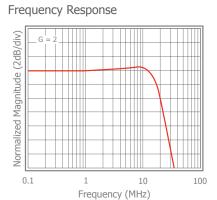
Data Sheet

COMLINEAR[®] CLC1009, CLC1019, CLC2009 0.2mA, Low Cost, 2.5 to 5.5V, 35MHz Rail-to-Rail Amplifiers

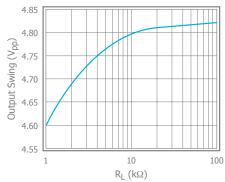
FEATURES

- 208µA supply current
- 35MHz bandwidth
- Power down to 35µA (CLC1019)
- Input voltage range with 5V supply: -0.3V to 3.8V
- Output voltage range with 5V supply: 0.08V to 4.88V
- 27V/µs slew rate
- $21nV/\sqrt{Hz}$ input voltage noise
- 13mA linear output current
- Fully specified at 2.7V and 5V supplies
- Replaces MAX4281
- CLC1009: Pb-free SOT23-5, SOIC-8
- CLC1019: Pb-free SOT23-6, SOIC--8
- CLC2009: Pb-free MSOP-8, SOIC-8

APPLICATIONS


- Portable/battery-powered applications
- Mobile communications, cell phones, pagers
- ADC buffer
- Active filters
- Portable test instruments
- Signal conditioning
- Medical Equipment
- Portable medical instrumentation

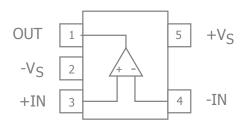
General Description


The COMLINEAR CLC1009 (single), CLC1019 (single with disable), and CLC2009 (dual) are ultra-low power, low cost, voltage feedback amplifiers. These amplifiers use only 208 μ A of supply current and are designed to operate from a supply range of 2.5V to 5.5V (±1.25 to ±2.75). The input voltage range extends 300mV below the negative rail and 1.2V below the positive rail.

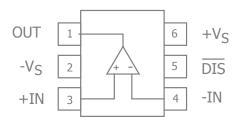
The CLC1009, CLC1019, and CLC2009 offer high bipolar performance at a low CMOS price. They offer superior dynamic performance with a 35MHz small signal bandwidth and 27V/ μ s slew rate. The combination of lowpower, high bandwidth, and rail-to-rail performance make the CLC1009, CLC1019, and CLC2009 well suited for battery-powered communication/ computing systems.

Typical Performance Examples

Output Swing vs. RL



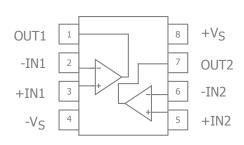
Ordering Information


Part Number	Package	Pb-Free	RoHS Compliant	Operating Temperature Range	Packaging Method
CLC1009IST5X*	SOT23-5	Yes	Yes	-40°C to +85°C	Reel
CLC1009ISO8X	SOIC-8	Yes	Yes	-40°C to +85°C	Reel
CLC1019IST6X*	SOT23-6	Yes	Yes	-40°C to +85°C	Reel
CLC1019ISO8X	SOIC-8	Yes	Yes	-40°C to +85°C	Reel
CLC2009IMP8X*	MSOP-8	Yes	Yes	-40°C to +85°C	Reel
CLC2009ISO8X	SOIC-8	Yes	Yes	-40°C to +85°C	Reel

Moisture sensitivity level for all parts is MSL-1. *Advance Information, contact CADEKA for availability.

CLC1009 Pin Configuration

CLC1019 Pin Configuration


CLC1009 Pin Assignments

Pin No.	Pin Name	Description
1	OUT	Output
2	-V _S	Negative supply
3	+IN	Positive input
4	-IN	Negative input
5	+V _S	Positive supply

CLC1019 Pin Configuration

Pin No.	Pin Name	Description
1	OUT	Output
2	-V _S	Negative supply
3	+IN	Positive input
4	-IN	Negative input
5	DIS	Disable pin. Enabled if pin is left floating or tied to $+V_S$, disabled if pin is tied to $-V_S$ (which is GND in a single supply application).
6	+V _S	Positive supply

CLC2009 Pin Configuration

CLC2009 Pin Configuration

Pin No.	Pin Name	Description
1	OUT1	Output, channel 1
2	-IN1	Negative input, channel 1
3	+IN1	Positive input, channel 1
4	-V _S	Negative supply
5	+IN2	Positive input, channel 2
6	-IN2	Negative input, channel 2
7	OUT2	Output, channel 2
8	+V _S	Positive supply

Absolute Maximum Ratings

The safety of the device is not guaranteed when it is operated above the "Absolute Maximum Ratings". The device should not be operated at these "absolute" limits. Adhere to the "Recommended Operating Conditions" for proper device function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the operating conditions noted on the tables and plots.

Parameter	Min	Max	Unit
Supply Voltage	0	6	V
Input Voltage Range	-V _s -0.5V	+V _s +0.5V	V
Continuous Output Current	-30	30	mA

Reliability Information

Parameter	Min	Тур	Max	Unit
Junction Temperature			175	°C
Storage Temperature Range	-65		150	°C
Lead Temperature (Soldering, 10s)			260	°C
Package Thermal Resistance				
5-Lead SOT23		221		°C/W
6-Lead SOT23		177		°C/W
8-Lead SOIC		100		°C/W
8-Lead MSOP		139		°C/W

Notes:

Package thermal resistance (θ_{1A}), JDEC standard, multi-layer test boards, still air.

ESD Protection

Product	SOT23-5	SOT23-6	SOIC-8	MSOP-8
Human Body Model (HBM)	TBD	TBD	TBD	TBD
Charged Device Model (CDM)	TBD	TBD	TBD	TBD

Recommended Operating Conditions

Parameter	Min	Тур	Max	Unit
Operating Temperature Range	-40		+85	°C
Supply Voltage Range	2.5		5.5	V

Electrical Characteristics at +2.7V

 T_A = 25°C, V_s = +2.7V, R_f = R_g =2.5k Ω , R_L = 2k Ω to $V_S/2,$ G = 2; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Frequency [Domain Response	· · · · · · · · · · · · · · · · · · ·				
UGBW _{SS}	Unity Gain -3dB Bandwidth	$G = +1, V_{OUT} = 0.05V_{pp}, R_f = 0$		28		MHz
BW _{SS}	-3dB Bandwidth	$G = +2, V_{OUT} < 0.2V_{pp}$		15		MHz
BW _{LS}	Large Signal Bandwidth	$G = +2$, $V_{OUT} = 2V_{pp}$		7		MHz
GBWP	Gain Bandwdith Product	$G = +11, V_{OUT} = 0.2V_{pp}$		16		MHz
Time Domai	in Response					
t _R , t _F	Rise and Fall Time	V _{OUT} = 0.2V step; (10% to 90%)		16		ns
t _S	Settling Time to 0.1%	V _{OUT} = 1V step		140		ns
OS	Overshoot	V _{OUT} = 1V step		1		%
SR	Slew Rate	2V step, G = -1		20		V/µs
Distortion/N	loise Response					
HD2	2nd Harmonic Distortion	$V_{OUT} = 1V_{pp}$, 100kHz		-85		dBc
HD3	3rd Harmonic Distortion	$V_{OUT} = 1V_{pp'}$ 100kHz		-63		dBc
THD	Total Harmonic Distortion	$V_{OUT} = 1V_{pp}$, 100kHz		62		dB
e _n	Input Voltage Noise	> 10kHz		23		nV/√Hz
X _{TALK}	Crosstalk	$V_{OUT} = 0.2 V_{pp'} 100 \text{kHz}$		98		dB
DC Performa	ance					
V _{IO}	Input Offset Voltage			0.8		mV
dV _{IO}	Average Drift			11		μV/°C
I _b	Input Bias Current			0.37		μA
dI _b	Average Drift			1		nA/°C
I _{OS}	Input Offset Current			8		nA
PSRR	Power Supply Rejection Ratio (1)	DC	56	60		dB
A _{OL}	Open-Loop Gain	$V_{OUT} = V_S / 2$		65		dB
I _S	Supply Current	per channel		185		μA
Disable Cha	racteristics		I			1
T _{ON}	Turn On Time			1		μs
T _{OFF}	Turn Off Time			3.5		μs
OFFISO	Off Isolation	1MHz		74		dB
ISO	Disable Supply Current	per channel, DIS tied to GND		13		μA
Input Chara	cteristics		I			
R _{IN}	Input Resistance	Non-inverting		>10		MΩ
C _{IN}	Input Capacitance			1.4		pF
CMIR	Common Mode Input Range			-0.3 to 1.5		V
CMRR	Common Mode Rejection Ratio	DC, $V_{CM} = 0V$ to $V_{S} - 1.5$		92		dB
Output Chai	racteristics		I			
		$R_L = 2k\Omega$ to $V_S / 2$		0.08 to 2.6		V
V _{OUT}	Output Voltage Swing	$R_L = 10 k\Omega$ to $V_S / 2$		0.06 to 2.62		V
I _{OUT}	Output Current			±8		mA
I _{SC}	Short Circuit Output Current			±12.5		mA

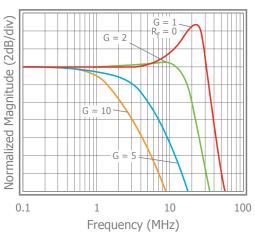
Notes:

1. 100% tested at 25°C

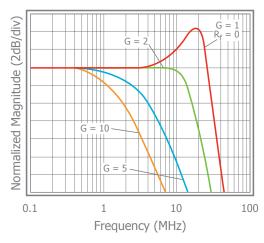
Electrical Characteristics at +5V

 T_A = 25°C, V_s = +5V, R_f = R_g =2.5k Ω , R_L = 2k Ω to $V_S/2,$ G = 2; unless otherwise noted.

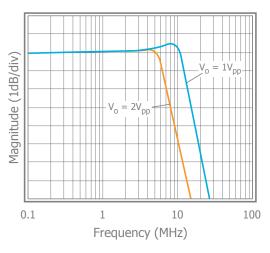
Symbol	Parameter	Conditions	Min	Тур	Max	Units
Frequency D	Domain Response					
UGBW _{SS}	Unity Gain -3dB Bandwidth	$G = +1, V_{OUT} = 0.05V_{pp}, R_f = 0$		35		MHz
BW _{SS}	-3dB Bandwidth	$G = +2, V_{OUT} < 0.2V_{pp}$		18		MHz
BW _{LS}	Large Signal Bandwidth	$G = +2$, $V_{OUT} = 2V_{pp}$		8		MHz
GBWP	Gain Bandwdith Product	$G = +11, V_{OUT} = 0.2V_{pp}$		20		MHz
Time Domai	in Response					
t _R , t _F	Rise and Fall Time	V _{OUT} = 0.2V step; (10% to 90%)		13		ns
t _S	Settling Time to 0.1%	V _{OUT} = 1V step		140		ns
OS	Overshoot	V _{OUT} = 1V step		1		%
SR	Slew Rate	2V step, G = -1		27		V/µs
Distortion/N	loise Response		I			
HD2	2nd Harmonic Distortion	$V_{OUT} = 2V_{pp'}$ 100kHz		-78		dBc
HD3	3rd Harmonic Distortion	$V_{OUT} = 2V_{pp'}$ 100kHz		-66		dBc
THD	Total Harmonic Distortion	$V_{OUT} = 2V_{pp}$, 100kHz		65		dB
e _n	Input Voltage Noise	> 10kHz		21		nV/√Hz
X _{TALK}	Crosstalk	$V_{OUT} = 0.2V_{pp}$, 100kHz		98		dB
DC Performa	ance					
V _{IO}	Input Offset Voltage (1)		-5	-1.5	5	mV
dV _{IO}	Average Drift			20		μV/°C
Ib	Input Bias Current (1)		-1.3	0.37	1.3	μA
dI _b	Average Drift			1		nA/°C
I _{OS}	Input Offset Current (1)			7	130	nA
PSRR	Power Supply Rejection Ratio (1)	DC	56	60		dB
A _{OL}	Open-Loop Gain	$V_{OUT} = V_S / 2$	56	62		dB
I _S	Supply Current (1)	per channel		208	260	μA
Disable Cha	racteristics		I			
T _{ON}	Turn On Time			0.7		μs
T _{OFF}	Turn Off Time			4.5		μs
OFFISO	Off Isolation	1MHz		72		dB
ISO	Disable Supply Current (1)	per channel, DIS tied to GND		35		μA
Input Chara	cteristics					
R _{IN}	Input Resistance	Non-inverting		>10		MΩ
C _{IN}	Input Capacitance			1.2		pF
CMIR	Common Mode Input Range			-0.3 to 3.8		V
CMRR	Common Mode Rejection Ratio (1)	DC, $V_{CM} = 0V$ to $V_{S} - 1.5$	65	95		dB
Output Chai	-		I			
		R_{L} = 2k\Omega to V_{S}/ 2 $^{(1)}$	0.2 to 4.7	0.1 to 4.8		V
V _{OUT}	Output Voltage Swing	$R_L = 10 k\Omega$ to $V_S / 2$		0.08 to 4.88		V
I _{OUT}	Output Current			±8.5		mA
I _{SC}	Short Circuit Output Current			±13		mA

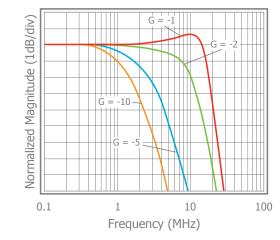

Notes:

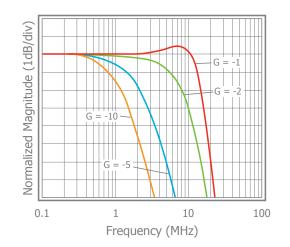
1. 100% tested at 25°C

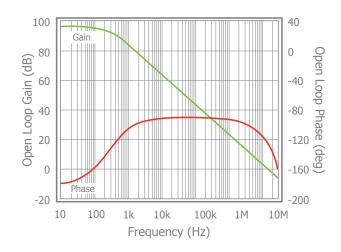

Typical Performance Characteristics

 $T_A = 25^{\circ}C$, $V_s = +5V$, $R_f = R_g = 2.5k\Omega$, $R_L = 2k\Omega$ to $V_S/2$, G = 2; unless otherwise noted.

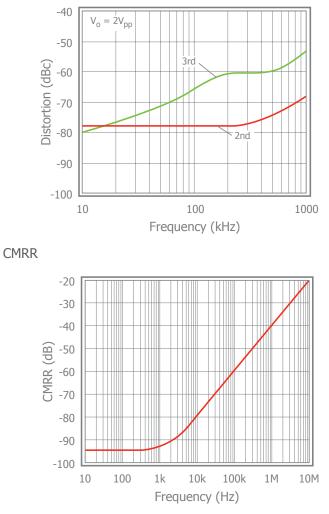

Non-Inverting Frequency Response

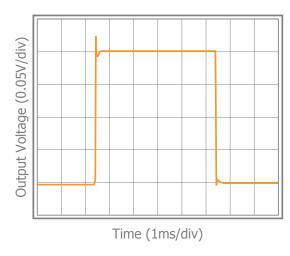

Non-Inverting Frequency Response at $V_S = 2.7V$


Frequency Response vs. V_{OUT}

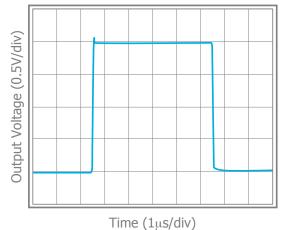

Inverting Frequency Response

Inverting Frequency Response at $V_S = 2.7V$

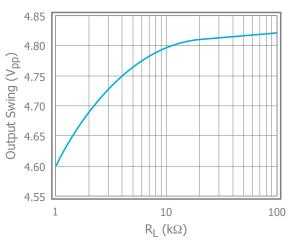

Open Loop Gain & Phase vs. Frequency


Typical Performance Characteristics

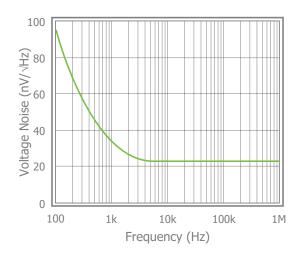
 $T_A = 25^{\circ}C$, $V_s = +5V$, $R_f = R_g = 2.5k\Omega$, $R_L = 2k\Omega$ to $V_S/2$, G = 2; unless otherwise noted.

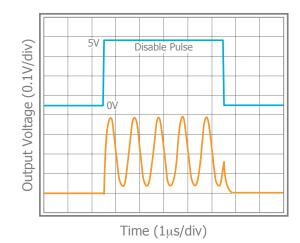

2nd & 3rd Harmonic Distortion

Small Signal Pulse Response


2nd & 3rd Harmonic Distortion at V_{S} = 2.7V

Typical Performance Characteristics - Continued


 $T_A = 25^{\circ}$ C, $V_s = +5V$, $R_f = R_g = 2.5k\Omega$, $R_L = 2k\Omega$ to $V_S/2$, G = 2; unless otherwise noted.


Output Swing vs. RL

Enable / Disable Response

Input Voltage Noise

Application Information

General Description

The CLC1009 family are a single supply, general purpose, voltage-feedback amplifiers fabricated on a complementary bipolar process. The CLC1009 offers 35MHz unity gain bandwidth, 27V/µs slew rate, and only 208µA supply current. It features a rail-to-rail output stage and is unity gain stable.

The design utilizes a patent pending topology that provides increased slew rate performance. The common mode input range extends to 300mV below ground and to 1.2V below Vs. Exceeding these values will not cause phase reversal. However, if the input voltage exceeds the rails by more than 0.5V, the input ESD devices will begin to conduct. The output will stay at the rail during this overdrive condition.

The design uses a Darlington output stage. The output stage is short circuit protected and offers "soft" saturation protection that improves recovery time.

Figures 1, 2, and 3 illustrate typical circuit configurations for non-inverting, inverting, and unity gain topologies for dual supply applications. They show the recommended bypass capacitor values and overall closed loop gain equations. Figure 4 shows the typical non-inverting gain circuit for single supply applications.

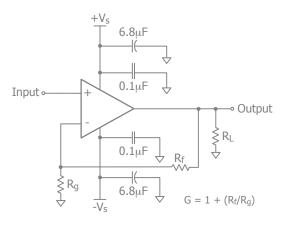


Figure 1. Typical Non-Inverting Gain Circuit

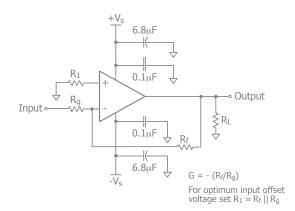


Figure 2. Typical Inverting Gain Circuit

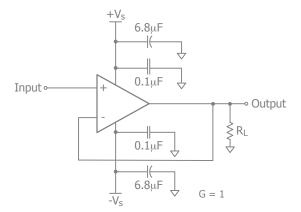


Figure 3. Unity Gain Circuit

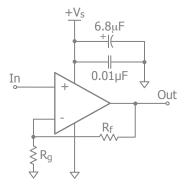


Figure 4. Single Supply Non-Inverting Gain Circuit

Enable/Disable Function (CLC1019)

The CLC1019 offers an active-low disable pin that can be used to lower its supply current. Leave the pin floating to enable the part. Pull the disable pin to the negative supply (which is ground in a single supply application) to disable the output. During the disable condition, the nominal supply current will drop to below 40μ A and the output will be at high impedance with about 2pF capacitance.

Power Dissipation

Power dissipation should not be a factor when operating under the stated $2k\Omega$ load condition. However, applications with low impedance, DC coupled loads should be analyzed to ensure that maximum allowed junction temperature is not exceeded. Guidelines listed below can be used to verify that the particular application will not cause the device to operate beyond it's intended operating range.

Maximum power levels are set by the absolute maximum junction rating of 150°C. To calculate the junction temperature, the package thermal resistance value Theta_{JA} (Θ_{JA}) is used along with the total die power dissipation.

$$T_{Junction} = T_{Ambient} + (\Theta_{JA} \times P_D)$$

Where T_{Ambient} is the temperature of the working environment.

In order to determine P_D , the power dissipated in the load needs to be subtracted from the total power delivered by the supplies.

$$P_D = P_{supply} - P_{load}$$

Supply power is calculated by the standard power equation.

$$P_{supply} = V_{supply} \times I_{RMS supply}$$

$$V_{supply} = V_{S+} - V_{S-}$$

Power delivered to a purely resistive load is:

$$P_{load} = ((V_{LOAD})_{RMS^2})/Rload_{eff}$$

The effective load resistor ($Rload_{eff}$) will need to include the effect of the feedback network. For instance,

Rload_{eff} in Figure 3 would be calculated as:

$$R_L \parallel (R_f + R_g)$$

These measurements are basic and are relatively easy to perform with standard lab equipment. For design purposes however, prior knowledge of actual signal levels and load impedance is needed to determine the dissipated power. Here, P_D can be found from

$$P_D = P_{Quiescent} + P_{Dynamic} - P_{Load}$$

Quiescent power can be derived from the specified I_S values along with known supply voltage, V_{Supply} . Load power can be calculated as above with the desired signal amplitudes using:

$$(V_{LOAD})_{RMS} = V_{PEAK} / \sqrt{2}$$

$$(I_{LOAD})_{RMS} = (V_{LOAD})_{RMS} / Rload_{eff}$$

The dynamic power is focused primarily within the output stage driving the load. This value can be calculated as:

$$P_{\text{DYNAMIC}} = (V_{\text{S+}} - V_{\text{LOAD}})_{\text{RMS}} \times (I_{\text{LOAD}})_{\text{RMS}}$$

Assuming the load is referenced in the middle of the power rails or $V_{supply}/2$.

The CLC1009 is short circuit protected. However, this may not guarantee that the maximum junction temperature (+150°C) is not exceeded under all conditions. Figure 5 shows the maximum safe power dissipation in the package vs. the ambient temperature for the packages available.

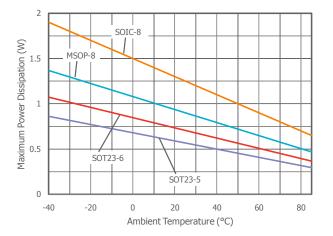


Figure 5. Maximum Power Derating

Driving Capacitive Loads

Increased phase delay at the output due to capacitive loading can cause ringing, peaking in the frequency response, and possible unstable behavior. Use a series resistance, R_S , between the amplifier and the load to help improve stability and settling performance. Refer to Figure 6.

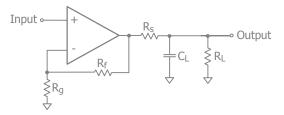


Figure 6. Addition of R_S for Driving Capacitive Loads

Table 1 provides the recommended R_S for various capacitive loads. The recommended R_S values result in approximately <1dB peaking in the frequency response.

C _L (pF)	R _S (Ω)	-3dB BW (kHz)
10pF	TBD	
20pF	TBD	
50pF	TBD	
100pF	TBD	

Table 1: Recommended R_S vs. C_L

For a given load capacitance, adjust $R_{\rm S}$ to optimize the tradeoff between settling time and bandwidth. In general, reducing $R_{\rm S}$ will increase bandwidth at the expense of additional overshoot and ringing.

Overdrive Recovery

An overdrive condition is defined as the point when either one of the inputs or the output exceed their specified voltage range. Overdrive recovery is the time needed for the amplifier to return to its normal or linear operating point. The recovery time varies, based on whether the input or output is overdriven and by how much the range is exceeded. The CLC1009, CLC1019, and CLC2009 will typically recover in less than 20ns from an overdrive condition. Figure 7 shows the CLC1009 in an overdriven condition. Figure 7. Overdrive Recovery

Layout Considerations

General layout and supply bypassing play major roles in high frequency performance. CADEKA has evaluation boards to use as a guide for high frequency layout and as an aid in device testing and characterization. Follow the steps below as a basis for high frequency layout:

- Include 6.8µF and 0.1µF ceramic capacitors for power supply decoupling
- Place the 6.8µF capacitor within 0.75 inches of the power pin
- Place the 0.1µF capacitor within 0.1 inches of the power pin
- Remove the ground plane under and around the part, especially near the input and output pins to reduce parasitic capacitance
- Minimize all trace lengths to reduce series inductances

Refer to the evaluation board layouts below for more information.

Evaluation Board Information

The following evaluation boards are available to aid in the testing and layout of these devices:

Evaluation Board	Products
CEB002	CLC1009, CLC1019 in SOT23
CEB003	CLC1009 in SOIC
CEB006	CLC2009 in SOIC
CEB010	CLC2009 in MSOP

Evaluation Board Schematics

Evaluation board schematics and layouts are shown in Figures 8-14. These evaluation boards are built for dualsupply operation. Follow these steps to use the board in a single-supply application:

- 1. Short -Vs to ground.
- 2. Use C3 and C4, if the $-V_S$ pin of the amplifier is not directly connected to the ground plane.

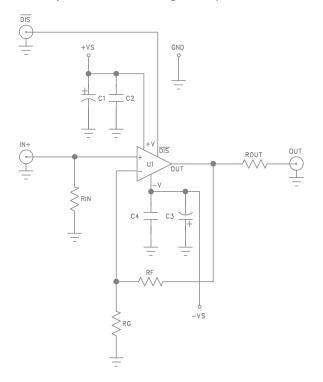


Figure 8. CEB002 & CEB003 Schematic

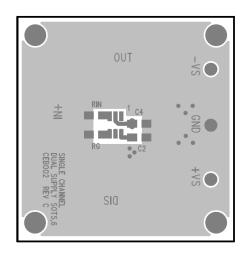


Figure 9. CEB002 Top View

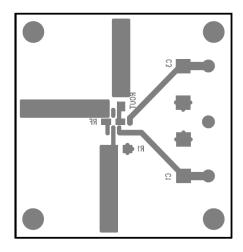


Figure 10. CEB002 Bottom View

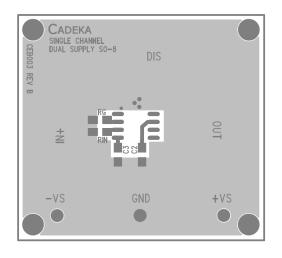


Figure 11. CEB003 Top View

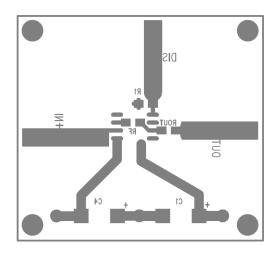


Figure 12. CEB003 Bottom View

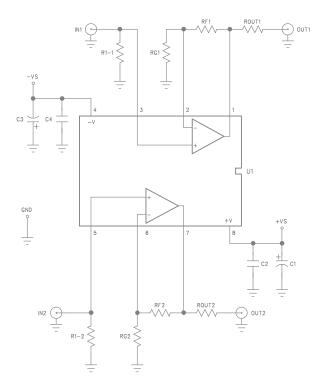


Figure 11. CEB006 & CEB010 Schematic

Figure 12. CEB006 Top View

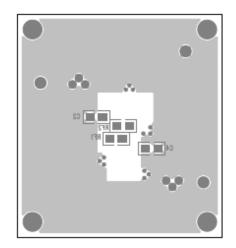


Figure 13. CEB006 Bottom View

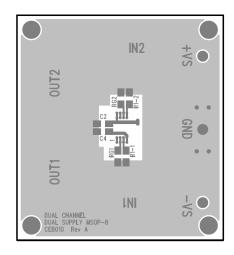
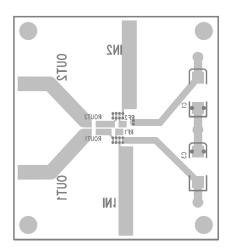
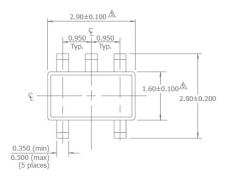


Figure 15. CEB010 Top View



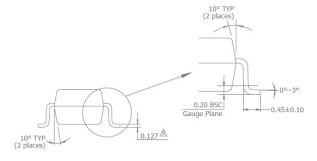

Figure 16. CEB010 Bottom View

Mechanical Dimensions

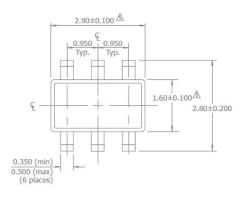
10° TYP (2 places)

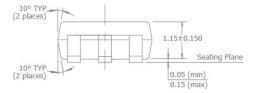
10° TYP (2 places)

SOT23-5 Package

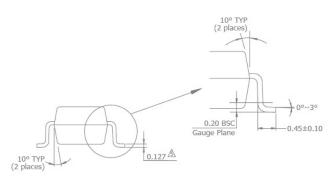

1.15±0.150

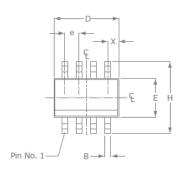
0.05 (min) 0.15 (max)


Seating Plane

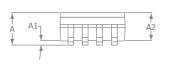

NOTES:

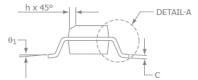
- 1. Dimensions and tolerances are as per ANSI Y14.5M-1982.
- 2. Package surface to be matte finish VDI 11~13.
- 3. Die is facing up for mold. Die is facing down for trim/form, ie. reverse trim/form.
- 4. The footlength measuring is based on the guage plane method.
- $\begin{tabular}{|c|c|c|c|} \begin{tabular}{|c|c|c|} \begin{tabular}{|c|c|} \begin{tabular$
- $\underline{\mathbb{A}}$ Dimension are exclusive of solder plating.


SOT23-6


NOTES:

- 1. Dimensions and tolerances are as per ANSI Y14.5M-1982.
- 2. Package surface to be matte finish VDI 11~13.
- 3. Die is facing up for mold. Die is facing down for trim/form, ie. reverse trim/form.
- 4. The footlength measuring is based on the guage plane method.
- ${\ensuremath{\underline{\mathbb{A}}}}$ Dimension are exclusive of mold flash and gate burr.
- ▲ Dimension are exclusive of solder plating.




Mechanical Dimensions continued

SOIC-8 Package

	SOIC-8	
SYMBOL	MIN	MAX
A1	0.10	0.25
В	0.36	0.48
С	0.19	0.25
D	4.80	4.98
E	3.81	3.99
е	1.27 BSC	
Н	5.80	6.20
h	0.25	0.5
L	0.41	1.27
A	1.37	1.73
θ1	0°	8°
Х	0.55 ref	
θ2	7º BSC	

NOTE:

1. All dimensions are in millimeters.

2. Lead coplanarity should be 0 to 0.1mm (0.004") max.

3. Package surface finishing: VDI 24~27

4. All dimension excluding mold flashes.

А A1 A2

E1

E2

E3

E4

R

R1

t2

b

b1

С

01

03

L1

aaa

bbb

CCC

е

5. The lead width, B to be determined at 0.1905mm from the lead tip.

0.86

3.00 2.95

4.90

3.00

2.95

0.15

0.15

0.41

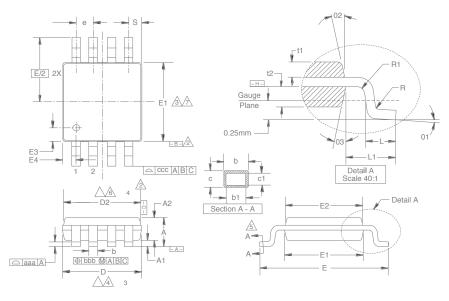
0.30

0.18

0.15 3.0

12.0

0.95 BSC


0.10

0.08 0.25

0.65 BSC

0.525 BSC

MSOP-8 Package

NOTE:

- 1 All dimensions are in millimeters (angle in degrees), unless otherwise specified.
- \triangle Datums -B- and -C- to be determined at datum plane -H-.
- $\underline{3}$ Dimensions "D" and "E1" are to be determined at datum $\underline{-H-}$.
- A Dimensions "D2" and "E2" are for top package and dimensions "D" and "E1" are for bottom package.
- S Cross sections A − A to be determined at 0.13 to 0.25mm from the leadtip.
- bimension "D" and "D2" does not include mold flash, protrusion or gate burrs.
- A Dimension "E1" and "E2" does not include interlead flash or protrusion.

Max
-
±0.05
±0.08
±0.10
±0.10
±0.15
±0.10
±0.10
±0.13
±0.13
+0.15/-0.06
+0.15/-0.06
±0.08
±0.08
+0.07/-0.08
±0.05
±0.05
+0.03/-0.02
±3.0°
±3.0°
±3.0°
±0.15
-
-
-
-
-
-

For additional information regarding our products, please visit CADEKA at: cadeka.com

CADEKA Headquarters Loveland, Colorado T: 970.663.5452 T: 877.663.5452 (toll free)

CADEKA, the CADEKA logo design, COMLINEAR, and the COMLINEAR logo design are trademarks or registered trademarks of CADEKA Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.

CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.

