as void
f1(int, ...);

va_start
Is executed before any access to the unnamed arguments.

The parameter ap points to an object that has type va_list. The parameter parmN is the
identifier of the rightmost parameter in the variable parameter list in the function defini-
tion (the one just before the , ...). The va_start macro initializes ap for subsequent use
by va_arg and va_end.

Synopsis

#include <stdarg.h>
void va_start(va_list ap, parmN);

Example

The function f1 gathers into an array a list of arguments that are pointers to strings (but not
more than MAXARGS arguments), then passes the array as a single argument to function
f2. The number of pointers is specified by the first argument to f1.

#include <stdarg.h>
extern void f2(int n, char *array[]);
#define MAXARGS 31
void f1(int n_ptrs,...) {

va_list ap;
char *array[MAXARGS];
int ptr_no = 0;
if (n_ptrs > MAXARGS)

n_ptrs = MAXARGS;
va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char *);
va_end(ap);
f2(n_ptrs, array);

}

Appendix B. C Standard Library UM013034-1210

454

Zilog Developer Studio II – Z8 Encore!®

User Manual

Each call to f1 has in scope the definition of the function of a declaration such as void
f1(int, ...);

vprintf
Equivalent to printf, with the variable argument list replaced by arg, which has been ini-
tialized by the va_start macro (and possibly subsequent va_arg calls). The vprintf
function does not invoke the va_end function.

Synopsis

#include <stdarg.h>
#include <stdio.h>
int vprintf(char *format, va_list arg);

Returns

The number of characters transmitted or a negative value if an output error occurred.

Example

va_list va;
/* initialize the variable argument va here */
vprintf("%d %d %d",va)

vsprintf
Equivalent to sprintf, with the variable argument list replaced by arg, which has been
initialized by the va_start macro (and possibly subsequent va_arg calls). The
vsprintf function does not invoke the va_end function.

Synopsis

#include <stdarg.h>
#include <stdio.h>
int vsprintf(char *s, char *format, va_list arg);

Returns

The number of characters written in the array, not counting the terminating null character.

Example

va_list va;
char buf[80];
/*initialize the variable argument va here*/
vsprint("%d %d %d",va);

UM013034-1210 Appendix C. Running ZDS II from the Command Line

Zilog Developer Studio II – Z8 Encore!®

User Manual

455

Appendix C. Running ZDS II from the Command
Line

You can run ZDS II from the command line. ZDS II generates a make file
(project_Debug.mak or project_Release.mak, depending on the project configuration)
every time you build or rebuild a project. For a project named test.zdsproj set up in
the Debug configuration, ZDS II generates a make file named test_Debug.mak in the
project directory. You can use this make file to run your project from the command line.

The following sections describe how to run ZDS II from the command line:

• Building a Project from the Command Line on page 455

• Running the Assembler from the Command Line on page 456

• Running the Compiler from the Command Line on page 456

• Running the Linker from the Command Line on page 457

• Assembler Command Line Options on page 458

• Compiler Command Line Options on page 460

• Librarian Command Line Options on page 464

• Linker Command Line Options on page 464

Building a Project from the Command Line

To build a project from the command line, use the following procedure:

1. To see the current path, enter the following command in a DOS window:

PATH

2. To set up the ZDS II bin directory (for example, C:\PRO-
GRA~1\Zilog\ZDSII_Z8Encore!_4.11.0\bin) in the path, enter the following
code:

SET PATH=%PATH%;C:\Program
Files\Zilog\ZDSII_Z8Encore!_4.11.0\bin

The make utility is available in this directory.

3. Type PATH again to see the new path.

4. Open the project using the IDE.

Appendix C. Running ZDS II from the Command Line UM013034-1210

456

Zilog Developer Studio II – Z8 Encore!®

User Manual

5. Export the make file for the project using the Export Makefile command in the Proj-
ect menu.

6. Open a DOS window and change to the intermediate files directory.

7. Build the project using the make utility on the command line in a DOS window.

To build a project by compiling only the changed files, use the following command:

make -f sampleproject_Debug.mak

To rebuild the entire project, use the following command:

make rebuildall -f sampleproject_Debug.mak

Running the Assembler from the Command Line

To run the assembler from the command line:

1. To see the current path, enter the following command in a DOS window:

PATH

2. To set up the ZDS II bin directory (for example, C:\PRO-
GRA~1\Zilog\ZDSII_Z8Encore!_4.11.0\bin) in the path, enter the following
code:

C:\>SET PATH=%PATH%;C:\Program
Files\Zilog\ZDSII_Z8Encore!_4.11.0\bin

The make utility is available in this directory.

3. Type PATH again to see the new path.

4. Open the make file in a text editor.

5. Copy the options in the ASFLAGS section.

6. In a Command Prompt window, enter the path to the assembler, the options from the
ASFLAGS section (on a single line and without backslashes), and your assembly file.

For example:

ez8asm -include:"..\include" -cpu:Z8F6423 test.asm

Running the Compiler from the Command Line

To run the compiler from the command line:

1. To see the current path, enter the following command in a DOS window:

PATH

UM013034-1210 Running the Linker from the Command Line

Zilog Developer Studio II – Z8 Encore!®

User Manual

457

2. To set up the ZDS II bin directory (for example, C:\PRO-
GRA~1\Zilog\ZDSII_Z8Encore!_4.11.0\bin) in the path, enter the following
code:

SET PATH=%PATH%;C:\Program
Files\Zilog\ZDSII_Z8Encore!_4.11.0\bin

The make utility is available in this directory.

3. Type PATH again to see the new path.

4. Open the make file in a text editor.

5. Copy the options in the CFLAGS section.

6. In a Command Prompt window, enter the path to the compiler, the options from the
CFLAGS section (on a single line and without backslashes), and your C file.

For example:

ez8cc -cpu:Z8F6423 -define _Z8F6423 -asmsw:"-cpu:Z8F6423"
test.c

If you use DOS, use double quotation marks for the -stdinc and -usrinc commands
for the C-Compiler.

For example:

-stdinc:"C:\ez8\include"

If you use cygwin, use single quotation marks on both sides of a pair of braces for the
-stdinc and -usrinc commands for the C-Compiler.

For example:

-stdinc:'{C:\ez8\include}'

Running the Linker from the Command Line

To run the linker from the command line:

1. To see the current path, enter the following command in a DOS window:

PATH

2. To set up the ZDS II bin directory (for example, C:\PRO-
GRA~1\Zilog\ZDSII_Z8Encore!_4.11.0\bin) in the path, enter the following
code:

Note:

Appendix C. Running ZDS II from the Command Line UM013034-1210

458

Zilog Developer Studio II – Z8 Encore!®

User Manual

SET PATH=%PATH%;C:\Program
Files\Zilog\ZDSII_Z8Encore!_4.11.0\bin

The make utility is available in this directory.

3. Type PATH again to see the new path.

4. Open the make file in a text editor.

5. In a Command Prompt window, enter the path to the linker and your linker file.

For example:

ez8link @"C:\Program Files\Zilog\ZDSII_Z8Encore!_4.11.0\sam-
ples\F083A\F083A_ledBlink\src\ledblink_Debug.linkcmd"

Assembler Command Line Options

The following table describes the assembler command line options.

If you use DOS, use double quotation marks for the -stdinc and -usrinc commands
for the C compiler.

For example:

-stdinc:"C:\ez8\include"

If you use cygwin, use single quotation marks on both sides of a pair of braces for the
-stdinc and -usrinc commands for the C compiler.

For example:

-stdinc:'{C:\ez8\include}'

Table 8. Assembler Command Line Options

Option Name Description

-cpu:name Sets the CPU.

-debug Generates debug information for the symbolic debugger. The default setting is
-nodebug.

-define:name[=value] Defines a symbol and sets it to the constant value. For example:
 -define:DEBUG=0
This option is equivalent to the C #define statement. The alternate syntax,
 -define:myvar, is the same as -define:myvar=1.

Note:

UM013034-1210 Assembler Command Line Options

Zilog Developer Studio II – Z8 Encore!®

User Manual

459

-genobj Generates an object file with the .obj extension. This is the default setting.

-help Displays the assembler help screen.

-igcase Suppresses case sensitivity of user-defined symbols. When this option is used,
the assembler converts all symbols to uppercase. The default setting is -noi-
gcase.

-include:path Allows the insertion of source code from another file into the current source file
during assembly.

-list Generates an output listing with the .lst extension. This is the default setting.

-listmac Expands macros in the output listing. This is the default setting.

-listoff Does not generate any output in list file until a directive in assembly file sets the
listing as on.

-metrics Keeps track of how often an instruction is used. This is a static rather than a
dynamic measure of instruction frequency.

-name Displays the name of the source file being assembled.

-nodebug Does not create a debug information file for the symbolic debugger. This is the
default setting.

-nogenobj Does not generate an object file with the .obj extension. The default setting is
genobj.

-noigcase Enables case sensitivity of user-defined symbols. This is the default.

-nolist Does not create a list file. The default setting is list.

-nolistmac Does not expand macros in the output listing. The default setting is listmac.

-noquiet Displays title and other information. This is the default.

-nosdiopt Does not perform span-dependent optimizations. All size optimizable instruc-
tions use the largest instruction size. The default is sdiopt.

-nowarns Suppresses the generation of warning messages to the screen and listing file. A
warning count is still maintained. The default is to generate warning messages.

-pagelength:n Sets the new page length for the list file. The page length must immediately fol-
low the = (with no space between). The default is 56. For example:
 -pagelength=60

-pagewidth:n Sets the new page width for the list file. The page width must immediately follow
the = (with no space between). The default and minimum page width is 80. The
maximum page width is 132. For example:
 -pagewidth=132

-quiet Suppresses title information that is normally displayed to the screen. Errors and
warnings are still displayed. The default setting is to display title information.

Table 8. Assembler Command Line Options (Continued)

Option Name Description

Appendix C. Running ZDS II from the Command Line UM013034-1210

460

Zilog Developer Studio II – Z8 Encore!®

User Manual

Compiler Command Line Options

The following table describes the compiler command line options.

If you use DOS, use double quotation marks for the -stdinc and -usrinc commands
for the C compiler.

For example:

-stdinc:"C:\ez8\include"

If you use cygwin, use single quotation marks on both sides of a pair of braces for the
-stdinc and -usrinc commands for the C compiler.

For example:

-stdinc:'{C:\ez8\include}'

-relist:mapfile Generates an absolute listing by making use of information contained in a linker
map file. This results in a listing that matches linker-generated output. mapfile is
the name of the map file created by the linker. For example:
 -relist:product.map

-sdiopt Performs jump optimizations. Translates any relative jumps to absolute jumps if
the target is out of range. This is the default setting.

-version Prints the version number of the assembler.

-warns Allows the generation of warning messages to the screen and listing file. This is
the default.

Table 9. Compiler Command Line Options

Option Name Description

-asm Assembles compiler-generated assembly file. This switch results in the generation
of an object module. The assembly file is deleted if no assemble errors are
detected and the keepasm switch is not given. The default is asm.

-asmsw:"sw" Passes sw to the assembler when assembling the compiler-generated assembly
file.

Table 8. Assembler Command Line Options (Continued)

Option Name Description

Note:

UM013034-1210 Compiler Command Line Options

Zilog Developer Studio II – Z8 Encore!®

User Manual

461

-bfpack:[tight |
normal | compat-
ible]

Selects the bit-field packing algorithm. The tight setting produces the most com-
pact packing, which is the default. The normal setting allocates space in the
structure that corresponds exactly to the declared type of each bit-field. The com-
patible setting produces a packing that is compatible with the less efficient algo-
rithm that was used before ZDS II release 4.11.0. If you have an older project that
uses both C and assembly code to access bit-fields, you probably need to use -
bfpack:compatible.

-const:[ram|rom] Selects where const variables are placed. The default is to place const variables in
ram. This is a depreciated option; use the rom keyword instead of const to place
const data in rom.

-cpu:cpu Sets the CPU.

-debug Generates debug information for the symbolic debugger. This is the default.

-define:def Defines a symbol and sets it to the constant value. For example:
 -define:myvar=0
The alternate syntax, -define:myvar, is the same as -define:myvar=1.

-fastcall Pass parameters in registers.

-fplib Links with the floating-point emulation library.

-genprintf The format string is parsed at compile time, and direct inline calls to the lower level
helper functions are generated. The default is genprintf.

-help Displays the compiler help screen.

-jmpopt Turns on application of branch optimizations.

-keepasm Keeps the compiler-generated assembly file.

-keeplst Keeps the assembly listing file (.lst).

-list Generates a .lis source listing file.

-listinc Displays included files in the compiler listing file.

-model:model Selects the memory model. Select S for the small memory model or L for the large
memory model. The default is L.

-noasm Does not assemble the compiler-generated assembly file.

-nodebug Does not generate symbol debug information.

-nofastcall Pass parameters in memory.

-nofplib Does not link with floating-point emulation library.

-nogenprint A call to printf() or sprintf() parses the format string at run time to gener-
ate the required output.

-nojmpopt Turns off application of branch optimizations.

Table 9. Compiler Command Line Options (Continued)

Option Name Description

Appendix C. Running ZDS II from the Command Line UM013034-1210

462

Zilog Developer Studio II – Z8 Encore!®

User Manual

-nokeepasm Deletes the compiler-generated assembly file. This is the default.

-nokeeplst Does not keep the assembly listing file (.lst). This is the default.

-nolist Does not produce a source listing. All errors are identified on the console. This is
the default.

-nolistinc Does not show include files in the compiler listing file. This is the default.

-nooptlink Sets the call frame as dynamic. This is the default.

-nopromote Turns off ANSI promotion. The –nopromote option is deprecated.

-noquiet Displays the title information. This is the default.

-noreduceopt Perform all of the optimizations. This is the default.
Note: Debugging is allowed when this option is selected. With -noredeuceopt
and
–debug, the program can still be debugged, but it might be limited for some cases

-noregvar Turns off the use of register variables.

-optlink Sets the call frame as static.

-promote Turns on ANSI promotion. This is the default.

-quiet Suppresses title information that is normally displayed to the screen. Errors and
warnings are still displayed.

-reduceopt Reduces optimization for easier debugging. The default is noreduceopt.
Note: Debugging is allowed when this option is not selected. With -noredeuc-
eopt and –debug, the program can still be debugged, but it might be limited for
some cases.

-regvar[:val] Specifies the number of registers used for variables. The default is 8 registers.

Table 9. Compiler Command Line Options (Continued)

Option Name Description

UM013034-1210 Compiler Command Line Options

Zilog Developer Studio II – Z8 Encore!®

User Manual

463

-stdinc:"path" Sets the path for the standard include files. This defines the location of include
files using the #include <file.h> syntax. Multiple paths are separated by semi-
colons. For example:
 -stdinc:"c:\rtl;c:\myinc"

In this example, the compiler looks for the include file in
1. the project directory
2. the c:\rtl directory
3. the c:\myinc directory
4. the default directory
If the file is not found after searching the entire path, the compiler flags an error.

The default standard includes are located in the following directories:
 <ZDS Installation Directory>\include\zilog
where <ZDS Installation Directory> is the directory in which Zilog Devel-
oper Studio was installed. By default, this is C:\Program
Files\Zilog\ZDSII_Z8Encore!_<version>, where <version> might be
4.11.0 or 5.0.0.

Omitting this switch tells the compiler to search only the current and default direc-
tories.

-usrinc:"path" Sets the search path for user include files. This defines the location of include files
using the #include "file.h" syntax. Multiple paths are separated by semicolons.
For example:
 -usrinc:"c:\rtl;c:\myinc"
In this example, the compiler looks for the include file in
1. the project directory
2. the c:\rtl directory
3. the c:\myinc directory
4. the directory of the file from where the file is included
5. the directories listed under the -stdinc command
6. the default directory

If the file is not found after searching the entire path, the compiler flags an error.
Omitting this switch tells the compiler to search only the current directory.

-version Prints the version number of the compiler.

Table 9. Compiler Command Line Options (Continued)

Option Name Description

Appendix C. Running ZDS II from the Command Line UM013034-1210

464

Zilog Developer Studio II – Z8 Encore!®

User Manual

Librarian Command Line Options

The following table describes the librarian command line options.

Linker Command Line Options

See Using the Linker/Locator on page 327 for the structure of the command file.

Table 10. Librarian Command Line Options

Option Name Description

@file Takes options from a file. (This option can be used only on the command line, not inside
a file.)

-help Displays the librarian help screen.

Libfile= Specifies the library to create, modify, or extract from. This must precede any commands
to modify or read from a library.

List Instructs the librarian to list the contents of the library. Note: The command is list, or
LIST, not -list.

-noquiet Displays the title information.

-nowarn Suppresses warning messages.

+objectfile Instructs the librarian to add objectfile to the library. (If object file is already there, gener-
ates a message and ignores the command.)

-+objectfile Instructs the librarian to remove objectfile from the library if necessary, then to add the
new version.

-objectfile Instructs the librarian to mark objectfile for removal from the library. (Removal does not
actually occur until a rebuild command.)

*objectfile Instructs the librarian to extract objectfile from the library.

-quiet Suppresses title information that is normally displayed to the screen. Errors and warnings
are still displayed. The default setting is to display title information.

Rebuild Instructs the librarian to rebuild the library, removing any object files marked for removal
and otherwise compacting the library.

-version Displays the version number of the librarian.

-warn Displays warnings.

UM013034-1210 Appendix D. Using the Command Processor

Zilog Developer Studio II – Z8 Encore!®

User Manual

465

Appendix D. Using the Command Processor

The Command Processor allows you to use commands or script files to automate the exe-
cution of a significant portion of the integrated development environment (IDE). This sec-
tion covers the following topics:

• Sample Command Script File on page 470

• Supported Script File Commands on page 472

• Running the Flash Loader from the Command Processor on page 494

You can run commands in one of the following ways:

• Using the Command Processor toolbar in the IDE.

Commands entered into the Command Processor toolbar are executed after you
press the Enter (or Return) key or click the Run Command button. The toolbar is
described in Command Processor Toolbar on page 22.

• Using the batch command to run a command script file from the Command Proces-
sor toolbar.

For example:

batch "c:\path\to\command\file\runall.cmd"
batch "commands.txt"

• Passing a command script file to the IDE when it is started.

You must precede the script file with an at symbol (@) when passing the command file
to the IDE on the command line.

For example:

zds2ide @c:\path\to\command\file\runall.cmd
zds2ide @commands.txt

Processed commands are echoed, and associated results are displayed in the Command
Output window in the IDE and, if logging is enabled (see log on page 480), in the log file
as well.

Commands are not case sensitive.

In directory or path-based parameters, you can use \, \\, or / as separators as long as you
use the same separator throughout a single parameter. For example, the following exam-
ples are legal:

cd "..\path\to\change\to"
cd "..\\path\\to\\change\\to"
cd "../path/to/change/to"

Appendix D. Using the Command Processor UM013034-1210

466

Zilog Developer Studio II – Z8 Encore!®

User Manual

The following examples are illegal:

cd "..\path/to\change/to"
cd "..\\path\to\change\to"

Table 11 lists ZDS II menu commands and dialog box options that have corresponding
script file commands.

Table 11. Script File Commands

ZDS II
Menus ZDS II Commands Dialog Box Options Script File Commands Location

File New Project new project page 481

Open Project open project page 482

Exit exit page 479

Edit Manage Breakpoints list bp page 480

Go to Code

Enable All

Disable All

Remove cancel bp page 473

Remove All cancel all page 473

Project Add Files add file page 472

Project Settings
(General page)

CPU Family page 486

CPU option general cpu

Show Warnings option general warn

Generate Debug
Information

option general debug

Ignore Case of Symbols
(only available for
Assembly Only projects)

option general igcase

Intermediate Files Directory option general outputdir

UM013034-1210 Appendix D. Using the Command Processor

Zilog Developer Studio II – Z8 Encore!®

User Manual

467

Project
(cont’d)

Project Settings
(Assembler page)

Includes option assembler include page 483

Defines option assembler define

Generate Listing Files (.lst) option assembler list

Expand Macros option assembler listmac

Page Width option assembler
pagewidth

Page Length option assembler pagelen

Jump Optimization option assembler sdiopt

Project Settings
(Code Generation page)

Safest option compiler codegen page 484

Small and Debuggable option compiler codegen

Smallest Possible option compiler codegen

User Defined option compiler codegen

Limit Optimizations for
Easier Debugging

option compiler reduceopt

Memory Model option compiler model

Frames option compiler optlink

Parameter Passing option compiler fastcall

Project Settings
(Listing Files page)

Generate C Listing Files
(.lis)

option compiler list page 484

With Include Files option compiler listinc

Generate Assembly Source
Code

option compiler keepasm

Generate Assembly Listing
Files (.lst)

option compiler keeplst

Project Settings
(Preprocessor page)

Preprocessor Definitions option compiler define page 484

Standard Include Path option compiler stdinc

User Include Path option compiler usrinc

Project Settings
(Advanced page)

Use Register Variables option compiler regvar page 484

Generate Printfs Inline option compiler genprintf

Bit-Field Packing option compiler bfpack

Table 11. Script File Commands (Continued)

ZDS II
Menus ZDS II Commands Dialog Box Options Script File Commands Location

Appendix D. Using the Command Processor UM013034-1210

468

Zilog Developer Studio II – Z8 Encore!®

User Manual

Project
(cont’d)

Project Settings
(Deprecated page)

Place Const Variables in
ROM

option compiler const page 484

Disable ANSI Promotions option compiler promote

Project Settings
(Librarian page)

Output File Name option librarian outfile page 486

Project Settings
(ZSL page)

Include Zilog Standard
Library (Peripheral
Support)

option middleware usezsl page 488

Ports option middleware zslports

UARTs option middleware zsluarts

Project Settings
(Commands page)

Always Generate from
Settings

option linker createnew page 486

Additional Directives option linker
useadddirective

Edit (Additional Linker
Directives dialog box)

option linker directives

Use Existing option linker linkctlfile

Project Settings
(Objects and Libraries
page; only available for
Static Library projects)

Additional Object/Library
Modules

option linker objlibmods page 486

Standard option linker startuptype

Included in Project option linker startuptype

Use Standard Startup
Linker Commands

option linker
startuplnkcmds

C Runtime Library option linker usecrun

Floating Point Library option linker fplib

Zilog Standard Library
(Peripheral Support)

option middleware usezsl page 488

Table 11. Script File Commands (Continued)

ZDS II
Menus ZDS II Commands Dialog Box Options Script File Commands Location

UM013034-1210 Appendix D. Using the Command Processor

Zilog Developer Studio II – Z8 Encore!®

User Manual

469

Project
(cont’d)

Project Settings
(Address Spaces page)

ROM option linker rom page 486

RData option linker rdata

EData option linker edata

NVDS (only available for
Z8 Encore! XP 4K and 16K
devices)

option linker nvds

Use PRAM checkbox option linker praminuse

Use PRAM field
(PRAM is only available for
the Z8 Encore! XP F1680
series)

option linker pram

Project Settings
(Warnings page)

Treat All Warnings as Fatal option linker warnisfatal page 486

Treat Undefined Symbols
as Fatal

option linker undefisfatal

Warn on Segment Overlap option linker warnoverlap

Project Settings
(Output page)

Output File Name option linker of page 486

Generate Map File option linker map

Sort Symbols By option linker sort

Show Absolute Addresses
in Assembly

option linker relist

Executable Formats option linker exeform

Fill Unused Hex File Bytes
with 0xFF

option linker padhex

Maximum Bytes per Hex
File Line

option linker maxhexlen

Project Settings
(Debugger page)

Use Page Erase Before
Flashing

Target target set page 493

 Setup target options page 492

 Add target create page 491

 Copy target copy page 491

 Delete

Table 11. Script File Commands (Continued)

ZDS II
Menus ZDS II Commands Dialog Box Options Script File Commands Location

Appendix D. Using the Command Processor UM013034-1210

470

Zilog Developer Studio II – Z8 Encore!®

User Manual

Sample Command Script File

A script file is a text-based file that contains a collection of commands. The file can be
created with any editor that can save or export files in a text-based format. Each command
must be listed on its own line. Anything following a semicolon (;) is considered a com-
ment.

The following is a sample command script file:

; change to correct default directory
cd "m:\Z8Encore\test\focustests"
open project "focus1.zdsproj"

Project
(cont’d)

Project Settings
(Debugger page, con’t’d)

Debug Tool debugtool set page 476

 Setup debugtool set page 476

Export Makefile makfile page 481

makefile page 481

Build Build build page 473

Rebuild All rebuild page 489

Stop Build stop page 491

Set Active Configuration set config page 490

Manage Configurations set config page 490

delete config

Debug Stop Debugging quit page 489

Reset reset page 489

Go go page 479

Break stop page 491

Step Into stepin page 490

Step Over step page 490

Step Out stepout page 490

Tools Flash Loader page 494

Calculate File Checksum checksum page 474

Show CRC crc page 474

Table 11. Script File Commands (Continued)

ZDS II
Menus ZDS II Commands Dialog Box Options Script File Commands Location

UM013034-1210 Sample Command Script File

Zilog Developer Studio II – Z8 Encore!®

User Manual

471

log "focus1.log" ; Create log file
log on ; Enable logging
rebuild
reset
bp done
go
wait 2000 ; Wait 2 seconds
print "pc = %x" reg PC
log off ; Disable logging
quit ; Exit debug mode
close project
wait 2000
open project "focus2.zdsproj"
reset
bp done
go
wait 2000 ; Wait 2 seconds
log "focus2.log" ; Open log file
log on ; Enable logging
print "pc = %x" reg PC
log off ; Disable logging
quit
exit; Exit debug mode

This script consecutively opens two projects, sets a breakpoint at label done, runs to the
breakpoint, and logs the value of the PC register. After the second project is complete, the
script exits the IDE. The first project is also rebuilt.

Appendix D. Using the Command Processor UM013034-1210

472

Zilog Developer Studio II – Z8 Encore!®

User Manual

Supported Script File Commands

The Command Processor supports the following script file commands:

In the following syntax descriptions, items enclosed in angle brackets (< >) must be
replaced with actual values, items enclosed in square brackets ([]) are optional, double
quotes (") indicate where double quotes must exist, and all other text must be included as
is.

add file
The add file command adds the given file to the currently open project. If the full path
is not supplied, the current working directory is used. The syntax of the add file com-
mand is:

add file "<[path\]<filename>"

For example:

add file "c:\project1\main.c"

batch
The batch command runs a script file through the Command Processor. If the full path is
not supplied, the current working directory is used. The syntax of the batch command is:

batch [wait] "<[path\]<filename>"
<wait> blocks other executing batch files until the invoked batch file is

completed—useful when nesting batch files

add file
batch
bp
build
cancel all
cancel bp
cd
checksum
crc
debugtool copy
debugtool create
debugtool get
debugtool help
debugtool list
debugtool save
debugtool set
debugtool setup
defines

delete config
examine (?) for Expressions
examine (?) for Variables
exit
fillmem
go
list bp
loadmem
log
makfile or makefile
new project
open project
option
print
pwd
quit
rebuild
reset

savemem
set config
step
stepin
stepout
stop
target copy
target create
target get
target help
target list
target options
target save
target set
target setup
wait
wait bp

UM013034-1210 Supported Script File Commands

Zilog Developer Studio II – Z8 Encore!®

User Manual

473

For example:

BATCH "commands.txt"
batch wait "d:\batch\do_it.cmd"

bp
The bp command sets a breakpoint at a given label in the active file. The syntax can take
one of the following forms:

bp line <line number>

sets/removes a breakpoint on the given line of the active file.

bp <symbol>

sets a breakpoint at the given symbol. This version of the bp command can only be used
during a debug session.

For example:

bp main
bp line 20

build
The build command builds the currently open project based on the currently selected proj-
ect build configuration. This command blocks the execution of other commands until the
build process is complete. The syntax of the build command is:

build

cancel all
The cancel all command clears all breakpoints in the active file. The syntax of the
cancel all command is:

cancel all

cancel bp
The cancel bp command clears the breakpoint at the bp list index. Use the list bp
command to retrieve the index of a particular breakpoint. The syntax of the cancel bp
command is:

cancel bp <index>

For example:

cancel bp 3

Appendix D. Using the Command Processor UM013034-1210

474

Zilog Developer Studio II – Z8 Encore!®

User Manual

cd
The cd command changes the working directory to dir. The syntax of the cd command is:

cd "<dir>"

For example:

cd "c:\temp"
cd "../another_dir"

checksum
The checksum command calculates the checksum of a hex file. The syntax of the check-
sum command is:

checksum "<filename>"

For example, if you use the following command is:

checksum "ledblink.hex"

The file checksum for the example is:

0xCEA3

crc
The CRC command performs a cyclic redundancy check (CRC). The syntax can take one
of two forms:

• crc

calculates the CRC for the whole Flash memory.

• crc STARTADDRESS="<address>" ENDADDRESS="<endaddress>"

calculates the CRC for 4K-increment blocks. STARTADDRESS must be on a 4K bound-
ary; if the address is not on a 4K boundary, ZDS II produces an error message. ENDAD-
DRESS must be a 4K increment; if the end address is not a 4K increment, it is rounded
up to a 4K increment.

For example:

crc STARTADDRESS="1000" ENDADDRESS="1FFF"

debugtool copy
The debugtool copy command creates a copy of an existing debug tool with the given
new name. The syntax can take one of two forms:

• debugtool copy NAME="<new debug tool name>"

creates a copy of the active debug tool named the value given for NAME.

UM013034-1210 Supported Script File Commands

Zilog Developer Studio II – Z8 Encore!®

User Manual

475

• debugtool copy NAME="<new debug tool name>" SOURCE="<existing
debug tool name>"

creates a copy of the SOURCE debug tool named the value given for NAME.

For example:

debugtool copy NAME="Sim3" SOURCE="eZ80190"

debugtool create
The debugtool create command creates a new debug tool with the given name and
using the given communication type: usb, tcpip, ethernet, or simulator. The syntax
of the debugtool create command is:

debugtool create NAME="<debug tool name>" COMMTYPE="<comm type>"

For example:

debugtool create NAME="emulator2" COMMTYPE="ethernet"

debugtool get
The debugtool get command displays the current value for the given data item for the
active debug tool. Use the debugtool setup command to view available data items and
current values. The syntax of the debugtool get command is:

debugtool get "<data item>"

For example:

debugtool get "ipAddress"

debugtool help
The debugtool help command displays all debugtool commands. The syntax of the
debugtool help command is:

debugtool help

debugtool list
The debugtool list command lists all available debug tools. The syntax can take one
of two forms:

• debugtool list

displays the names of all available debug tools.

• debugtool list COMMTYPE="<type>"

displays the names of all available debug tools using the given communications type:
usb, tcpip, ethernet, or simulator.

For example:

Appendix D. Using the Command Processor UM013034-1210

476

Zilog Developer Studio II – Z8 Encore!®

User Manual

debugtool list COMMTYPE="ethernet"

debugtool save
The debugtool save command saves a debug tool configuration to disk. The syntax can
take one of two forms:

• debugtool save

saves the active debug tool.

• debugtool save NAME ="<Debug Tool Name>"

saves the given debug tool.

For example:

debugtool save NAME="USBSmartCable"

debugtool set
The debugtool set command sets the given data item to the given data value for the
active debug tool or activates a particular debug tool. The syntax can take one of two
forms:

• debugtool set "<data item>" "<new value>"

sets data item to new value for the active debug tool. Use debugtool setup to view
available data items and current values.

For example:

debugtool set "ipAddress" "123.456.7.89"

• debugtool set "<debug tool name>"

activates the debug tool with the given name. Use debugtool list to view avail-
able debug tools.

debugtool setup
The debugtool setup command displays the current configuration of the active debug
tool. The syntax of the debugtool setup command is:

debugtool setup

defines
The defines command provides a mechanism to add to, remove from, or replace define
strings in the compiler preprocessor defines and assembler defines options. This command
provides a more flexible method to modify the defines options than the option com-
mand, which requires that the entire defines string be set with each use. Each defines
parameter is a string containing a single define symbol, such as "TRACE" or
"_SIMULATE=1". The defines command can take one of three forms:

UM013034-1210 Supported Script File Commands

Zilog Developer Studio II – Z8 Encore!®

User Manual

477

• defines <compiler|assembler> add "<new define>"

adds the given define to the compiler or assembler defines, as indicated by the first
parameter.

• defines <compiler|assembler> replace "<new define>" "<old
define>"

replaces <old define> with <new define> for the compiler or assembler defines, as
indicated by the first parameter. If <old define> is not found, no change is made.

• defines <compiler|assembler> remove "<define to be removed>"

removes the given define from the compiler or assembler defines, as indicated by the
first parameter.

For example:

defines compiler add "_TRACE"
defines assembler add "_TRACE=1"
defines assembler replace "_TRACE" "_NOTRACE"
defines assembler replace "_TRACE=1" "_TRACE=0"
defines compiler remove "_NOTRACE"

delete config
The delete config command deletes the given existing project build configuration.
The syntax of the delete config command is:

delete config "<config_name>"

If <config_name> is active, the first remaining build configuration, if any, is made active.
If <config_name> does not exist, no action is taken.

For example:

delete config "MyDebug"

examine (?) for Expressions
The examine command evaluates the given expression and displays the result. It accepts
any legal expression made up of constants, program variables, and C operators. The exam-
ine command takes the following form:

? [<data_type>] [<radix>] <expr> [:<count>]

<data_type> can consist of one of the following types:

short
int[eger]
long
ascii
asciz

Appendix D. Using the Command Processor UM013034-1210

478

Zilog Developer Studio II – Z8 Encore!®

User Manual

<radix> can consist of one of the following types:

dec[imal]
hex[adecimal]
oct[al]
bin[ary]

Omitting a <data_type> or <radix> results in using the $data_type or $radix pseudo-
variable, respectively.

[:<count>] represents the number of items to display.

The following are examples:

? x

shows the value of x using $data_type and $radix.

? ascii STR

shows the ASCII string representation of STR.

? 0x1000

shows the value of 0x1000 in the $data_type and $radix.

? *0x1000

shows the byte at address 0x1000.

? *0x1000 :25

shows 25 bytes at address 0x1000.

? L0

shows the value of register D0:0 using $data_type and $radix.

? asciz D0:0

shows the null-terminated string pointed to by the contents of register D0:0.

examine (?) for Variables
The examine command displays the values of variables. This command works for values
of any type, including arrays and structures. The syntax is:

? <expression>

The following are examples:

To see the value of z, enter

?z

To see the nth value of array x, enter

? x[n]

UM013034-1210 Supported Script File Commands

Zilog Developer Studio II – Z8 Encore!®

User Manual

479

To see all values of array x, enter

?x

To see the nth through the n+5th values of array x, enter

?x[n]:5

If x is an array of pointers to strings, enter

? asciz *x[n]

When displaying a structure's value, the examine command also displays the names of
each of the structure’s elements.

exit
The exit command exits the IDE. The syntax of the exit command is:

exit

fillmem
The fillmem command fills a block of a specified memory space with the specified
value. The functionality is similar to the Fill Memory command available from the context
menu in the Memory window (see Filling Memory on page 372). The syntax of the
fillmem command is:

fillmem SPACE="<displayed spacename>" FILLVALUE="<hexcadecimal
value>"
[STARTADDRESS="<hexadecimal address>"] [ENDADDRESS="<hexadecimal
address>"]

If STARTADDRESS and ENDADDRESS are not specified, all of the memory contents of a
specified space are filled.

For example:

fillmem SPACE="ROM" VALUE="AA"
fillmem SPACE="ROM" VALUE="AA" STARTADDRESS="1000"
ENDADDRESS="2FFF"

go
The go command executes the program code from the current program counter until a
breakpoint or, optionally, a symbol is encountered. This command starts a debug session if
one has not been started. The go command can take one of the following forms:

• go

Resumes execution from the current location.

Note:

Appendix D. Using the Command Processor UM013034-1210

480

Zilog Developer Studio II – Z8 Encore!®

User Manual

• go <symbol>

Resumes execution from the current location and stops at the address associated with
the given symbol, assuming the given symbol is valid and available. If the symbol is
not found, the command has no effect. This version of the go command can only be
used during a debug session.

The following are examples:

go

go myfunc

list bp
The list bp command displays a list of all of the current breakpoints of the active file.
The syntax of the list bp command is:

list bp

loadmem
The loadmem command loads the data of an Intel hex file, a binary file, or a text file to a
specified memory space at a specified address. The functionality is similar to the Load
from File command available from the context menu in the Memory window (see Loading
from a File on page 374). The syntax of the loadmem command is:

loadmem SPACE="<displayed spacename>" FORMAT=<HEX | BIN |TEXT>
"<[PATH\]name>"
[STARTADDRESS="<hexadecimal address>"]

If STARTADDRESS is not specified, the data is loaded at the memory lower address.

For example:

loadmem SPACE="RDATA" FORMAT=BIN "c:\temp\file.bin"
STARTADDRESS="20"
loadmem SPACE="ROM" FORMAT=HEX "c:\temp\file.hex"
loadmem SPACE="ROM" FORMAT=TEXT "c:\temp\file.txt"
STARTADDRESS="1000"

log
The log command manages the IDE’s logging feature. The log command can take one of
three forms:

• log "<[path\]filename>" [APPEND]

sets the file name for the script file. If APPEND is not provided, an existing log file
with the same name is truncated when the log is next activated.

• log on

activates the logging of data.

UM013034-1210 Supported Script File Commands

Zilog Developer Studio II – Z8 Encore!®

User Manual

481

• log off

deactivates the logging of data.

For example:

log "buildall.log"

log on

log off

makfile or makefile
The makfile and makefile commands export a make file for the current project. The
syntax can take one of two forms:

• makfile "<[path\]file name>"

• makefile "<[path\]file name>"

If path is not provided, the current working directory is used.

For example:

makfile "myproject.mak"

makefile "c:\projects\test.mak"

new project
The new project command creates a new project designated by project_name, target,
and the type supplied. If the full path is not supplied, the current working directory is used.
By default, existing projects with the same name are replaced. Use NOREPLACE to prevent
the overwriting of existing projects. The syntax can take one of the following forms:

• new project "<[path\]name>" "<target>" "<exe|lib>" ["<cpu>"]
[NOREPLACE]

new project "<[path\]name>" "<target>" "<project type>"
"<exe|lib>" "<cpu>" [NOREPLACE]

where

• <name> is the path and name of the new project. If the path is not provided, the cur-
rent working directory is assumed. Any file extension can be used, but none is
required. If not provided, the default extension of .zdsproj is used.

• <target> must match that of the IDE (that is, the Z8 Encore! IDE can only create Z8
Encore! based projects).

• <exe|lib> The type parameter must be either exe (Executable) or lib (Static
Library).

• ["<cpu>"] is the name of the CPU to configure for the new project.

Appendix D. Using the Command Processor UM013034-1210

482

Zilog Developer Studio II – Z8 Encore!®

User Manual

• "<project type>" can be "Standard" or "Assembly Only". Standard is the
default.

• NOREPLACE Optional parameter to use to prevent the overwriting of existing projects

For example:

new project "test1.zdsproj" "Z8Encore" "exe"
new project "test1.zdsproj" "Z8Encore" "exe" NOREPLACE

open project
The open project command opens the project designated by project_name. If the full
path is not supplied, the current working directory is used. The command fails if the spec-
ified project does not exist. The syntax of the open project command is:

open project "<project_name>"

For example:

open project "test1.zdsproj"
open project "c:\projects\test1.zdsproj"

option
The option command manipulates project settings for the active build configuration of
the currently open project. Each call to option applies to a single tool but can set multiple
options for the given tool. The syntax for the option command is:

option <tool_name> expr1 expr2 . . . exprN,

where

expr is (<option name> = <option value>)

For example:

option general debug = TRUE
option compiler debug = TRUE keeplst = TRUE
option debugger readmem = TRUE
option linker igcase = "FALSE"

option linker rom = 0000-FFFF
option general cpu=z8f64

Many of these script file options are also available from the command line. For more
details, see Appendix C. Running ZDS II from the Command Line on page 455.

The following table lists some command line examples and the corresponding script file
commands.

Note:

UM013034-1210 Supported Script File Commands

Zilog Developer Studio II – Z8 Encore!®

User Manual

483

The following script file options are available:

• Assembler Options on page 483

• Compiler Options on page 484

• Debugger Options on page 485

• General Options on page 486

• Librarian Options on page 486

• Linker Options on page 486

• ZSL Options on page 488

Assembler Options

Table 12. Command Line Examples

Script File Command Examples
Corresponding Command Line
Examples

option compiler keepasm = TRUE eZ8cc -keepasm

option compiler
keepasm = FALSE

eZ8cc -nokeepasm

option compiler const
= RAM

eZ8cc -const:RAM

option general debug =
TRUE

eZ8asm -debug

option linker igcase =
"FALSE"

eZ8link -NOigcase

option librarian warn
= FALSE

eZ8lib -nowarn

Table 13. Assembler Options

Option Name
Description or Corresponding Option in
Project Settings Dialog Box Acceptable Values

define Assembler page, Defines field string (separate multiple defines
with semicolons)

include Assembler page, Includes field string (separate multiple paths
with semicolons)

list Assembler page, Generate Assembler Listing
Files (.lst) checkbox

TRUE, FALSE

Appendix D. Using the Command Processor UM013034-1210

484

Zilog Developer Studio II – Z8 Encore!®

User Manual

Compiler Options

listmac Assembler page, Expand Macros checkbox TRUE, FALSE

pagelen Assembler page, Page Length field integer

pagewidth Assembler page, Page Width field integer

quiet Toggles quiet assemble. TRUE, FALSE

sdiopt Assembler page, Jump Optimization checkbox
Toggles Jump Optimization.

TRUE, FALSE

Table 14. Compiler Options

Option Name
Description or Corresponding Option in Project
Settings Dialog Box Acceptable Values

bfpack Advanced page, Bit-Field Packing field “tight”, “compatible”

codegen Code Generation page; Safest, Small and Debuggable,
Smallest Possible, and User Defined buttons

“safest”, “smallde-
bug”, “smallest”,
“userdefined”

const Deprecated page, Place Const Variables in ROM
Selects where const variables are placed. For example:
option compiler const=RAM

'ROM', 'RAM'

define Preprocessor page, Preprocessor Definitions field string (separate
multiple defines
with semicolons)

fastcall Code Generation page, Parameter Passing drop-down list
box
Select “true” for register parameter passing or “false” for
memory parameter passing.

“true”, “false”

genprintf Advanced page, Generate Printfs Inline checkbox TRUE, FALSE

keepasm Listing Files page, Generate Assembly Source Code
checkbox

keeplst Listing Files page, Generate Assembly Listing Files (.lst)
checkbox

TRUE, FALSE

list Listing Files page, Generate C Listing Files (.lis) checkbox TRUE, FALSE

listinc Listing Files page, With Include Files checkbox
Only applies if list option is currently true.

TRUE, FALSE

Table 13. Assembler Options (Continued)

Option Name
Description or Corresponding Option in
Project Settings Dialog Box Acceptable Values

UM013034-1210 Supported Script File Commands

Zilog Developer Studio II – Z8 Encore!®

User Manual

485

Debugger Options

For debugger options, use the target help and debugtool help commands.

model Code Generation page, Model
Selects the memory model. Select S for a small memory
model, which is the most efficient model. Select L for a
large memory model, which is less efficient than the small
model. The default is L.

'L', 'Large', 'S',
'Small'

optlink Code Generation page, Frames
Uses a static frame for local variables and function argu-
ments. This switch is required if the supplied run-time
library is used. Although this switch is not required in other
cases, it results in smaller, faster executables by minimiz-
ing use of the stack.

TRUE (for static
frames), FALSE (for
dynamic frames)

optspeed Toggles optimizing for speed. TRUE (optimize for
speed), FALSE
(optimize for size)

promote Deprecated page, Disable ANSI Promotions checkbox
NOTE: This option is deprecated.

TRUE, FALSE
(FALSE disables
the ANSI promo-
tions)

reduceopt Code Generation page, Limit Optimizations for Easier
Debugging checkbox

TRUE, FALSE

regvar Advanced page, Use Register Variables 'off', 'normal',
'aggressive'

stdinc Preprocessor page, Standard Include Path field string (separate
multiple paths with
semicolons)

usrinc Preprocessor page, User Include Path field string (separate
multiple paths with
semicolons)

Table 14. Compiler Options (Continued)

Option Name
Description or Corresponding Option in Project
Settings Dialog Box Acceptable Values

Appendix D. Using the Command Processor UM013034-1210

486

Zilog Developer Studio II – Z8 Encore!®

User Manual

General Options

Librarian Options

Linker Options

Table 15. General Options

Option Name Corresponding Option in Project Settings Dialog Box Acceptable Values

cpu General page, CPU drop-down field
Sets the CPU.

string (valid CPU name)

debug General page, Generate Debug Information checkbox TRUE, FALSE

igcase General page, Ignore Case of Symbols checkbox TRUE, FALSE

outputdir General page, Intermediate Files Directory field
Sets the output directory.

string (path)

warn General page, Show Warnings checkbox TRUE, FALSE

Table 16. Librarian Options

Option
Name

Corresponding Option in Project Settings
Dialog Box Acceptable Values

outfile Librarian page, Output File Name field
Sets the output file name for the built library.

string (library file name with option
path)

Table 17. Linker Options

Option Name
Description or Corresponding Option in Project
Settings Dialog Box Acceptable Values

createnew Commands page, Always Generate from Settings but-
ton

TRUE, FALSE

directives Additional Linker Directives dialog box
Contains the text for additional directives. This is
ignored if useadddirective is false.

string

edata Address Spaces page, EData field
Sets the size range for the EDATA memory space.

string (min–max, for
example, “0000–FFFF”

exeform Output page, Executable Formats area
Sets the resulting executable format.

string: “IEEE 695” or
"Intel Hex32"

fplib Objects and Libraries page, Floating Point Library drop-
down list box

string (“real”, “dummy”,
or “none”)

UM013034-1210 Supported Script File Commands

Zilog Developer Studio II – Z8 Encore!®

User Manual

487

linkctlfile Sets the linker command file (path and) name. The
value is only used when createnew is set to 1.

string

map Output page, Generate Map File checkbox
Toggles map file generation.

TRUE, FALSE

maxhexlen Output page, Maximum Bytes per Hex File Line check-
box

16, 32, 64, or 128

nvds Address Spaces page, NVDS field
Sets the size range for the NVDS memory space.

string (min–max, for
example, “00–FF”)

objlibmods Objects and Libraries page, Additional Object/Library
Modules field
Sets the object/library modules to be linked into the
result file.

string (separate multi-
ple modules names
with commas)

of Output page, Output File Name field
Sets the output file (path and) name.

string (path and file
name, excluding file
extension)

padhex Output page, Fill Unused Hex File Bytes with 0xFF
checkbox

TRUE, FALSE

pram Address Spaces page, Use PRAM field string (min–max, for
example, “00–FF”)

praminuse Address Spaces page, Use PRAM checkbox
Valid for the Z8 Encore! XP F1680 Series devices only

true, false

rdata Address Spaces page, RData field string (min–max, for
example, “00–FF”)

relist Output page, Show Absolute Addresses in Assembly
Listings checkbox

TRUE, FALSE

rom Address Spaces page, ROM field
Sets the size range for the ROM memory space.

string (min–max, for
example, “00–FF”)

sort Output page, Sort Symbols By buttons string

startuplnkcmds Objects and Libraries page, Use Standard Startup
Linker Commands checkbox

string (“standard” or
“included”)

startuptype Objects and Libraries page, C Startup Module area string (“standard” or
“included”)

useadddirectives Commands page, Additional Directives checkbox TRUE, FALSE

Table 17. Linker Options (Continued)

Option Name
Description or Corresponding Option in Project
Settings Dialog Box Acceptable Values

Appendix D. Using the Command Processor UM013034-1210

488

Zilog Developer Studio II – Z8 Encore!®

User Manual

ZSL Options

For ZSL options, the tool_name is middleware. For example:

option middleware usezsl = TRUE

print
The print command writes formatted data to the Command Output window and the log
(if the log is enabled). Each expression is evaluated, and the value is inserted into the
format_string, which is equivalent to that supported by a C language printf. The syntax
of the print command is:

print "<format_string>" expression1 expression2 ... expressionN

For example:

PRINT "the pc is %x" REG PC
print "pc: %x, sp: %x" REG PC REG SP

usecrun Objects and Libraries page, C Runtime Library check-
box
Toggles the inclusion of the C run-time library.

TRUE, FALSE

undefisfatal Warnings page, Treat Undefined Symbols as Fatal
checkbox

TRUE, FALSE

warnisfatal Warnings page, Treat All Warnings as Fatal checkbox TRUE, FALSE

warnoverlap Warnings page, Warn on Segment Overlap checkbox TRUE, FALSE

Table 18. ZSL Options

Option Name Corresponding Option in Project Settings Dialog Box Acceptable Values

usezsl ZSL page, Include Zilog Standard Library (Peripheral Sup-
port) checkbox or Objects and Libraries page, Zilog Stan-
dard Library (Peripheral Support) checkbox

TRUE, FALSE

zslports ZSL page, Ports area comma-delimited string
(“Port A,Port D”)

zsluarts ZSL page, UARTs area comma-delimited string
(“UART0,UART1”)

Table 17. Linker Options (Continued)

Option Name
Description or Corresponding Option in Project
Settings Dialog Box Acceptable Values

UM013034-1210 Supported Script File Commands

Zilog Developer Studio II – Z8 Encore!®

User Manual

489

pwd
The pwd command retrieves the current working directory. The syntax of the pwd com-
mand is:

pwd

quit
The quit command exits the current debug session. The syntax of the quit command is:

quit

rebuild
The rebuild command rebuilds the currently open project. This command blocks the
execution of other commands until the build process is complete. The syntax of the
rebuild command is:

rebuild

reset
The reset command resets execution of program code to the beginning of the program.
This command starts a debug session if one has not been started. The syntax of the reset
command is:

reset

By default, the reset command resets the PC to symbol 'main'. If you deselect the Reset
to Symbol 'main' (Where Applicable) checkbox on the Debugger tab of the Options
dialog box (see Options—Debugger Tab on page 131), the PC resets to the first line of the
program.

savemem
The savemem command saves the memory content of the specified range into an Intel hex
file, a binary file, or a text file. The functionality is similar to the Save to File command
available from the context menu in the Memory window (see Saving to a File on
page 373). The syntax of the savemem command is:

savemem SPACE="<displayed spacename>" FORMAT=<HEX | BIN |TEXT>
"<[PATH\]name>"
[STARTADDRESS="<hexadecimal address>"] [ENDADDRESS="<hexadecimal
address>"]

If STARTADDRESS and ENDADDRESS are not specified, all of the memory contents of a
specified space are saved.

For example:
savemem SPACE="RDATA" FORMAT=BIN "c:\temp\file.bin" STARTADDRESS="20"
ENDADDRESS="100"

Appendix D. Using the Command Processor UM013034-1210

490

Zilog Developer Studio II – Z8 Encore!®

User Manual

savemem SPACE="ROM" FORMAT=HEX "c:\temp\file.hex"
savemem SPACE="ROM" FORMAT=TEXT "c:\temp\file.txt" STARTADDRESS="1000"
ENDADDRESS="2FFF"

set config
The set config command activates an existing build configuration for or creates a new
build configuration in the currently loaded project. The syntax of the set config com-
mand is:

set config "config_name" ["copy_from_config_name"]

The set config command performs the following tasks:

• Activates config_name if it exists.

• Creates a new configuration named config_name if it does not yet exist. When com-
plete, the new configuration is made active. When creating a new configuration, the
Command Processor copies the initial settings from the copy_from_config_name
parameter, if provided. If not provided, the active build configuration is used as the
copy source. If config_name exists, the copy_from_config_name parameter is ignored.

The active/selected configuration is used with commands such as option tool
name="value" and build.

step
The step command performs a single step (stepover) from the current location of the pro-
gram counter. If the count is not provided, a single step is performed. This command starts
a debug session if one has not been started. The syntax of the step command is:

step

stepin
The stepin command steps into the function at the PC. If there is no function at the cur-
rent PC, this command is equivalent to step. This command starts a debug session if one
has not been started. The syntax of the stepin command is:

stepin

stepout
The stepout command steps out of the function. This command starts a debug session if
one has not been started. The syntax of the stepout command is:

stepout

Note:

UM013034-1210 Supported Script File Commands

Zilog Developer Studio II – Z8 Encore!®

User Manual

491

stop
The stop command stops the execution of program code. The syntax of the stop com-
mand is:

stop

target copy
The target copy command creates a copy of the existing target with a given name with
the given new name. The syntax can take one of two forms:

• target copy NAME="<new target name>"

creates a copy of the active target named the value given for NAME.

• target copy NAME="<new target name>" SOURCE="<existing target
name>"

creates a copy of the SOURCE target named the value given for NAME.

For example:

target copy NAME="mytarget" SOURCE="Sim3"

target create
The target create command creates a new target with the given name and using the
given CPU. The syntax of the target create command is:

target create NAME="<target name>" CPU="<cpu name>"

For example:

target create NAME="mytarget" CPU="eZ80190"

target get
The target get command displays the current value for the given data item for the
active target. The syntax of the target get command is:

target get "<data item>"

Use the target setup command to view available data items and current values.

For example:

target get "cpu"

target help
The target help command displays all target commands. The syntax of the target
help command is:

target help

Appendix D. Using the Command Processor UM013034-1210

492

Zilog Developer Studio II – Z8 Encore!®

User Manual

target list
The target list command lists all available targets. The syntax can take one of three
forms:

• target list

displays the names of all available targets (restricted to the currently configured CPU
family).

• target list CPU="<cpu name>"

displays the names of all available targets associated with the given CPU name.

• target list FAMILY="<family name>"

displays the names of all available targets associated with the given CPU family name.

For example:

target list FAMILY="eZ80"

target options

See a target in the following directory for a list of categories and options:

ZILOGINSTALL\ZDSII_product_version\targets

<ZDS Installation Directory>\targets

where <ZDS Installation Directory> is the directory in which Zilog Developer Studio
was installed. By default, this would be C:\Program
Files\Zilog\ZDSII_eZ80Acclaim!_<version>, where <version> might be
4.11.0 or 5.0.0.

To set a target value, use one of the following syntaxes:
target options CATEGORY="<Category>" OPTION="<Option>" "<token
name>"="<value to set>"
target options CATEGORY="<Category>" "<token name>"="<value to
set>"
target options "<token name>"="<value to set>"

To select a target, use the following syntax:

target options NAME ="<Target Name>"

target save
The target save command saves a target. To save the selected target, use the following
syntax:

target save

Note:

UM013034-1210 Supported Script File Commands

Zilog Developer Studio II – Z8 Encore!®

User Manual

493

To save a specified target, use the following syntax:

target save NAME="<Target Name>"

For example:

target save Name="Sim3"

target set
The target set command sets the given data item to the given data value for the active
target or activates a particular target. The syntax can take one of two forms:

• target set "<data item>" "<new value>"

Sets data item to new value for the active debug tool. Use target setup to view
available data items and current values.

For example:

target set "frequency" "20000000"

• target set "<target name>"

Activates the target with the given name. Use target list to view available targets.

target setup
The target setup command displays the current configuration. The syntax of the tar-
get setup command is:

target setup

wait
The wait command instructs the Command Processor to wait the specified milliseconds
before executing the next command. The syntax of the wait command is:

wait <milliseconds>

For example:

wait 5000

wait bp
The wait bp command instructs the Command Processor to wait until the debugger stops
executing. The optional max_milliseconds parameter provides a method to limit the
amount of time a wait takes (that is, wait until the debugger stops or max_milliseconds
passes). The syntax of the wait bp command is:

wait bp [max_milliseconds]

For example:

Appendix D. Using the Command Processor UM013034-1210

494

Zilog Developer Studio II – Z8 Encore!®

User Manual

wait bp
wait bp 2000

Running the Flash Loader from the Command Processor

You can run the Flash Loader from the Command field. Command Processor keywords
have been added to allow for easy scripting of the Flash loading process. Each of the
parameters is persistent, which allows for the repetition of the Flash and verification pro-
cesses with a minimum amount of repeated key strokes.

Use the following procedure to run the Flash Loader:

1. Create a project or open a project with a Z8 Encore! microcontroller selected in the
CPU Family and CPU fields of the General page of the Project Settings dialog box
(see General Page on page 58).

2. Select USBSmartCable as your debug tool (see Debug Tool on page 103) and click
Setup to select the appropriate serial number.

3. In the Command field (in the Command Processor toolbar), enter one of the com-
mand sequences in the following sections to use the Flash Loader:

– Displaying Flash Help on page 494

– Setting Up Flash Options on page 494

– Executing Flash Commands on page 495

– Examples on page 495

Displaying Flash Help

Setting Up Flash Options

Flash Setup Displays the Flash setup in the Command Output window

Flash Help Displays the Flash command format in the Command Output window

Flash Options "<File Name>" File to be flashed

Flash Options OFFSET = "<address>" Offset address in hex file

Flash Options INTMEM Set to internal memory

Flash Options NEBF Do not erase before flash

Flash Options EBF Erase before flash

Flash Options NISN Do not include serial number

Flash Options ISN Include a serial number

UM013034-1210 Running the Flash Loader from the Command

Zilog Developer Studio II – Z8 Encore!®

User Manual

495

Executing Flash Commands

The Flash Loader dialog box and the Command Processor interface use the same pa-
rameters. If an option is not specified with the Command Processor interface, the current
setting in the Flash Loader dialog box is used. If a setting is changed in the Command
Processor interface, the Flash Loader dialog box settings are changed.

Examples
The following are valid examples:

FLASH Options INTMEM
FLASH Options "c:\testing\test.hex"
FLASH BURN REPEAT

or

Flash Options NPBF Do not page-erase Flash mem-
ory; use mass erase

Flash Options PBF Page-erase Flash memory

Flash Options SERIALADDRESS = "<address>" Serial number address

Flash Options SERIALNUMBER = "<Number in Hex>" Initial serial number value

Flash Options SERIALSIZE = <1-8> Number of bytes in serial number

Flash Options INCREMENT = "<Decimal value>" Increment value for serial number

Flash READSERIAL Read the serial number

Flash READSERIAL REPEAT Read the serial number and repeat

Flash BURNSERIAL Program the serial number

Flash BURNSERIAL REPEAT Program the serial number and repeat

Flash ERASE Erase Flash memory

Flash ERASE REPEAT Erase Flash memory and repeat

Flash BURN Program Flash memory

Flash BURN REPEAT Program Flash memory and repeat

Flash BURNVERIFY Program and verify Flash memory

Flash BURNVERIFY REPEAT Program and verify Flash memory and repeat

Flash VERIFY Verify Flash memory

Flash VERIFY REPEAT Verify Flash memory and repeat

Caution:

Appendix D. Using the Command Processor UM013034-1210

496

Zilog Developer Studio II – Z8 Encore!®

User Manual

flash options intmem
flash options "c:\testing\test.hex"
flash burn repeat

The file test.hex is loaded into internal Flash memory. After the flashing is completed,
you are prompted to program an additional unit.

FLASH VERIFY

The file test.hex is verified against internal Flash memory.

FLASH SETUP

The current Flash Loader parameters settings are displayed in the Command Output win-
dow.

FLASH HELP

The current Flash Loader command options are displayed in the Command Output win-
dow.

Flash Options PBF

Page erase is enabled instead of mass erase for internal and external Flash programming.

UM013034-1210 Appendix E. Compatibility Issues

Zilog Developer Studio II – Z8 Encore!®

User Manual

497

Appendix E. Compatibility Issues

The following sections describe assembler and compiler compatibility:

• Assembler Compatibility Issues on page 497

• Compiler Compatibility Issues on page 500

Assembler Compatibility Issues

The following table shows the equivalences between Z8 Encore! directives and those of
other assemblers that are also supported by the Z8 Encore! assembler. ZMASM directives
that are compatible with Z8 Encore! directives are also listed. The Z8 Encore! assembler
directives in the left column are the preferred directives, but the assembler also accepts
any of the directives in the right column.

Table 19. Z8 Encore! Directive Compatibility

Z8 Encore!
Assembler Compatible With

ALIGN .align

ASCII .ascii

ASCIZ .asciz

ASECT .ASECT

ASG .ASG

ASSUME .ASSUME

BES .bes

BREAK .$BREAK,.$break

BSS .bss

CHIP chip, .cpu

CONTINUE .$CONTINUE, .$continue

DATA .data

DB .byte, .ascii, DEFB, FCB, STRING, .STRING, byte, .asciz

DD .double

DEFINE .define

DF .float

DL .long, long

Appendix E. Compatibility Issues UM013034-1210

498

Zilog Developer Studio II – Z8 Encore!®

User Manual

DR <none>

DS .block

DW .word, word, .int

DW24 .word24, .trio, .DW24

ELIF .ELIF, .ELSEIF, ELSEIF, .$ELSEIF, .$elseif

ELSE .ELSE, .$ELSE, .$else

END .end

ENDIF .endif, .ENDIF, ENDC, .$ENDIF, .$endif

ENDMAC .endm, ENDMACRO, .ENDMACRO, .ENDMAC, ENDM, .ENDM, MACEND,

.MACEND

ENDSTRUCT .ENDSTRUCT

ERROR .emsg

EQU .equ, .EQU, EQUAL, .equal

EVAL .EVAL

FCALL .FCALL

FILE .file

FRAME .FRAME

GREG GREGISTER

IF .if, .IF, IFN, IFNZ, COND, IFTRUE, IFNFALSE, .$IF, .$if, .IFTRUE

INCLUDE .include, .copy

LIST .list <on> or <off>, .LIST

MACCNTR <none>

MACEXIT <none>

MACLIST <none>

MACNOTE .mmsg

MACRO .macro, .MACRO

MLIST <none>

MNOLIST <none>

NEWBLOCK .NEWBLOCK

Table 19. Z8 Encore! Directive Compatibility (Continued)

Z8 Encore!
Assembler Compatible With

UM013034-1210 Assembler Compatibility Issues

Zilog Developer Studio II – Z8 Encore!®

User Manual

499

NEWPAGE .page [<len>] [<width>], PAGE

NIF IFZ, IFE, IFFALSE, IFNTRUE, .IFNTRUE

NOLIST .NOLIST

NOSAME IFDIFF, IFNSAME

ORG .org, ORIGIN

PE V

P0 NV

POPSEG <none>

PRINT <none>

PT <none>

PUSHSEG <none>

REPEAT .$REPEAT, .$repeat

SAME IFNDIFF, IFSAME

SBLOCK .SBLOCK

SCOPE <none>

SEGMENT .section, SECTION

STRUCT .STRUCT

TAG .TAG

TEXT .text

TITLE .title

UNTIL .$UNTIL, .until

VAR .VAR, SET, .SET

VECTOR <none>

WARNING .wmsg, MESSAGE

WEND .$WEND, .$wend

WHILE .$WHILE, .$while

XDEF .global, GLOBAL, .GLOBAL, .public, .def, public

XREF EXTERN, EXTERNAL, .extern, .ref

ZIGNORE <none>

Table 19. Z8 Encore! Directive Compatibility (Continued)

Z8 Encore!
Assembler Compatible With

Appendix E. Compatibility Issues UM013034-1210

500

Zilog Developer Studio II – Z8 Encore!®

User Manual

Compiler Compatibility Issues

Use of the #pragmas documented in this section should not be necessary in ZDS II release
4.10 and later. Zilog does not recommend their use, especially in new projects because it is
extremely difficult to validate that they continue to work correctly as the compiler is
updated and in all circumstances. They continue to be supported as they have been in older
releases and will be accepted by the compiler.

Compiler options can be set in the Project Settings dialog box (on the C pages) or by
using the #pragma directives described in this section.

If the #pragma directive is inserted in your code, it overrides the selections you made in
the Project Settings dialog box.

#pragma alias

Enables alias checking. The compiler assumes that program variables can be aliased. This
pragma is the default.

#pragma noalias

Disables alias checking. Before using this pragma, be sure that the program does not use
aliases, either directly or indirectly. An alias occurs when two variables can reference the
same memory location. The following example illustrates an alias:

func()
{
 int x,*p;
 p = &x; /* both “x” and “*p” refer to same location */
 .
 .
 .
}

If both *p and x are used below the assignment, then malignant aliases exist and the
NOALIAS switch must not be used. Otherwise, alias is benign, and the NOALIAS switch
can be used.

ZSECT .sect

ZUSECT .USECT

Table 19. Z8 Encore! Directive Compatibility (Continued)

Z8 Encore!
Assembler Compatible With

Note:

UM013034-1210 Compiler Compatibility Issues

Zilog Developer Studio II – Z8 Encore!®

User Manual

501

#pragma cpu <cpu name>

Defines the target processor to the compiler.

#pragma globalcopy

Enables global copy propagation.

#pragma noglobalcopy

Disables global copy propagation.

#pragma globalcse

Enables global common elimination unless local common subexpressions are disabled.

#pragma noglobalcse

Disables global copy subexpression elimination

#pragma globaldeadvar

Enables global dead variable removal.

#pragma noglobaldeadvar

Disables global dead variable removal.

#pragma globalfold

Enables global constant folding.

#pragma noglobalfold

Disables global constant folding.

#pragma intrinsics: <state>

Defines whether the compiler-defined intrinsic functions are to be expanded to inline
code.

The intrinsic property is only available for compiler-defined intrinsic functions; user-
defined intrinsics are not supported.

<state> can be ON or OFF. This pragma, with <state> ON, is the default.

#pragma nointrinsics

Disables the INTRINSICS switch.

Note:

Appendix E. Compatibility Issues UM013034-1210

502

Zilog Developer Studio II – Z8 Encore!®

User Manual

#pragma nobss

Does not put uninitialized static data in bss segment, instead it puts it in data segment and
initializes it at link time.

#pragma jumpopt

Enables jump optimizations.

#pragma nojumpopt

Disables jump optimizations.

#pragma localcopy

Enables local copy propagation.

#pragma nolocalcopy

Disables local copy propagation.

#pragma localcse

Enables local common subexpression elimination.

#pragma nolocalcse

Disables local and global common subexpression elimination.

#pragma localfold

Enables local constant folding.

#pragma nolocalfold

Disables local constant folding.

#pragma localopt

Enables all local optimizations.

#pragma nolocalopt

Disables all local optimizations.

#pragma noopt

Disables all optimizations.

#pragma optlink

Enables optimized linkage calling conventions.

UM013034-1210 Compiler Compatibility Issues

Zilog Developer Studio II – Z8 Encore!®

User Manual

503

#pragma nooptlink

Disables optimized linkage calling conventions.

#pragma optsize

Optimizes code to minimize size.

#pragma optspeed

Optimizes code to minimize execution time.

#pragma peephole

Enables peephole optimizations.

#pragma nopeephole

Disables peephole optimizations.

#pragma promote

Enables ANSI integer promotions.

#pragma nopromote

Disables ANSI integer promotions.

#pragma sdiopt

Performs span-dependent instruction optimization. This optimization results in branches
generated by the compiler taking the shortest form possible. This pragma is the default.

#pragma nosdiopt

Disables span-dependent instruction optimizations.

#pragma stkck

Performs stack checking.

#pragma nostkck

Does not perform stack checking.

#pragma strict

Checks for conformance to the ANSI standard and its obsolescent features. These include
old-style parameter type declarations, empty formal parameter lists, and calling functions
with no prototype in scope. When any of these features are used a warning is flagged. The

Appendix E. Compatibility Issues UM013034-1210

504

Zilog Developer Studio II – Z8 Encore!®

User Manual

compiler requires this switch for proper code generation because it makes use of a static
frame.

#pragma nostrict

Does not flag warnings for obsolete features.

505

Zilog Developer Studio II – Z8 Encore!®

User Manual

Index UM013034-1210

Index

Symbols
^ (bitwise exclusive or) 347
_ 202, 202
_ (underscore)

for assembly routine names 209
for external identifiers 213
for macro names 213

__AUS_SIZED_BY_TYPE__ 199
__BACKWARD_COMPATIBLE_BITFIELDS__

199
__BITFIELDS_OVERLAP_AUS__ 199
__BITFIELDS_PACK_L2R__ 199
__CONST_IN_RAM__ 199, 200
__CONST_IN_ROM__ 199, 200
__CPU_NAME__ 200
__DATE__ 200
__ENCORE__ 200
__EZ8__ 200
__FILE__ 200
__FPLIB__ 201
__LINE__ 200
__MODEL__ 201
__NEW_AU_AT_TYPE_CHANGE__ 200
__STDC__ 200
__TIME__ 200
__UNSIGNED_CHARS__ 200
__vectors_nnn segment 263
__ZDATE__ 201
__ZILOG__ 201
_Align keyword 194
_At keyword 191

placement of a variable 194
placement of consecutive variables 194

_DEBUG 202
_far_heapbot 237
_far_heaptop 238
_far_stack 237
_len_farbss 237
_len_fardata 237
_len_nearbss 237

_len_neardata 237
_len_pramseg 237
_low_far_romdata 237
_low_farbss 237
_low_fardata 237
_low_near_romdata 237
_low_nearbss 237
_low_neardata 237
_low_pram_romdata 237
_low_pramseg 237
_monitor pragma 191
_near_heapbot 238
_near_heaptop 238
_near_stack 237
_VECTORS_nnn segment 232
?, script file command

for expressions 477
for variables 478

.$.ENDIF 302

.$BREAK 304, 305

.$CONTINUE 304, 305

.$ELSE 302

.$ELSEIF 302

.$IF 301, 302, 307

.$REPEAT 302, 304, 308

.$UNTIL 304

.$WEND 305

.$WHILE 302, 305, 308

.COMMENT directive 279

.ENDSTRUCT directive 296

.ENDWITH directive 299

.ER 277

.FCALL directive 206

.FRAME directive 205

.FTOL operator 274

.hex file extension 98

.LTOFoperator 274

.map file extension 335

.R 277

.RR 277

Zilog Developer Studio II – Z8 Encore!®

User Manual

506

UM017104-1210 Index

.STRUCT directive 296

.TAG directive 297

.UNION directive 299

.WITH directive 299

.WRG 277
* (multiply) 345
/ (divide) 344
& (and) 342
Bytes drop-down list box 117
#include 68, 70, 71
#pragma alias 500
#pragma asm 193
#pragma cpu 501
#pragma globalcopy 501
#pragma globalcse 501
#pragma globaldeadvar 501
#pragma globalfold 501
#pragma interrupt 190
#pragma intrinsics 501
#pragma jumpopt 502
#pragma localcopy 502
#pragma localcse 502
#pragma localfold 502
#pragma localopt 502
#pragma noalias 500
#pragma nobss 502
#pragma noglobalcopy 501
#pragma noglobalcse 501
#pragma noglobaldeadvar 501
#pragma noglobalfold 501
#pragma nointrinsics 501
#pragma nojumpopt 502
#pragma nolocalcopy 502
#pragma nolocalcse 502
#pragma nolocalfold 502
#pragma nolocalopt 502
#pragma noopt 502
#pragma nooptlink 503
#pragma nopeephole 503
#pragma nopromote 503
#pragma nosdiopt 503
#pragma nostkck 503
#pragma nostrict 504
#pragma optlink 502

#pragma optsize 503
#pragma optspeed 503
#pragma peephole 503
#pragma PRAM 196
#pragma promote 503
#pragma sdiopt 503
#pragma stkck 503
#pragma strict 503
#pragma, using 500
#warning directives 197
+ (add) 342
<< (shift left) 346
<assert.h> header 394
<ctype.h> header 395
<errno.h> header 396
<eZ8.h> header 213
<float.h> header 396
<limits.h> header 398
<math.h> header 399
<outputfile>=<module list> command 330
<setjmp.h> header 401
<sio.h> header 214
<stdarg.h> header 401
<stddef.h> header 402
<stdio.h> header 402
<stdlib.h> header 403
<string.h> header 405
>> (shift right) 346
| (or) 346
~ (not) 347
$$ 313

A
Abnormal termination 408
abort function 405, 408
abs function 405, 408
Absolute segments 265, 286

definition 262, 328
locating 334

Absolute value, computing 408, 415, 422
acos function 400, 409
Activate Breakpoints check box 132
Add button 101

507

Zilog Developer Studio II – Z8 Encore!®

User Manual

Index UM013034-1210

add file, script file command 472
Add Files to Project dialog box 7, 56, 57
Add Project Configuration dialog box 108
Adding breakpoints 382
Adding files to a project 6, 56
Additional Directives check box 85
Additional Linker Directives dialog box 85
Additional Object/Library Modules field 88
Address button 98
Address Hex field 117
Address range, syntax 94
Address spaces

allocation order 338
definition 327
grouping 334
linking sequence 337
locating 334
moving 330
renaming 330
setting maximum size 336
setting ranges 94, 337

Address Spaces page 92
Addresses

finding 371
viewing 371

Advanced Editor Options dialog box
Editor tab 130

Advanced page 12, 72
Alias checking, enabling 500
Alias, defined 500
ALIGN clause 286
ALIGN directive 279
Allocating space 425
Always Generate from Settings button 84
Always Rebuild After Configuration Activated

check box 125
Anonymous labels 315
Another Location button 102
Another Location field 102
ANSI C language, described 393
ANSI C-Compiler

command line options 460
comments 198
compatibility issues 500

data type sizes 198
error messages 245
running from the command line 456
run-time library 212, 393
warning messages 245
writing C programs 181

arc cosine, computing 409
arc sine, computing 409
arc tangent, computing 410
Argument

location 209
variable 401

Arithmetic operators in assembly 272
Array function 413
ASCII values, viewing 377
ASCIZ values, viewing 377
asctime function 200
asin function 400, 409
asm statement 193
Assembler 261

adding null characters 271
arithmetic operators 272
automatic working register definitions 277
binary numbers 275
Boolean operators 273
case sensitivity 269
character constants 276
character strings 271
command line options 458
decimal numbers 274
directive compatibility 320, 497
directives 278
error messages 321
expressions 271
floating-point numbers 271
generating listing file (.lst) 265
generating object file 265
hexadecimal numbers 275
numeric representation 271
octal numbers 275
operator precedence 276
operators 277
options 483
relational operators 272

Zilog Developer Studio II – Z8 Encore!®

User Manual

508

UM017104-1210 Index

reserved words 269
running from the command line 456
setup 61
syntax 317
warning messages 321

Assembler page 10, 61
Assembly language

adding null characters 271
argument location 209
arithmetic operators 272
automatic working register definitions 277
backslash 267
binary numbers 275
blank lines 267
Boolean operators 273
calling C functions from 210
calling from C 208
case sensitivity 269
character constants 276
character strings 271
comments 268
conditional 308
decimal numbers 274
decision structure 301
directive compatibility 320, 497
directives 269, 278
embedding in C 216
expressions 271
floating-point numbers 271
function names 209
hexadecimal numbers 275
instructions 268
labels 268, 315
line continuation 267
line definition 267
line length 267
looping structures 301
macro expansion 62
numeric representation 271
octal numbers 275
operator precedence 276
operators 277
preserving registers 210
relational operators 272

reserved words 269
return values 207, 210
source line 267
structure 267
structured 300
structured assembly directives 301
structured assembly inputs 302
structured assembly processing 306
structures 295
syntax 317
unions 295

assert macro 394
<assert.h> header 394
atan function 400, 410
atan2 function 400, 410
atof function 404, 410
atoi function 404, 411
atol function 404, 411
__AUS_SIZED_BY_TYPE__ 199
Auto Indent check box 127
Automatic working register definitions 277
Automatically Reload Externally Modified Files

check box 125

B
Backslash, used in assembly 267
__BACKWARD_COMPATIBLE_BITFIELDS__

199
BASE OF 332, 342
batch, script file command 465, 472
Baud Rate list box 104
Baud rate, choosing 104
Beginning a project 2
BFRACT directive 281
Binary numbers in assembly 275
Bit-field Packing drop-down list box 74
__BITFIELDS_OVERLAP_AUS__ 199
__BITFIELDS_PACK_L2R__ 199
BLKB directive 282
BLKL directive 282
BLKW directive 283
Blue dots 21, 26, 27, 365, 382
Bookmarks

509

Zilog Developer Studio II – Z8 Encore!®

User Manual

Index UM013034-1210

adding 33
deleting 34
finding 35
inserting 33
jumping to 35
moving to 35
next bookmark 35
previous bookmark 35
removing 34
setting 33
using 33

Bookmarks toolbar 23
Boolean operators in assembly 273
bp, script file command 473
Break button 26
Breakpoints 383

adding 382
deleting 385
disabling 384
enabling 384
finding 384
jumping to 384
making active 384
making inactive 384
moving to 384
removing 385
viewing 383

Breakpoints dialog box 52, 383
Broadcast Address field 103
bsearch function 405, 412
BUFF_SIZE macro 391
Build button 19
Build menu 105

Build 106
Clean 106
Compile 106
Manage Configurations 107
Rebuild All 106
Set Active Configuration 106
shortcuts 136
Stop Build 106
Update All Dependencies 106

Build Output window 14, 36
Build toolbar 18

Build Type list box 40
build, script file command 473
Building a project 13, 106

from the command line 455
buildzsl.bat 389, 390

C
C

calling assembly from 208
calling from assembly 210
escape sequences 193
language, described 393
preserving routines 210
return values 207, 210
run-time library 212, 393
writing programs 181

C run-time initialization file 228
customizing 229

C Runtime Library check box 90
C Startup Module area 89
Calculate Checksum dialog box 121
Call frames

dynamic 189
static 188

Call Stack window 378
Call Stack Window button 29
Calling assembly from C 208
calloc function 405, 413
cancel all, script file command 473
cancel bp, script file command 473
Cascade the files 133
Case sensitivity

in assembler 269
C-Compiler

command line options 460
comments 198
compatibility issues 500
data type sizes 198
error messages 245
running from the command line 456
run-time library 212, 393
warning messages 245
writing C programs 181

Zilog Developer Studio II – Z8 Encore!®

User Manual

510

UM017104-1210 Index

cd, script file command 474
ceil function 401, 413
CHANGE command 330
Changing object size 433
char enumerations 195
CHAR_BIT 398
CHAR_MAX 398
CHAR_MIN 398
Character case mapping functions 396
Character constants

in assembly 276
Character strings in assembly 271
Character testing functions 395
Character-handling functions 395
checksum, script file command 474
Clear button 125
Clock window 368, 369
Clock Window button 28
Close Dialog When Flash Complete check box 116
Code Generation page 64
Code line indicators 365
Code segment 263
Command field 22
Command line

building a project from 455
examples 482
running the assembler from 456, 458
running the compiler from 456, 460
running the librarian from 464
running the linker from 457
running ZDS II from 455

Command Output window 37
Command Processor

quick tour 465
Command Processor toolbar 22
Command script file

commands 472
example 470
writing 470

Commands
linker 329
linker command file 329
running 465

Commands page 84

Commands tab 124
Commands to Keep field 125
Comment

in assembly language 268
.COMMENT directive 279
Comments 198
Comparing characters 426, 443
Comparing strings 441, 442
Comparison functions 406
Compatibility of assembly directives 320, 497
Compile/Assemble File button 18
Compiler

command line options 460
comments 198
compatibility issues 500
data type sizes 198
error messages 245
options 484
running from the command line 456
run-time library 212, 393
setting options 500
warning messages 245
writing C programs 181

Compiling a project 106
Computing string length 443
Concatenating strings 440, 443
Concatenation character 312
Concatenation functions 406
Conditional assembly 308
Conditional assembly directives 308

IF 309
IFDEF 310
IFMA 311, 313
IFSAME 311

Configuration Name field 108
Configurations

adding new 107
setting 106

Configure Target dialog box 100
Connect to Target button 19
const keyword 242
__CONST_IN_RAM__ 199, 200
__CONST_IN_ROM__ 199, 200
Context menus

511

Zilog Developer Studio II – Z8 Encore!®

User Manual

Index UM013034-1210

Call Stack window 378
Disassembly window 380
in Edit window 32
in Project Workspace window 30
Locals window 377
Simulated UART Output window 381
Watch window 376, 377

control_UARTx() function 391
Converting letter case 450, 451
Converting strings 447, 449
COPY BASE OF command 332
COPY BASE operator 343
Copy button 17, 102
COPY command 331
Copy Configuration Settings dialog box 109
Copy Settings From list box 108, 109
Copy Settings To field 109
COPY TOP OF command 332
COPY TOP operator 344
Copying characters 426, 444
Copying functions 406
Copying strings 442
Copying values 427
cos function 400, 413
cosh function 400, 414
cosine, calculating 413
_ 202
CPU directive 280
CPU Family list box 40, 59
CPU list box 40, 59
CPU selection 59
__CPU_NAME__ 200
CpuflashDevice.xml file 115
CRC 122
CRC, script file command 474
Create New Target Wizard dialog box 101
Creating a project 2
<ctype.h> header 395
Current drop-down list box 103
Customer service xxx
Customer Support 531
Customer support xxx
Customize dialog box 122, 123

Commands tab 124

Toolbars tab 122, 123
Cut button 17
Cyclic redundancy check 122

D
Data directives in assembly 280
Data type sizes 198
__DATE__ 200
DB directive 283
DBL_DIG 396
DBL_MANT_DIG 396
DBL_MAX 396
DBL_MAX_10_EXP 397
DBL_MAX_EXP 396
DBL_MIN 397
DBL_MIN_10_EXP 397
DBL_MIN_EXP 397
DD directive 283
Deallocating space 417
_DEBUG 202
DEBUG command 333
Debug configuration 106
Debug information, generating 333, 336
Debug menu 109

Break 112
Connect to Target 110
Download Code 110
Go 112
Reset 111
Run to Cursor 112
Set Next Instruction 113
shortcuts 136
Step Into 113
Step Out 113
Step Over 113
Stop Debugging 111
Verify Download 111

Debug mode
RUN 364
STEP 364
STOP 364

Debug Output window 36
Debug Tool area 103, 104

Zilog Developer Studio II – Z8 Encore!®

User Manual

512

UM017104-1210 Index

Debug toolbar 24
Debug windows 55
Debug Windows toolbar 27, 28, 366
Debugger

description 99, 363
status bar 364

Debugger page 99
Debugger script file

commands 472
example 470
writing 470

Debugger tab 131
debugtool copy, script file command 474
debugtool create, script file command 475
debugtool get, script file command 475
debugtool help, script file command 475
debugtool list, script file command 475
debugtool save, script file command 476
debugtool set, script file command 476
debugtool setup, script file command 476
Dec button 117
Decimal numbers in assembly 274
Decimal numeric values 345
Decimal values, viewing 377
DEFINE 264, 285, 333
Defines field 62
defines, script file command 476
Delete Bookmarks button 23
Delete button 17, 102
delete config, script file command 477
Delete Source Target After Copy check box 102
Deleting files from a project 39
Deprecated page 76
Developer’s environment

menus 37
software installation 1
system requirements xxv
toolbars 16
tutorial 1

DF directive 284
DI 216
Directives

.$BREAK 304, 305

.$CONTINUE 304, 305

.$ELSE 302

.$ELSEIF 302

.$ENDIF 302

.$IF 301, 302, 307

.$REPEAT 302, 304, 308

.$UNTIL 304

.$WEND 305

.$WHILE 302, 305, 308

.COMMENT 279

.ENDSTRUCT 296

.ENDWITH 299

.STRUCT 296

.TAG 297

.UNION 299

.WITH 299
#warning support 197
ALIGN 279
BFRACT 281
BLKB 282
BLKL 282
BLKW 283
compatibility 320, 497
conditional assembly directives 308
CPU 280
data 280
DB 283
DD 283
DEFINE 264, 285
definition 278
DF 284
DL 284
DS 287
DW 284, 285
END 287
ENDMACRO 312
EQU 288
EXTERN 316
FRACT 282
IF 309
IFDEF 310
IFMA 311
IFSAME 311
in assembly 269, 278
INCLUDE 289

513

Zilog Developer Studio II – Z8 Encore!®

User Manual

Index UM013034-1210

LIST 289
MACDELIM 314
MACEXIT 314
MACRO 312
NEWPAGE 289
NOLIST 290
ORG 290
SCOPE 316
SEGMENT 264, 291
structured assembly 301
SUBTITLE 291
TITLE 291
UBFRACT 281
UFRACT 282
VAR 292
VECTOR 293
XDEF 294
XREF 295, 316

Disable All Breakpoints button 27
Disable All button 52, 384
Disable ANSI Promotions check box 77
Disable Breakpoint command 385
Disable Warning on Flash Optionbits Programming

check box 132
Disassembly window 380
Disassembly Window button 29
div function 405, 414
div_t 403
DL directive 284
Down button 49
Download Code button 19, 24
DS directive 287
DW directive 284, 285
Dynamic frames 189
Dynamic Frames button 66

E
EData 93
Edit Breakpoints command 383
Edit button 85
Edit menu 47

Copy 48
Cut 48

Delete 48
Find 48
Find Again 49
Find in Files 49
Go to Line 51
Manage Breakpoints 52
Paste 48
Redo 48
Replace 50
Select All 48
shortcuts 134
Show Whitespaces 48
Undo 48

Edit window 31
Editor tab, Options dialog box 126, 129
EDOM 396, 404
EI 216
Embedding assembly in C 216
Enable All button 52, 384
Enable Breakpoint command 384
Enable check box 117
Enable/Disable Breakpoint button 21, 27
__ENCORE__ 200
END directive 287
ENDMACRO directive 312
.ENDSTRUCT directive 296
.ENDWITH directive 299
enum declarations with trailing commas 198
enumeration data type 195
EOF macro 402
EQU directive 288
.ER 277
ERANGE 396, 404
Erase Before Flashing check box 116
ERASE button 116
errno macro 396
<errno.h> header 396
Error conditions 396, 399
Error messages

ANSI C-Compiler 245
assembler 321
linker/locator 358

Ethernet Smart Cable
requirements xxvii

Zilog Developer Studio II – Z8 Encore!®

User Manual

514

UM017104-1210 Index

Executable Formats area 98
Executable formats, for Linker 98
EXIT_FAILURE macro 404
EXIT_SUCCESS macro 404
exit, script file command 479
exp function 400, 415
Expand Macros check box 62
exponential 400
Exponential functions 400, 415
Exporting project as make file 105

from the command line 456
Expressions

.FTOL operator 274

.LTOF operator 274
arithmetic operators 272
automatic working register definitions 277
binary numbers 275
Boolean operators 273
character constants 276
decimal numbers 274
hexadecimal numbers 275
HIGH operator 273
HIGH16 operator 274
in assembly 271
linker 341
LOW operator 273
LOW16 operator 274
octal numbers 275
operator precedence 276
operators 277
relational operators 272

EXTERN directive 316
External references, resolving 333
__EZ8__ 200
<eZ8.h> header 213

F
fabs function 401, 415
False macro 395
FAQ.txt, location of xxx
far storage specifier 184
FAR_BSS segment 232
far_bss segment 263

FAR_DATA segment 232
far_data segment 263
FAR_TEXT segment 232
far_txt segment 263
__FILE__ 200
File

adding 6, 56
opening 8
reading 8
viewing 8

File extensions
.hex 98
.lod 98
.lst 265, 266
.map 335
.obj 265, 267
.wsp 45
.zdsproj 3

File menu 38
Close File 39
Close Project 45
Exit 47
New File 38
New Project 39
Open File 38
Open Project 43
Print 46
Print Preview 46
Print Setup 47
Recent Files 47
Recent Projects 47
Save 45
Save All 45
Save As 45
Save Project 44
shortcuts 134

File Offset field 115
File toolbar 16, 17
File Type drop-down list box 127
Fill Memory dialog box 118, 372
Fill Unused Hex File Bytes with 0xFF check box 98
FILLMEM, script file command 479
Find button 50
Find dialog box 48, 49

515

Zilog Developer Studio II – Z8 Encore!®

User Manual

Index UM013034-1210

Find field 22, 50
Find in Files 2 Output window 37
Find in Files button 22
Find in Files dialog box 50
Find in Files Output window 36
Find list box 50
Find Next button 49, 51
Find toolbar 21, 22
Find What field 49
Find What list box 49
Finding characters 441, 444, 446
Finding strings 446
Flash Configuration area 115
Flash Loader

using the GUI 113
Flash Loader Processor dialog box 114
Flash memory

reading to 220
setting the target clock frequency 217
writing to 226

Flash memory, setting Flash option bytes in C 195
Flash option bytes 195, 213
Flash Options area 115
FLASH_OPTION1 195
FLASH_OPTION2 195
FLASH_OPTIONBITS 368
<float.h> header 396
Floating Point Library drop-down list box 91
floor function 401, 416
FLT_DIG 397
FLT_MANT_DIG 397
FLT_MAX 397
FLT_MAX_10_EXP 397
FLT_MAX_EXP 397
FLT_MIN 397
FLT_MIN_10_EXP 397
FLT_MIN_EXP 397
FLT_RADIX 397
FLT_ROUND 397
fmod function 401, 416
fname_TEXT segment 232
Font dialog box 129
FORMAT command 333
__FPLIB__ 201

FRACT directive 282
Frames

dynamic 189
static 188

free function 405, 417
FREEMEM operator 344
FREQ04000 217
FREQ08000 217
FREQ12000 217
FREQ14000 217
FREQ16000 217
FREQ18432 217
FREQ20000 217
frexp function 400, 417
.FTOL operator 274
Function names in assembly 209
Functions 400

abort 408
abs 408
acos 409
asctime 200
asin 409
atan 410
atan2 410
atof 410
atoi 411
atol 411
bsearch 412
calloc 413
ceil 413
character case mapping 396
character handling 395
character input 403
character output 403
character testing 395
comparison 406
concatenation 406
copying 406
cos 413
cosh 414
detailed descriptions of 407
DI 216
div 414
EI 216

Zilog Developer Studio II – Z8 Encore!®

User Manual

516

UM017104-1210 Index

error conditions 399
exp 415
fabs 415
floor 416
fmod 416
formatted input 403
formatted output 403
free 417
frexp 417
getch 216
getchar 417
gets 418
hyperbolic 400
INIT_FLASH 217
init_uart 218
integer arithmetic 405
isalnum 418
isalpha 419
iscntrl 419
isdigit 419
isgraph 420
islower 420
isprint 420
ispunct 421
isspace 421
isupper 421
isxdigit 422
kbhit 219
labs 422
ldexp 422
ldiv 423
log 423
log10 424
logarithmic 400
longjmp 424
malloc 425
mathematical 399
memchr 425
memcmp 426
memcpy 426
memmove 427
memory management 405
memset 427
miscellaneous 405

modf 427
multiplication 422
nearest integer 401
nonlocal jumps 401
nonstandard input 214
nonstandard output 214
pow 428
power 401
printf 428
pseudorandom sequence generation 405
putch 219
putchar 431
puts 432
qsort 432
rand 433
READ_FLASH 220
READ_NVDS 221
READ_NVDS_GET_STATUS 221
realloc 433
RI 222
scanf 434
search 405, 407
select_port 223
SET_VECTOR 223
setjmp 438
sin 438
sinh 438
sorting 405
sprintf 439
sqrt 439
srand 440
sscanf 440
strcat 440
strchr 441
strcmp 441
strcpy 442
strcspn 442
string conversion 404
strlen 443
strncat 443
strncmp 443
strncpy 444
strpbrk 444
strrchr 446

517

Zilog Developer Studio II – Z8 Encore!®

User Manual

Index UM013034-1210

strspn 446
strstr 446
strtod 447
strtok 448
strtol 449
tan 450
tanh 450
TDI 225
testing characters 418, 419, 420, 421, 422
tolower 450
toupper 451
trigonometric 400
va_arg 451
va_end 452
va_start 453
vprintf 454
vsprintf 454
WRITE_FLASH 226
WRITE_NVDS 227
WRITE_NVDS_GET_STATUS 228
Z8 Encore! family specific 216

G
General page 9, 58, 59
General tab 125
Generate Assembly Listing Files (.lst) check box

62, 69
Generate Assembly Source Code check box 68
Generate C Listing Files (.lis) check box 68
Generate Debug Information check box 60
Generate Map File check box 97
Generate Printfs Inline check box 73
getch function 216
getchar function 403, 417
gets function 403, 418
Go button 21
Go To button 51
Go to Code button 52, 384
Go to Line Number dialog box 51
go, script file command 479
GROUP command 334
Groups

allocation order 338

definition 328
linking sequence 337
locating 334
renaming 330
setting maximum size 336
setting ranges 337

H
Headers

architecture-specific functions 213
character handling 395
diagnostics 394
error reporting 396
floating point 396
general utilities 403
input 402
limits 398
location 213, 394
mathematics 399
nonlocal jumps 401
nonstandard 212
nonstandard input functions 214
nonstandard output functions 214
output 402
reserved words 213
standard 393
standard definitions 402
string handling 405
variable arguments 401
ZSL 388

HEADING command 334
Help menu 133

About 134
Help Topics 134
Technical Support 134

Hex button 117
.hex file extension 98
Hexadecimal Display check box 132
Hexadecimal numbers

in linker expressions 345
viewing 377

Hexadecimal numbers in assembly 275
HIGH operator 273

Zilog Developer Studio II – Z8 Encore!®

User Manual

518

UM017104-1210 Index

HIGH16 operator 274
HIGHADDR operator 344
HUGE_VAL macro 399, 404
Hyperbolic cosine, computing 414
Hyperbolic functions 400
Hyperbolic sine, computing 438
Hyperbolic tangent, calculating 450

I
IDE, definition 15
IEEE 695 format 98, 334
IF directive 309
IFDEF directive 310
IFMA directive 311, 313
IFSAME directive 311
Ignore Case of Symbols check box 60
In File Types list box 50
In Folder list box 50
INCLUDE directive 289
#include directive 68
Include Serial in Burn check box 117
Include Zilog Standard Library (Peripheral

Support) check box 82
Included in Project button 89
Includes field 62
Increment Dec (+/-) field 117
INIT_FLASH function 217
init_uart function 218
Input/output macro 402
Insert Breakpoint command 382
Insert Spaces button 127
Insert/Remove Breakpoint button 21, 27, 382
Inserting breakpoints 382
Installation 1
Installing ZDS II 1
Instructions, in assembly 268
INT_MAX 398
Integer arithmetic functions 405
Intel Hex16 format 98
Intel Hex32 format 98
Intermediate Files Directory field 61
Internal Flash check box 115
interrupt handlers 190

interrupt keyword 190
INTERRUPT mode 390, 391
Intrinsic functions 501
IP Address field 103
isalnum function 395, 418
isalpha function 395, 419
iscntrl function 395, 419
isdigit function 395, 419
isgraph function 395, 420
islower function 395, 420
isprint function 396, 420
ispunct function 396, 421
isspace function 396, 421
isupper function 396, 421
isxdigit function 396, 422

J
jmp_buf 401
Jump Optimization check box 63

K
kbhit function 219
Keep Tabs button 127
-keepasm 266

L
Labels

$$ 315
$B 315
$F 315
anonymous 315
assigning to a space 316
exporting 316
importing 316
in assembly language 268, 315
local (?) 316
local ($) 316
location checks 316

labs function 405, 422
Large memory model 187
Largest integer, computing 416

519

Zilog Developer Studio II – Z8 Encore!®

User Manual

Index UM013034-1210

LDBL_DIG 397
LDBL_MANT_DIG 397
LDBL_MAX 397
LDBL_MAX_10_EXP 398
LDBL_MAX_EXP 397
LDBL_MIN 398
LDBL_MIN_10_EXP 398
LDBL_MIN_EXP 398
ldexp function 400, 422
ldiv function 405, 423
ldiv_t 403
LENGTH operator 344
Librarian

command line options 464
options 486

Librarian page 80, 81
Libraries

defining 330
functions 407
object 327

Library functions 407
Limit Optimizations for Easier Debugging check

box 65
<limits.h> header 398
__LINE__ 200
Line continuation in assembly 267
Link map file

contents 335
creating 335, 336

Linker
commands 329
creating link map file 335, 336
creating linking sequence 337
defining holes in memory 95
detailed description 327
error messages 358
expressions 341
file format 333
generating debug information 333, 336
generating warnings 340
invoking 328
objects manipulated during linking 327
opening 328
options 486

running 328
running from the command line 457
search order 338
starting 328
suppressing warnings 337
symbols 237
warning messages 358

Linker command file 328
commands 329
for C programs 232
linker symbols 237
referenced files 234
sample 238

Linker commands
<outputfile>=<module list> 330
BASE OF 332
CHANGE 330
COPY 331
COPY BASE OF 332
COPY TOP OF 332
DEBUG 333
DEFINE 333
FORMAT 333
GROUP 334
HEADING 334
LOCATE 334
MAP 335
MAXHEXLEN 336
MAXLENGTH 336
NODEBUG 336
NOMAP 335, 336
NOWARN 337
ORDER 337
RANGE 337
SEARCHPATH 338
SEQUENCE 338
SORT 339
SPLITTABLE 339
TOP OF 332
UNRESOLVED IS FATAL 340
WARN 340
WARNING IS FATAL 340
WARNOVERLAP 341

Linker expressions

Zilog Developer Studio II – Z8 Encore!®

User Manual

520

UM017104-1210 Index

- (subtract) 346
^ (bitwise exclusive or) 347
* (multiply) 345
/ (divide) 344
& (and) 342
+ (add) 342
<< (shift left) 346
>> (shift right) 346
| (or) 346
~ (not) 347
BASE OF 342
COPY BASE 343
COPY TOP 344
decimal numeric values 345
FREEMEM 344
hexadecimal numeric values 345
HIGHADDR 344
LENGTH 344
LOWADDR 345
TOP OF 346

Linker/locator error messages 358
Linker/locator warning messages 358
Linking sequence, creating 337
list bp, script file command 480
LIST directive 289
Listing file

assembly 266
Listing Files page 68
Load Debug Information (Current Project) check

box 132
Load from File dialog box 120, 374
Load Last Project on Startup check box 125
LOADMEM, script file command 480
Local labels in assembly 316
Local macro label 313
Locals window 377, 378
Locals Window button 29
LOCATE command 334
Locator

detailed description 327
error messages 358
warning messages 358

.lod file extension 98
log function 400, 423

log, script file command 480
log10 function 400, 424
Logarithm, computing 423, 424
Logarithmic functions 400
long long int type 198
LONG_MAX 398
LONG_MIN 398
longjmp function 401, 424
Look in Subfolders check box 50
LOW operator 273
LOW16 operator 274
LOWADDR operator 345
.lst file extension 265, 266
.LTOF operator 274

M
MACDELIM directive 314
MACEXIT directive 314
Macro Assembler 261

adding null characters 271
arithmetic operators 272
automatic working register definitions 277
binary numbers 275
Boolean operators 273
case sensitivity 269
character constants 276
character strings 271
command line options 458
decimal numbers 274
directive compatibility 320, 497
directives 278
error messages 321
expressions 271
floating-point numbers 271
generating listing file (.lst) 265
generating object file 265
hexadecimal numbers 275
numeric representation 271
octal numbers 275
operator precedence 276
operators 277
relational operators 272
reserved words 269

521

Zilog Developer Studio II – Z8 Encore!®

User Manual

Index UM013034-1210

running from the command line 456
setup 61
syntax 317
warning messages 321

MACRO directive 312
Macros 311

_ 202, 202
__AUS_SIZED_BY_TYPE__ 199
__BACKWARD_COMPATIBLE_BITFIELD

S__ 199
__BITFIELDS_OVERLAP_AUS__ 199
__BITFIELDS_PACK_L2R__ 199
__CONST_IN_RAM__ 199, 200
__CONST_IN_ROM__ 199, 200
__CPU_NAME__ 200
__DATE__ 200
__ENCORE__ 200
__EZ8__ 200
__FILE__ 200
__FPLIB__ 201
__LINE__ 200
__MODEL__ 201
__NEW_AU_AT_TYPE_CHANGE__ 200
__STDC__ 200
__TIME__ 200
__UNSIGNED_CHARS__ 200
__ZDATE__ 201
__ZILOG__ 201
_DEBUG 202
assert 394
character handling 395
concatenation character 312
delimiter characters 314
delimiting arguments 314
diagnostics 394
empty arguments 198
error reporting 396
exiting 314
expanding 62
floating point 396
general utility 404
generated by IDE 202
input/output 402
invocation 313

labels 313
limits 398
mathematical 399
NDEBUG 202
optional arguments 313
predefined 199
standard definitions 402
string handling 406

Make file, exporting 105
makefile, script file command 481
makfile, script file command 481
malloc function 405, 425
Manage Configurations dialog box 107, 108, 109
MAP command 335
.map file extension 335
Mark All button 49
Match Case check box 49, 50, 51
Match Whole Word Only check box 49, 50, 51
<math.h> header 399
Mathematical functions 399
Mathematical macro 399
MAXHEXLEN command 336
Maximum Bytes per Hex File Line drop-down list

box 98
MAXLENGTH command 336
MAYINIT clause 286
MB_LEN_MAX 398
memchr function 407, 425
memcmp function 407, 426
memcpy function 406, 426
memmove function 406, 427
Memory

accessing 262
defining holes 95
defining locations 262
filling 118, 372
Flash 217, 220, 226
loading to file 119, 374
saving to file 118, 373

Memory management functions 405
Memory Model list box 66
Memory models

defining 66
large 187

Zilog Developer Studio II – Z8 Encore!®

User Manual

522

UM017104-1210 Index

small 187
Memory range, syntax 94
Memory window 369

changing values 371
cyclic redundancy check 374
filling memory 118, 372
finding addresses 371
loading to file 119, 374
saving to file 118, 373
viewing addresses 371

Memory Window button 28
memset function 407, 427
Menu bar 37
Menus

Build 105
Edit 47
File 38
Help 133
Project 56
right click 34
shortcuts 134
View 55
Window 133

Messages Output window 37
Miscellaneous functions 405
__MODEL__ 201
modf function 400, 427
Modules

defining 330
definition 327

_monitor pragma 191
Moving characters 427

N
Name button 98
Name for New Target field 102
NDEBUG 202
NDEBUG macro 394
near storage specifier 183
NEAR_BSS segment 232
near_bss segment 263
NEAR_DATA segment 232
near_data segment 263

NEAR_TEXT segment 232
near_txt segment 263
Nearest integer functions 401
New button 17
New project

adding files 6, 56
building 13
configuring 8
creating 2, 39
deleting files from 39
saving 14
setting up 8

New Project dialog box 2, 4, 39
New Project Wizard dialog box 4, 5, 6, 41, 42, 43
new project, script file command 481
__NEW_AU_AT_TYPE_CHANGE__ 200
NEWPAGE directive 289
Next Bookmark button 23
NODEBUG command 336
NOLIST directive 290
NOMAP command 335, 336
Non-Volatile Data Storage 94, 369
NOWARN command 337
ntext 381
NULL macro 402, 404, 406
NULL, using 331
NULL-terminated ASCII, viewing 377
Numbers

binary 275
decimal 274
hexadecimal 275
octal 275

NVDS 94, 369

O
.obj file extension 265, 267
Object code file 267
Object formats

for Linker 98
IEEE 695 98
Intel Hex16 98
Intel Hex32 98
OMF695 265, 267

523

Zilog Developer Studio II – Z8 Encore!®

User Manual

Index UM013034-1210

Object libraries 327
Objects and Libraries page 88
Octal numbers in assembly 275
offsetof macro 402
OMF695 format 265, 267
Open button 17
Open dialog box 38, 39
Open Project dialog box 44
open project, script file command 482
open_periphdevice() function 388, 389
open_UARTx() function 391
Operator precedence in assembly 276
Operators 277

- (subtract) 346
^ (bitwise exclusive or) 347
.FTOL 274
.LTOF 274
* (multiply) 345
/ (divide) 344
& (and) 342
+ (add) 342
<< (shift left) 346
>> (shift right) 346
| (or) 346
~ (not) 347
arithmetic 272
BASE OF 342
Boolean 273
COPY BASE 343
COPY TOP 344
FREEMEM 344
HIGH 273
HIGH16 274
HIGHADDR 344
LENGTH 344
LOW 273
LOW16 274
LOWADDR 345
precedence 276
relational 272
TOP OF 346

Operators in assembly 277
option, script file command 482
Options 482

assembler 483
compiler 484
general 486
librarian 486
linker 486

Options dialog box 125
Debugger tab 131, 132
Editor tab 126, 127, 129
General tab 125, 126

Opto-isolated USB Smart Cable
requirements xxvii

ORDER command 337, 342
ORG clause 286
ORG directive 290
Output File Name field 97
Output page 13, 96, 97
Output to Pane 2 check box 50
Output Window button 18

P
Page Length field 62
Page Width field 62
Parameter Passing drop-down list box 67
Paste button 17
PC, definition 365
Place Const Variables in ROM check box 76
Place Target File In area 102
Place Target File in Project Directory check box

101
Placing breakpoints 382
POLL mode 390
Ports area 82
pow function 401, 428
Power functions 401
#pragma alias 500
#pragma asm 193
#pragma bss 502
#pragma cpu 501
#pragma globalcopy 501
#pragma globalcse 501
#pragma globaldeadvar 501
#pragma globalfold 501
#pragma intrinsics 501

Zilog Developer Studio II – Z8 Encore!®

User Manual

524

UM017104-1210 Index

#pragma jumpopt 502
#pragma localcopy 502
#pragma localcse 502
#pragma localfold 502
#pragma localopt 502
#pragma noalias 500
#pragma noglobalcopy 501
#pragma noglobalcse 501
#pragma noglobaldeadvar 501
#pragma noglobalfold 501
#pragma nointrinsics 501
#pragma nojumpopt 502
#pragma nolocalcopy 502
#pragma nolocalcse 502
#pragma nolocalfold 502
#pragma nolocalopt 502
#pragma noopt 502
#pragma nooptlink 503
#pragma nopeephole 503
#pragma nopromote 503
#pragma nosdiopt 503
#pragma nostkck 503
#pragma nostrict 504
#pragma optlink 502
#pragma optsize 503
#pragma optspeed 503
#pragma peephole 503
#pragma promote 503
#pragma sdiopt 503
#pragma stkck 503
#pragma strict 503
#pragma, using 500
PRAM 94, 196
PRAMSEG 196
PRAMSEG segment 232
Predefined macros 199
Predefined segments 263
Preprocessing, predefined macros 199
Preprocessor Definitions field 70
Preprocessor page 70
Previous Bookmark button 23
Print button 17
Print Preview window 46
print, script file command 488

printf function 403, 428
conversion characters 430
flag characters 430

Program and Verify button 116
Program button 116
Program RAM 94, 196
Project

adding files 6, 56
building 13, 106
compiling 106
configuring 8, 106
creating 1, 2, 39
customized configuration 107
deleting files from 39
exporting as make file 105
saving 14
setting up 8

Project Directory button 102
Project file, creating 3
Project menu 56

Add Files 56
Export Makefile 105
Remove Selected File(s) 57
Settings 57
shortcuts 135

Project Settings dialog box 57
Address Spaces page 92
Advanced page 12, 71, 72
Assembler page 10, 61
Code Generation page 63, 64

Code Generation page 11
Commands page 83, 84
Debugger page 99
Deprecated page 75, 76
General page 9, 58, 59
Librarian page 80, 81
Listing Files page 67, 68
Objects and Libraries page 87, 88
Output page 13, 96, 97
Preprocessor page 69, 70
Warnings page 95
ZSL page 81, 82

Project Type field 40
Project Workspace window 29, 30

525

Zilog Developer Studio II – Z8 Encore!®

User Manual

Index UM013034-1210

Pseudorandom sequence generation 405, 433, 440
ptrdiff_t 402
Public symbols, creating 333
putch function 219
putchar function 403, 431
puts function 403, 432
pwd, script file command 489

Q
qsort function 405, 432
Quick tour

Command Processor 465
quit, script file command 489
Quotient, computing 414, 423

R
.R 277
rand function 405, 433
RAND_MAX macro 404
RANGE command 337
Range error, generating 95
RData 93
READ_FLASH function 220
READ_NVDS function 221
READ_NVDS_GET_STATUS function 221
Reading input 434
readme.txt, location of xxx
realloc function 405, 433
Rebuild All button 19
rebuild, script file command 489
Red octagon 365, 383
reentrant keyword 189
Refresh button 103
Registers

changing values 367
preserving 210

Registers window 366, 367
Registers Window button 28
Regular Expression check box 49, 51
Relational operators in assembly 272
Release configuration 106
Relocatable segments 262, 265, 328

Remainder, computing 416
Remove All Breakpoints button 21, 27
Remove All button 53, 385
Remove Breakpoint command 385
Remove button 52, 385
Replace All button 51
Replace button 51
Replace dialog box 50, 51
Replace With field 51
Replace With list box 51
Reserved words

in assembly 269
in headers 213

Reset button 20, 25
Reset to Symbol ’main’ (Where Applicable) check

box 131
reset, script file command 489
Return values 207, 210
Revision history iii
RI function 222
Right-click menus

in Edit window 34
ROM memory 93
rom storage specifier 184
ROM_DATA segment 232
rom_data segment 263
ROM_TEXT segment 232
rom_text segment 263
.RR 277
RTL

definition 391
switching to ZSL 391

Run Command button 22
Run to Cursor button 26
Run-time library 212, 393

formatting 212, 393
functions 407
nonstandard headers 212
standard headers 393

S
Safest button 64
Safest configuration 64

Zilog Developer Studio II – Z8 Encore!®

User Manual

526

UM017104-1210 Index

Sample program 2
Save All button 17
Save As dialog box 45, 105
Save as Type list box 45
Save button 17
Save Files Before Build check box 125
Save In drop-down list box 105
Save In list box 45
Save Project Before Start of Debug Session check

box 131
Save to File dialog box 119, 373
Save/Restore Project Workspace check box 125
SAVEMEM, script file command 489
Saving a project 14
scanf function 403, 434

conversion characters 436
SCHAR_MAX 398
SCHAR_MIN 398
SCOPE directive 316
Script file

commands 472
definition 470
example 470
writing 470

Search functions 405, 407, 412
SEARCHPATH command 338
SEGMENT directive 264, 291
Segments 232, 262, 263, 328

absolute 262, 265, 286, 328
address space 287
alignment 264, 286
allocation order 338
attaching code 264
attaching data 264
copying 331, 332
creating 264
defining 285
initialization 286
linking sequence 337
locating 286, 334
moving 330
origin 265
predefined 263
relocatable 262, 265, 328

renaming 330
setting maximum size 336
setting ranges 337
splitting 339
types 262
user defined 264

Select Build Configuration list box 18
Select Configuration dialog box 106
Select Linker Command File dialog box 86
Select Project Name dialog box 3, 40
select_port function 223
SEQUENCE command 338, 342
Serial Number list box 104
Serial number, choosing 104
Serial Smart Cable

requirements xxvi
Serial Value field 117
Set Bookmark button 23
set config, script file command 490
Set Next Instruction button 27
SET_VECTOR 190, 223
setjmp function 401, 438
<setjmp.h> header 401
Setting breakpoints 382
Setup button, Target area 100
Setup Ethernet Smart Cable Communication dialog

box 103
Setup Serial Communication dialog box 104
Setup USB Communication dialog box 104
SFR, definition 94, 368
short enumerations 195
Shortcut keys 134
Show Absolute Addresses in Assembly Listings

check box 98
Show CRC dialog box 120, 122, 375
Show DataTips Pop-Up Information check box 132
Show the Full Path in the Document Window’s

Title Bar check box 125
SHRT_MAX 398
SHRT_MIN 398
Simulated UART Output window 381
Simulated UART Output Window button 29
sin function 400, 438
Sine, computing 438

527

Zilog Developer Studio II – Z8 Encore!®

User Manual

Index UM013034-1210

sinh function 400, 438
<sio.h> header 214
size_t 402, 403, 406
Small and Debuggable button 65
Small and Debuggable configuration 65
Small memory model 93, 187
Smallest integer, computing 413
Smallest Possible button 65
Smallest Possible configuration 65
Smart Cables Available area 103
Software installation 1
SORT command 339
Sort Symbols By area 98
Sorting arrays 432
Sorting functions 405
Source line

contents 267
definition 267
labels 268, 315

SPACE clause 287
Special function registers

changing values 368
location 94, 368

Special Function Registers window 368
Special Function Registers Window button 28
SPECIAL_CASE 368
SPLITTABLE command 339
sprintf function 403, 439
sqrt function 401, 439
Square root, calculating 439
srand function 405, 440
sscanf function 403, 440
Standard button 89
Standard field 70
Starting a project 2
Startup files 228

customizing 229
STARTUP segment 232
Static frames 188
Static Frames button 66
Static library, creating 39
Status bar 364, 365
<stdarg.h> header 401
__STDC__ 200

<stddef.h> header 402
<stdio.h> header 402
<stdlib.h> header 403
Step Into button 26
Step Out button 27
Step Over button 27
step, script file command 490
stepin, script file command 490
stepout, script file command 490
Stop Build button 19
Stop Command button 22
Stop Debugging button 26
stop, script file command 491
strcat function 406, 440
strchr function 407, 441
strcmp function 407, 441
strcpy function 406, 442
strcspn function 407, 442
String comparison 441, 442
String conversion functions 404, 410, 411, 447, 449
String placement 192
<string.h> header 405
String-handling functions 405
strlen function 407, 443
strncat function 406, 443
strncmp function 407, 443
strncpy function 406, 444
strpbrk function 407, 444
strrchr function 407, 446
strspn function 407, 446
strstr function 407, 446
strtod function 404, 447
strtok function 407, 448
strtol function 404, 449
.STRUCT directive 296
Structured assembly 300

directives 301
inputs 302
processing 306

Structures in assembly 295
SUBTITLE directive 291
subtract (-) 346
Symbols window 379
Symbols Window button 29

Zilog Developer Studio II – Z8 Encore!®

User Manual

528

UM017104-1210 Index

Symbols, public 333
Syntax Coloring dialog box 128
System requirements xxv

T
Tab Size field 127
.TAG directive 297
tan function 400, 450
Tangent, calculating 450
tanh function 400, 450
Target area 100
Target Copy or Move dialog box 102
target copy, script file command 491
target create, script file command 491
Target File button 102
target get, script file command 491
target help, script file command 491
Target list box 42
target list, script file command 492
target options, script file command 492
target save, script file command 492, 493
target set, script file command 493
Target, selecting 99
TCP Port field 103
TDI function 225
Technical service xxx
Technical support xxx
text segment 263
Tile the files 133
__TIME__ 200
TITLE directive 291
tolower function 396, 450
Toolbars 16

Bookmarks 23
Build 18
Command Processor 22
Debug 24
Debug Windows 27, 366
File 16
Find 21

Toolbars tab 122
Tools menu

Calculate File Checksum 120

Customize 122
Firmware Upgrade 121
Flash Loader 113
Options 125
Show CRC 122

TOP OF command 332
TOP OF operator 346
toupper function 396, 451
Treat All Warnings as Fatal check box 95
Treat Undefined Symbols as Fatal check box 96
Trigonometric functions 400
True macro 395
Tutorials

Command Processor 465
developer’s environment 1

Type sizes 198

U
UARTs

changing default settings 391
INTERRUPT mode 390, 391
POLL mode 390
switching 390

Uarts area 83
UBFRACT directive 281
UCHAR_MAX 398
UFRACT directive 282
UINT_MAX 398
ULONG_MAX 398
Underscore 213
.UNION directive 299
Unions in assembly 295
UNRESOLVED IS FATAL command 340
__UNSIGNED_CHARS__ 200
Up button 49
USB Smart Cable

requirements xxvi
Use Default Libraries area 90
Use Existing button 86
Use Page Erase Before Flashing check box 42, 100
Use Register Variables drop-down list box 72
Use Selected Target button 102
Use Standard Startup Linker Commands check box

529

Zilog Developer Studio II – Z8 Encore!®

User Manual

Index UM013034-1210

90
User Defined button 65
User Defined configuration 65
User field 71
User-defined segments 264
USHRT_MAX 398

V
va_arg function 402, 451
va_end function 402, 452
va_list 401
va_start function 402, 453
Values, return 207, 210
VAR directive 292
Variable arguments 401
_ 202
VECTOR directive 293
__vectors_nnn segment 263
Verify button 116
Verify Download button 25
Verify File Downloads--Read After Write check

box 132
Verify File Downloads--Upon Completion check

box 132
View menu 55

Debug Windows 55
Output 56
Status Bar 56
Workspace 56

vprintf function 403, 454
vsprintf function 403, 454

W
wait bp, script file command 493
wait, script file command 493
WARN command 340
Warn on Segment Overlap check box 96
WARNING IS FATAL command 340
Warning messages

ANSI C-Compiler 245
assembler 321
generating 340

linker/locator 358
suppressing 337

Warnings page 95
WARNOVERLAP command 341
Watch window 375

adding new variables 376
changing values 376
removing expressions 376
viewing ASCII values 377
viewing ASCIZ values 377
viewing decimal values 377
viewing hexadecimal values 377
viewing NULL-terminated ASCII 377

Watch Window button 28
wchar_t 402, 403
White octagon 365
Window menu 133
Windows menu

Arrange Icons 133
Cascade 133
Close 133
Close All 133
New Window 133
Tile 133

.WITH directive 299
With Include Files check box 68
Workspace Window button 18
.WRG 277
WRITE_FLASH function 226
WRITE_NVDS function 227
WRITE_NVDS_GET_STATUS function 228
Writing characters 431
Writing output 428, 439
Writing strings 432
.wsp file extension 45

X
XDEF directive 294
XREF directive 295, 316

Y
Yellow arrow 365

Zilog Developer Studio II – Z8 Encore!®

User Manual

530

UM017104-1210 Index

Yellow arrow on red octagon 365

Z
Z8 Encore! developer’s environment

IDE window 15
menus 37
software installation 1
system requirements xxv
toolbars 16
tutorial 1

Z8 Encore! family specific functions 216
Z8 Encore! MC Emulator

requirements xxvii
__ZDATE__ 201
ZDS Default Directory button 102
ZDS II

installing 1
running from the command line 455

.zdsproj file extension 3
__ZILOG__ 201
Zilog functions

EI 216
getch 216
init_uart 218
kbhit 219
putch 219
select_port 223
SET_VECTOR 223

Zilog Standard Library
changing source files 389
finding source files 389
header files 388
notes and tips 387
on-chip peripherals 388
settings 81, 92
switching UARTs 390
unresolved errors 388
unresolved symbols error 389
using standard I/O calls 390

Zilog Standard Library (Peripheral Support) check
box 92

ZMASM compatibility 320, 497
ZSL

changing source files 389
definition 81, 92, 388
finding source files 389
header files 388
notes and tips 387
on-chip peripherals 388
switching UARTs 390
unresolved errors 388
unresolved symbols error 389
using standard I/O calls 390

ZSL page 81, 82
zsldevinit.asm file 388

initializations 388

UM013034-1210 Customer Support

Zilog Developer Studio II – Z8 Encore!®

User Manual

531

Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at
http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.

http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum

Customer Support UM013034-1210

532

Zilog Developer Studio II – Z8 Encore!®

User Manual

Mouser Electronics

Related Product Links

692-Z8F16800128ZCOG - ZiLOG Z8F16800128ZCOG

http://www.mouser.com/access/?pn=692-Z8F16800128ZCOG

	Zilog Developer Studio II – Z8 Encore! User Manual
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	ZDS II System Requirements
	Supported Operating Systems
	Recommended Host System Configuration
	Minimum Host System Configuration
	When Using the Serial Smart Cable
	When Using the USB Smart Cable
	When Using the Opto-Isolated USB Smart Cable
	When Using the Ethernet Smart Cable
	When Using the Z8 Encore! MC Emulator
	Z8 Encore! Product Support

	Zilog Technical Support

	Getting Started
	Installing ZDS II
	Developer’s Environment Tutorial
	Create a New Project
	Add a File to the Project
	Set Up the Project
	Save the Project

	Using the Integrated Development Environment
	Toolbars
	File Toolbar
	Build Toolbar
	Find Toolbar
	Command Processor Toolbar
	Bookmarks Toolbar
	Debug Toolbar
	Debug Windows Toolbar

	Windows
	Project Workspace Window
	Edit Window
	Output Windows

	Menu Bar
	File Menu
	Edit Menu
	View Menu
	Project Menu
	Build Menu
	Debug Menu
	Tools Menu
	Window Menu
	Help Menu

	Shortcut Keys
	File Menu Shortcuts
	Edit Menu Shortcuts
	Project Menu Shortcuts
	Build Menu Shortcuts
	Debug Menu Shortcuts

	Using the Editor
	Auto Completion
	Call Tips
	Auto Indentation
	Multiple Clipboards
	Line and Block Comments
	Abbreviations and Expansions
	Auto Insertion of Braces and Quotes
	Long Line Indicator
	UNICODE Support
	Auto Syntax Styler
	Code Folding Margin
	Line Number Margin
	Type Info Tips
	Highlighting and Finding Matched Braces
	Matching Preprocessor Conditional Macros
	Wrap Long Lines
	Indentation Guides
	Zoom In/Out
	Bookmarks
	Opening an Include File
	Highlighting a Program Counter Line
	Mismatched Brace Highlighting
	Auto Conversion of “.” to “→”

	Using the ANSI C-Compiler
	Language Extensions
	Additional Keywords for Storage Specification
	Memory Models
	Call Frames
	Interrupt Support
	Monitor Function Support
	String Placement
	Inline Assembly
	Placement Directives
	Char and Short Enumerations
	Setting Flash Option Bytes in C
	Program RAM Support (Z8 Encore! XP 16K Series Only)
	Preprocessor #warning Directive Support
	Supported New Features from the 1999 Standard

	Type Sizes
	Predefined Macros
	Examples
	Macros Generated by the IDE

	Calling Conventions
	Function Call Mechanism: Dynamic Frame
	Function Call Mechanism: Static Frame
	Function Call Mechanism: Register Parameter Passing
	Return Value
	Special Cases

	Calling Assembly Functions from C
	Function Naming Convention
	Argument Locations
	Return Values
	Preserving Registers

	Calling C Functions from Assembly
	Assembly File
	Referenced C Function Prototype

	Command Line Options
	Run-Time Library
	Zilog Header Files
	Zilog Functions

	Start-Up Files
	Customizing Start-Up Files

	Segment Naming
	Linker Command Files for C Programs
	Linker Referenced Files
	Linker Symbols
	Sample Linker Command File

	ANSI Standard Compliance
	Freestanding Implementation
	Deviations from ANSI C

	Warning and Error Messages
	Preprocessor Warning and Error Messages
	Front-End Warning and Error Messages
	Optimizer Warning and Error Messages
	Code Generator Warning and Error Messages

	Using the Macro Assembler
	Address Spaces and Segments
	Allocating Processor Memory
	Address Spaces
	Segments
	Assigning Memory at Link Time

	Output Files
	Source Listing (.lst) Format
	Object Code (.obj) File

	Source Language Structure
	General Structure
	Assembler Rules

	Expressions
	Arithmetic Operators
	Relational Operators
	Boolean Operators
	HIGH and LOW Operators
	HIGH16 and LOW16 Operators
	.FTOL Operator
	.LTOF Operator
	Decimal Numbers
	Hexadecimal Numbers
	Binary Numbers
	Octal Numbers
	Character Constants
	Operator Precedence
	Automatic Working Register Definitions

	Directives
	ALIGN
	.COMMENT
	CPU
	Data Directives
	DEFINE
	DS
	END
	EQU
	INCLUDE
	LIST
	NEWPAGE
	NOLIST
	ORG
	SEGMENT
	SUBTITLE
	TITLE
	VAR
	VECTOR
	XDEF
	XREF
	Structures and Unions in Assembly Code

	Structured Assembly
	Structured Assembly Inputs
	Structured Assembly Processing

	Conditional Assembly
	IF
	IFDEF
	IFSAME
	IFMA

	Macros
	Macro Definition
	Concatenation
	Macro Invocation
	Local Macro Labels
	Optional Macro Arguments
	Exiting a Macro
	Delimiting Macro Arguments

	Labels
	Anonymous Labels
	Local Labels
	Importing and Exporting Labels
	Label Spaces
	Label Checks

	Source Language Syntax
	Compatibility Issues
	Warning and Error Messages

	Using the Linker/Locator
	Linker Functions
	Invoking the Linker
	Linker Commands
	<outputfile>=<module list>
	CHANGE
	COPY
	DEBUG
	DEFINE
	FORMAT
	GROUP
	HEADING
	LOCATE
	MAP
	MAXHEXLEN
	MAXLENGTH
	NODEBUG
	NOMAP
	NOWARN
	ORDER
	RANGE
	SEARCHPATH
	SEQUENCE
	SORT
	SPLITTABLE
	UNRESOLVED IS FATAL
	WARN
	WARNING IS FATAL
	WARNOVERLAP

	Linker Expressions
	+ (Add)
	& (And)
	BASE OF
	COPY BASE
	COPY TOP
	/ (Divide)
	FREEMEM
	HIGHADDR
	LENGTH
	LOWADDR
	* (Multiply)
	Decimal Numeric Values
	Hexadecimal Numeric Values
	| (Or)
	<< (Shift Left)
	>> (Shift Right)
	- (Subtract)
	TOP OF
	^ (Bitwise Exclusive Or)
	~ (Not)

	Sample Linker Map File
	Warning and Error Messages

	Using the Debugger
	Status Bar
	Code Line Indicators
	Debug Windows
	Registers Window
	Special Function Registers Window
	Clock Window
	Memory Window
	Watch Window
	Locals Window
	Call Stack Window
	Symbols Window
	Disassembly Window
	Simulated UART Output Window

	Using Breakpoints
	Inserting Breakpoints
	Viewing Breakpoints
	Moving to a Breakpoint
	Enabling Breakpoints
	Disabling Breakpoints
	Removing Breakpoints

	Appendix A. Zilog Standard Library Notes and Tips
	Appendix B. C Standard Library
	Standard Header Files
	Diagnostics <assert.h>
	Character Handling <ctype.h>
	Errors <errno.h>
	Floating Point <float.h>
	Limits <limits.h>
	Mathematics <math.h>
	Nonlocal Jumps <setjmp.h>
	Variable Arguments <stdarg.h>
	Standard Definitions <stddef.h>
	Input/Output <stdio.h>
	General Utilities <stdlib.h>
	String Handling <string.h>

	Standard Functions
	abort
	abs
	acos
	asin
	atan
	atan2
	atof
	atoi
	atol
	bsearch
	calloc
	ceil
	cos
	cosh
	div
	exp
	fabs
	floor
	fmod
	free
	frexp
	getchar
	gets
	isalnum
	isalpha
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	labs
	ldexp
	ldiv
	log
	log10
	longjmp
	malloc
	memchr
	memcmp
	memcpy
	memmove
	memset
	modf
	pow
	printf
	putchar
	puts
	qsort
	rand
	realloc
	scanf
	setjmp
	sin
	sinh
	sprintf
	sqrt
	srand
	sscanf
	strcat
	strchr
	strcmp
	strcpy
	strcspn
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	tan
	tanh
	tolower
	toupper
	va_arg
	va_end
	va_start
	vprintf
	vsprintf

	Appendix C. Running ZDS II from the Command Line
	Building a Project from the Command Line
	Running the Assembler from the Command Line
	Running the Compiler from the Command Line
	Running the Linker from the Command Line
	Assembler Command Line Options
	Compiler Command Line Options
	Librarian Command Line Options
	Linker Command Line Options

	Appendix D. Using the Command Processor
	Sample Command Script File
	Supported Script File Commands
	add file
	batch
	bp
	build
	cancel all
	cancel bp
	cd
	checksum
	crc
	debugtool copy
	debugtool create
	debugtool get
	debugtool help
	debugtool list
	debugtool save
	debugtool set
	debugtool setup
	defines
	delete config
	examine (?) for Expressions
	examine (?) for Variables
	exit
	fillmem
	go
	list bp
	loadmem
	log
	makfile or makefile
	new project
	open project
	option
	print
	pwd
	quit
	rebuild
	reset
	savemem
	set config
	step
	stepin
	stepout
	stop
	target copy
	target create
	target get
	target help
	target list
	target options
	target save
	target set
	target setup
	wait
	wait bp

	Running the Flash Loader from the Command Processor
	Displaying Flash Help
	Setting Up Flash Options
	Executing Flash Commands
	Examples

	Appendix E. Compatibility Issues
	Assembler Compatibility Issues
	Compiler Compatibility Issues

	Index
	Customer Support

