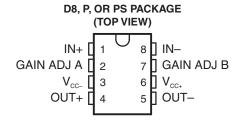


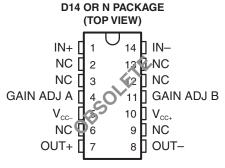
DIFFERENTIAL VIDEO AMPLIFIER

FEATURES

- Adjustable Gain to 400 (Typ)
- No Frequency Compensation Required
- Low Noise . . . 3-mV V_n (Typ)

DESCRIPTION

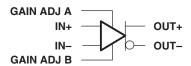

This device is a monolithic two-stage video amplifier with differential inputs and differential outputs. It features internal series-shunt feedback that provides wide bandwidth, low phase distortion, and excellent gain stability. Emitter-follower outputs enable the device to drive capacitive loads. All stages are current-source biased to obtain high common-mode and supply-voltage rejection ratios.


The differential gain is typically 400 when the gain adjust pins are connected together, or amplification may be adjusted for near 0 to 400 by the use of a single external resistor connected between the gain adjustment pins A and B. No external frequency-compensating components are required for any gain option.

The device is particularly useful in magnetic-tape or disk-file systems using phase or NRZ encoding and in high-speed thin-film or plated-wire memories. Other applications include general-purpose video and pulse amplifiers.

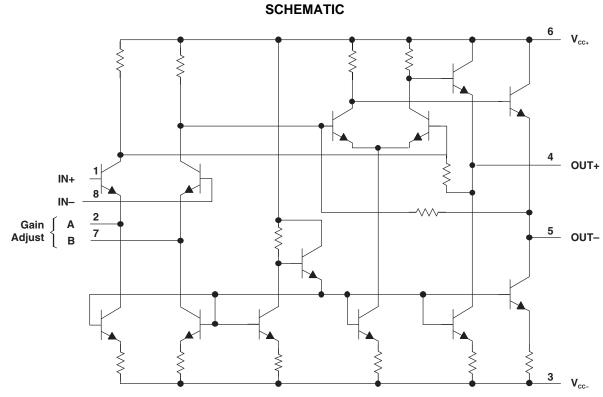
The device achieves low equivalent noise voltage through special processing and a new circuit layout incorporating input transistors with low base resistance.

The TL592B is characterized for operation from 0°C to 70°C.



NC - No internal connection

Note: D8 and D14 are the codes to differentiate the 8-pin and 14-pin versions, respectively.


SYMBOL

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

NOTE: Pin numbers shown are for D, P, and PS packages.

ABSOLUTE MAXIMUM RATINGS(1)(2)

over operating free-air temperature range (unless otherwise noted)

V _{CC+}	Positive supply voltage	8 V
V _{CC} -	Negative supply voltage	-8 V
V_{DI}	Differential input voltage	±5 V
VI	Voltage range, any input	V _{CC+} to V _{CC-}
Io	Output current	10 mA
P _D	Continuous total power dissipation	See Dissipation Rating Table
T _A	Operating free-air temperature range	0°C to 70°C
T _{stg}	Storage temperature range	−65°C to 150°C
T _{lead}	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATINGS

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING
D8	530 mW	5.8 mW/°C	59	464 mW
D14	530 mW	N/A	N/A	530 mW
N	530 mW	N/A	N/A	530 mW
Р	530 mW	N/A	N/A	530 mW
PS	530 mW	N/A	N/A	530 mW

Submit Documentation Feedback

⁽²⁾ All voltage values except differential input voltages are with respect to the midpoint between V_{CC+} and V_{CC-}

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V _{CC+}	Positive supply voltage	3	6	8	V
V _{CC} -	Negative supply voltage	-3	-6	8–	V
T _A	Operating free-air temperature	0		70	°C

ELECTRICAL CHARACTERISTICS

at specified free-air temperature, $V_{CC\pm}$ = ±6 V, R_L = 2 k Ω (unless otherwise noted)

	PARAMETER	TEST FIGURE	TEST CO	NDITIONS ⁽¹⁾	T _A	MIN	TYP	MAX	UNIT
				D 0	25°C	300	400	500	
A_{VD}	Large-signal differential voltage amplification	1	$V_{OPP} = 3 V$, $R_1 = 2 k\Omega$	$R_{AB} = 0$	0°C to 70°C	250		600	V/V
	voltage amplification		11 - 2 1132	$R_{AB} = 1 k\Omega$	25°C		13		ı
BW	Bandwidth (-3 dB)	2	$V_{OPP} = 1 \text{ V, } R_{AB}$	₃ = 0	25°C		50		MHz
	Lamest affact accommod				25°C		0.4	5	
I _{IO}	Input offset current				0°C to 70°C			6	μΑ
	Land bio a summed				25°C		9	30	
I _{IB}	Input bias current				0°C to 70°C			40	μΑ
	Common-mode input	0			25°C	±1			
V_{ICR}	voltage range	3			0°C to 70°C	±1			V
V _{oc}	Common-mode output voltage	1	R _L = ∞		25°C	2.4	2.9	3.4	V
.,	0 "						0.35	0.75	.,
V_{OO}	Output offset voltage	1	$V_{ID} = 0$, $R_{AB} = \infty$, $R_L = \infty$		0°C to 70°C			1.5	V
.,	Peak-to-peak output		$R_L = 2 k\Omega, R_{AB} = 0$		25°C	3	4		.,
V_{OPP}	voltage swing	1			0°C to 70°C	2.8			V
_	Land and later and		V _{OD} = 1 V, R _{AB} = 0		25°C		4		
r _i	Input resistance				0°C to 70°C		3.6		kΩ
r _o	Output resistance				0°C to 70°C			30	Ω
C _i	Input capacitance				0°C to 70°C		5		pF
				f = 100 kHz	0500	60	86		- dB
01400	Common-mode rejection	•	$V_{IC} = \pm 1 V$, $R_{AB} = 0$	f = 5 MHz	25°C		60		
CMRR	ratio	3		f = 100 kHz	000 1- 7000	50			
				f = 5 MHz	0°C to 70°C		60		ı
L	Supply voltage rejection		$\Delta V_{CC+} = \pm 0.5 \text{ V}$	$\Delta V_{CC-} = \pm 0.5 \text{ V},$	25°C	50	70		ī
k _{SVR}	ratio $(\Delta V_{CC}/\Delta V_{IO})$	4	$R_{AB} = 0$. 00-	0°C to 70°C	50			dB
V _n	Broadband equivalent input noise voltage	4	BW = 1 kHz to 10 MHz		25°C		3		μV
t _{pd}	Propagation delay time	2	$\Delta V_O = 1 V$		25°C		7.5		ns
t _r	Rise time	2	$\Delta V_O = 1 V$		25°C		10.5		ns
I _{sink(max)}	Maximum output sink current		V _{ID} = 1 V, V _O =	3 V		3	4		mA
	Cumply ourse at		No lood No star	a a l	25°C		18	24	^
ICC	Supply current		No load, No sign	naı	0°C to 70°C			27	mA

⁽¹⁾ R_{AB} is the gain-adjustment resistor connected between gain-adjust pins A and B. If not specified for a particular parameter, its value is irrelevant to that parameter.

Product Folder Link(s): TL592B

PARAMETER MEASUREMENT INFORMATION

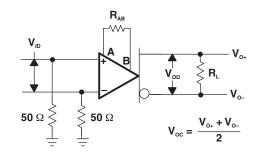
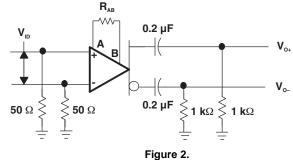



Figure 1.

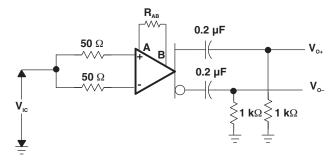
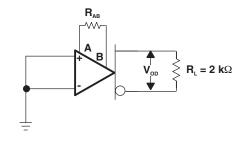
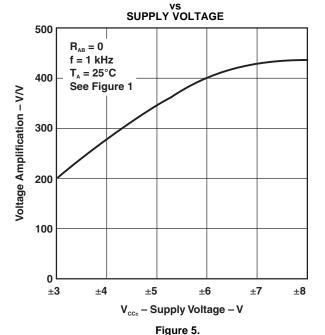
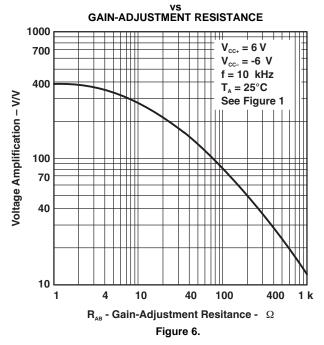


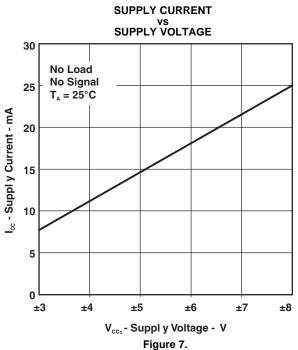
Figure 3.




Figure 4.

Submit Documentation Feedback




TYPICAL CHARACTERISTICS

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

i.com 17-Mar-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TL592B-8D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL592B-8DE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL592B-8DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL592B-8DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL592B-8DRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL592B-8DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL592BI-8D	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI
TL592BN	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
TL592BP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL592BPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL592BPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL592BPSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL592BPSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

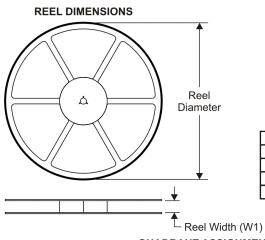
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

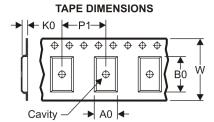
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

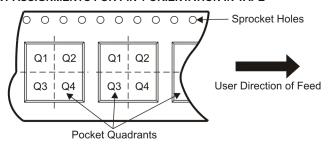
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

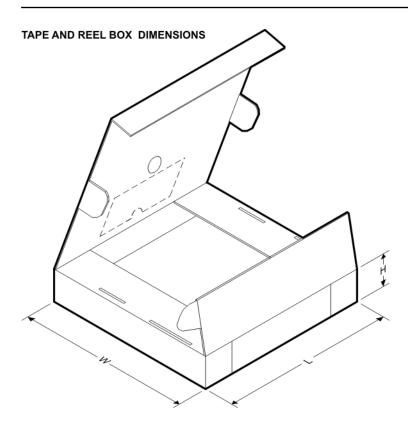

PACKAGE OPTION ADDENDUM


17-Mar-2008

In no event shall TI's liability arising out of suc	ch information exceed the	e total purchase price of	the TI part(s) at issue in th	is document sold by TI
In no event shall TI's liability arising out of suc to Customer on an annual basis.		s total paronago prico or	ano in part(o) at locae in al	iio document cold by 11

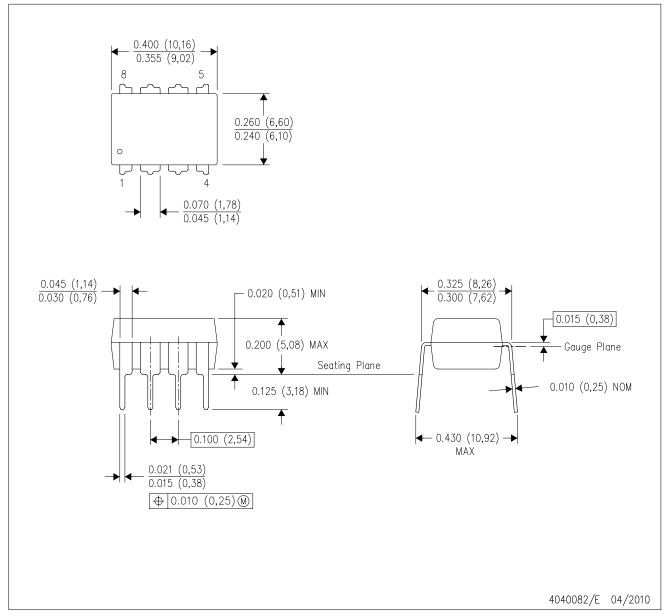

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL592B-8DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL592BPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1

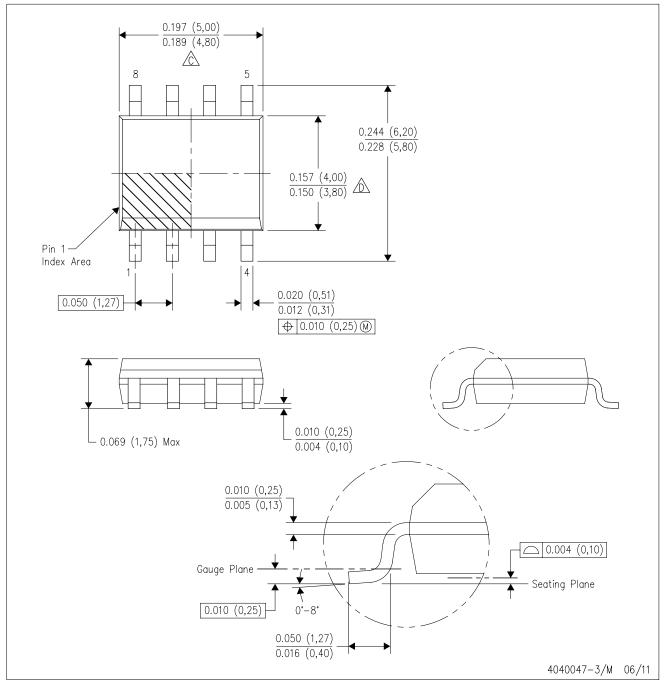


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL592B-8DR	SOIC	D	8	2500	340.5	338.1	20.6
TL592BPSR	SO	PS	8	2000	346.0	346.0	33.0

P (R-PDIP-T8)

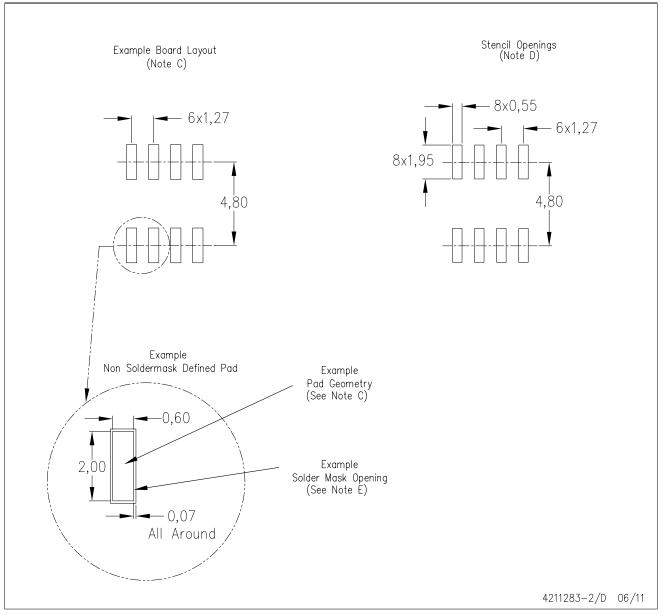
PLASTIC DUAL-IN-LINE PACKAGE



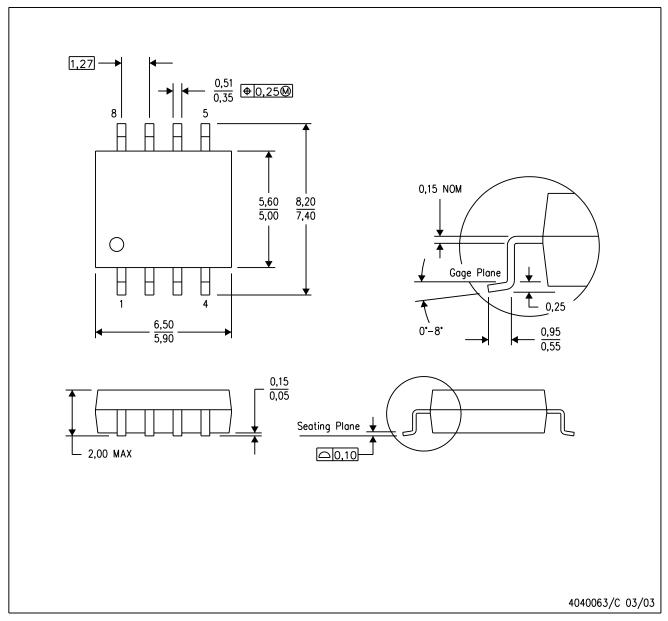
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE



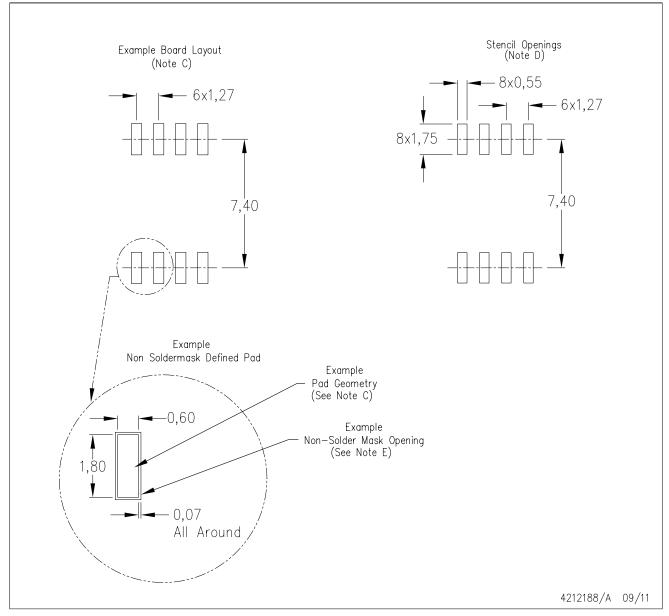
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.


D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PS (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

TI E2E Community Home Page <u>e2e.ti.com</u>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated