
- 8 A RMS
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I_{GT} of 50 mA (Quadrants 1 3)

Pin 2 is in electrical contact with the mounting base.

MDC2ACA

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING			VALUE	UNIT
	TIC226D		400	
Repetitive peak off-state voltage (see Note 1)	TIC226M	V	600	V
	TIC226S	V _{DRM}	700	V
	TIC226N		800	
Full-cycle RMS on-state current at (or below) 85°C case temperature (see Note 2)			8	Α
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3)			70	Α
Peak gate current			±1	Α
Peak gate power dissipation at (or below) 85°C case temperature (pulse width ≤ 200 μs)			2.2	W
Average gate power dissipation at (or below) 85°C case temperature (see Note 4)			0.9	W
Operating case temperature range			-40 to +110	°C
Storage temperature range			-40 to +125	°C
Lead temperature 1.6 mm from case for 10 seconds			230	°C

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
 - 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 85°C derate linearly to 110°C case temperature at the rate of 320 mA/°C.
 - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
 - 4. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

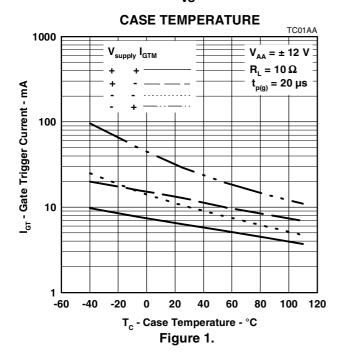
	PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	V_D = rated V_{DRM}	I _G = 0	T _C = 110°C			±2	mA
I _{GT}	Gate trigger current	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$ $V_{\text{supply}} = +12 \text{ V}^{\dagger}$ $V_{\text{supply}} = -12 \text{ V}^{\dagger}$ $V_{\text{supply}} = -12 \text{ V}^{\dagger}$	$R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$	$t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$		6 -12 -10 25	50 -50 -50	mA
V _{GT}	Gate trigger voltage	$V_{supply} = +12 \text{ V}\dagger$ $V_{supply} = +12 \text{ V}\dagger$ $V_{supply} = -12 \text{ V}\dagger$ $V_{supply} = -12 \text{ V}\dagger$ $V_{supply} = -12 \text{ V}\dagger$	$R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$	$t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$ $t_{p(g)} > 20 \mu s$		0.7 -0.8 -0.8 0.9	2 -2 -2 2	V
V _T	On-state voltage	I _T = ±12 A	I _G = 50 mA	(see Note 5)		±1.5	±2.1	V

[†] All voltages are with respect to Main Terminal 1.

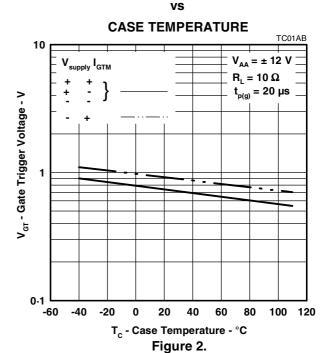
PRODUCT INFORMATION

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

	PARAMETER		TEST CONDIT	IONS	MIN	TYP	MAX	UNIT
I _H	Holding current	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$ $V_{\text{supply}} = -12 \text{ V}^{\dagger}$	$I_{G} = 0$ $I_{G} = 0$	Init' $I_{TM} = 100 \text{ mA}$ Init' $I_{TM} = -100 \text{ mA}$		10 -6	30 -30	mA
IL	Latching current	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$ $V_{\text{supply}} = -12 \text{ V}^{\dagger}$	(see Note 6)				50 -50	mA
dv/dt	Critical rate of rise of off-state voltage	$V_{DRM} = Rated V_{DRM}$	I _G = 0	T _C = 110°C		±100		V/µs
dv/dt _(c)	Critical rise of commutation voltage	V _{DRM} = Rated V _{DRM}	I _{TRM} = ±12 A	$T_C = 85^{\circ}C$ (see figure 7)	±5			V/µs

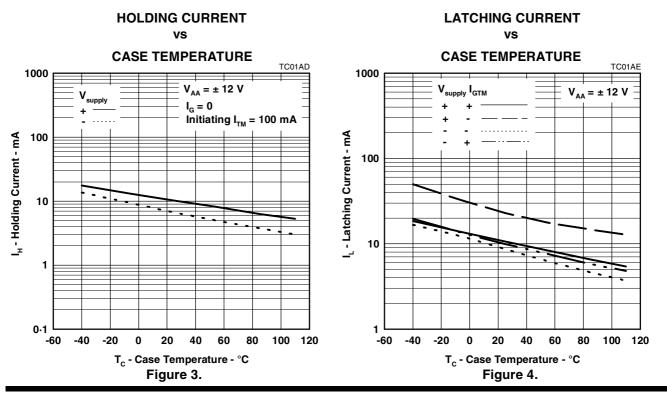

[†] All voltages are with respect to Main Terminal 1.

thermal characteristics

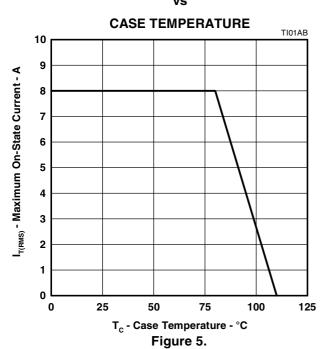

PARAMETER			TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.8	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W

TYPICAL CHARACTERISTICS

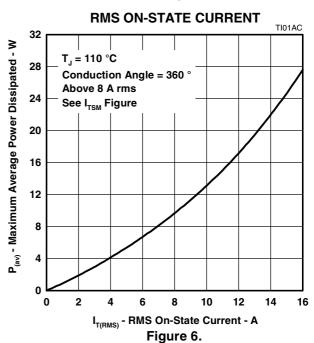
GATE TRIGGER CURRENT vs


GATE TRIGGER VOLTAGE

NOTES: 5. This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

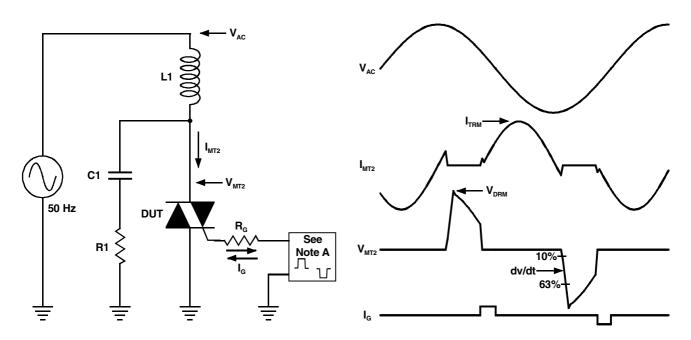

^{6.} The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \ \Omega$, $t_{p(g)} = 20 \ \mu s$, $t_r = \le 15 \ ns$, $f = 1 \ kHz$.

TYPICAL CHARACTERISTICS



THERMAL INFORMATION

MAX RMS ON-STATE CURRENT vs



MAX AVERAGE POWER DISSIPATED vs

PRODUCT INFORMATION

PARAMETER MEASUREMENT INFORMATION

NOTE A: The gate-current pulse is furnished by a trigger circuit which presents essentially an open circuit between pulses. The pulse is timed so that the off-state-voltage duration is approximately 800 µs.

PMC2AA

Figure 7.