
- High Current Triacs
- 16 A RMS
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- 125 A Peak Current
- Max I<sub>GT</sub> of 50 mA (Quadrants 1 3)



Pin 2 is in electrical contact with the mounting base.

MDC2ACA

#### absolute maximum ratings over operating case temperature (unless otherwise noted)

| RATING                                                                                      |         |                  | VALUE                      | UNIT |  |
|---------------------------------------------------------------------------------------------|---------|------------------|----------------------------|------|--|
|                                                                                             | TIC246D |                  | 400                        |      |  |
| Repetitive peak off-state voltage (see Note 1)                                              | TIC246M | .,               | 600                        | V    |  |
|                                                                                             | TIC246S | V <sub>DRM</sub> | 700                        |      |  |
|                                                                                             | TIC246N |                  | 800                        |      |  |
| Full-cycle RMS on-state current at (or below) 70°C case temperature (see Note 2)            |         |                  | 16                         | Α    |  |
| Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3) |         |                  | 125                        | Α    |  |
| Peak gate current                                                                           |         |                  | ±1                         | Α    |  |
| Operating case temperature range                                                            |         |                  | T <sub>C</sub> -40 to +110 |      |  |
| Storage temperature range                                                                   |         |                  | -40 to +125                | °C   |  |
| Lead temperature 1.6 mm from case for 10 seconds                                            |         |                  | 230                        | °C   |  |

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
  - 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 400 mA/°C.
  - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of peak reverse volta ge and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

#### electrical characteristics at 25°C case temperature (unless otherwise noted)

| PARAMETER TEST CONDITIONS |                                   |                                                                                                                                                                                                                        | MIN                                                                             | TYP                                                                                                         | MAX | UNIT                       |                    |             |
|---------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----|----------------------------|--------------------|-------------|
| I <sub>DRM</sub>          | Repetitive peak off-state current | $V_D = \text{rated } V_{DRM}$                                                                                                                                                                                          | I <sub>G</sub> = 0                                                              | T <sub>C</sub> = 110°C                                                                                      |     |                            | ±2                 | mA          |
| I <sub>GT</sub>           | Gate trigger<br>current           | $V_{\text{supply}} = +12 \text{ V}\dagger$ $V_{\text{supply}} = +12 \text{ V}\dagger$ $V_{\text{supply}} = +12 \text{ V}\dagger$ $V_{\text{supply}} = -12 \text{ V}\dagger$ $V_{\text{supply}} = -12 \text{ V}\dagger$ | $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ | $t_{p(g)} > 20 \text{ μs}$ |     | 12<br>-19<br>-16<br>34     | 50<br>-50<br>-50   | mA          |
| V <sub>GT</sub>           | Gate trigger<br>voltage           | $\begin{aligned} &V_{\text{supply}} = +12 \text{ V}\dagger \\ &V_{\text{supply}} = +12 \text{ V}\dagger \\ &V_{\text{supply}} = -12 \text{ V}\dagger \\ &V_{\text{supply}} = -12 \text{ V}\dagger \end{aligned}$       | $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ | $t_{p(g)} > 20 \mu s$<br>$t_{p(g)} > 20 \mu s$<br>$t_{p(g)} > 20 \mu s$<br>$t_{p(g)} > 20 \mu s$            |     | 0.8<br>-0.8<br>-0.8<br>0.9 | 2<br>-2<br>-2<br>2 | <b>&gt;</b> |
| V <sub>T</sub>            | On-state voltage                  | $I_{TM} = \pm 22.5 \text{ A}$                                                                                                                                                                                          | $I_G = 50mA$                                                                    | (see Note 4)                                                                                                |     | ±1.4                       | ±1.7               | V           |

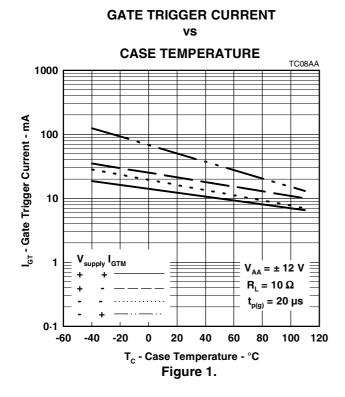
<sup>†</sup> All voltages are with respect to Main Terminal 1.

NOTE 4: This parameter must be measured using pulse techniques, t<sub>p</sub> = ≤ 1 ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

## PRODUCT INFORMATION



## electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)


|                      | PARAMETER TEST CONDITIONS |                                            |                        | MIN                                               | TYP  | MAX  | UNIT |              |
|----------------------|---------------------------|--------------------------------------------|------------------------|---------------------------------------------------|------|------|------|--------------|
| I <sub>H</sub>       | Holding current           | V <sub>supply</sub> = +12 V†               | I <sub>G</sub> = 0     | Init' I <sub>TM</sub> = 100 mA                    |      | 22   | 40   | mA           |
|                      |                           | $V_{\text{supply}} = -12 \text{ V}\dagger$ | $I_G = 0$              | Init' $I_{TM} = -100 \text{ mA}$                  |      | -12  | -40  | IIIA         |
| IL                   | Latching current          | V <sub>supply</sub> = +12 V†               | (see Note 5)           |                                                   |      | 80   | mA   |              |
|                      |                           | $V_{\text{supply}} = -12 \text{ V}\dagger$ |                        |                                                   |      |      | -80  | IIIA         |
| dv/dt                | Critical rate of rise of  | V <sub>D</sub> = Rated V <sub>D</sub>      | I <sub>G</sub> = 0     | T <sub>C</sub> = 110°C                            |      | ±400 |      | V/µs         |
|                      | off-state voltage         |                                            |                        |                                                   |      | ±400 |      | ν/μ5         |
| dv/dt <sub>(c)</sub> | Critical rise of          | $V_D = Rated V_D$                          |                        | $T_C = 80^{\circ}C$                               | ±1.2 | ±9   |      | V/µs         |
|                      | commutation voltage       | $di/dt = 0.5 I_{T(RMS)}/ms$                | $I_T = 1.4 I_{T(RMS)}$ | -1.2                                              | ±9   |      | ν/μδ |              |
| di/dt                | Critical rate of rise of  | $V_D = Rated V_D$                          | L = 50 mΔ              | $T_C = 50 \text{ mA}$ $T_C = 110^{\circ}\text{C}$ |      | ±100 |      | A/µs         |
|                      | on -state current         | di <sub>G</sub> /dt = 50 mA/μs             | IGT - 50 IIIA          |                                                   |      | ±100 |      | <i>Α</i> /μδ |

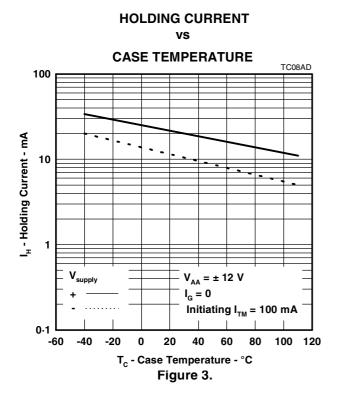
<sup>†</sup> All voltages are with respect to Main Terminal 1.

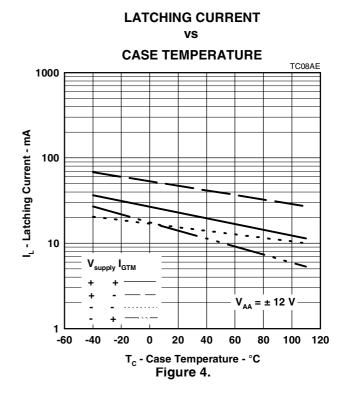
#### thermal characteristics

| PARAMETER       |                                         | MIN | TYP | MAX  | UNIT |
|-----------------|-----------------------------------------|-----|-----|------|------|
| $R_{\theta JC}$ | Junction to case thermal resistance     |     |     | 1.9  | °C/W |
| $R_{\theta JA}$ | Junction to free air thermal resistance |     |     | 62.5 | °C/W |

#### **TYPICAL CHARACTERISTICS**




# vs **CASE TEMPERATURE** TC08AB 10 V<sub>στ</sub> - Gate Trigger Voltage - V $V_{\text{supply}} I_{\text{GTM}}$ <sub>AA</sub> = ± 12 V $R_1 = 10 \Omega$ t<sub>p(g)</sub> = 20 μs 0.1 0 20 40 60 100 -60 -40 -20 80 T<sub>c</sub> - Case Temperature - °C Figure 2.


**GATE TRIGGER VOLTAGE** 

#### PRODUCT INFORMATION

NOTE 5: The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics:  $R_G = 100 \ \Omega$ ,  $t_{p(g)} = 20 \ \mu s$ ,  $t_r = \le 15 \ ns$ ,  $t_r = 1 \ kHz$ .

### **TYPICAL CHARACTERISTICS**



